Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активность, катализаторов и их приготовление алюминий

    В случае применения реакторов со стационарным слоем катализатора в качестве носителя применяется активированный уголь. Активность катализатора в значительной степени зависит от типа применяемого активированного угля. Наибольшей активностью обладают катализаторы, приготовленные на углях, имеющих поры разного диаметра. Активность катализатора возрастает с повышением температуры активации угля, но не зависит от времени активации. С повышением температуры процесса различие в активностях катализаторов, приготовленных на разных углях, уменьшается. При применении катализатора в псевдоожиженном состоянии активированный уголь сильно истирается из-за его недостаточной прочности. Поэтому в таких реакторах применяются ацетат кадмия и его смесь с ацетатом цинка, нанесенные на более твердые носители оксид алюминия или силикагель. Процесс проводят при температуре 160-220 °С и небольшом избыточном давлении (0,03- [c.471]


    Было показано [8—11], что скелетный никелевый катализатор наибольшей активности образуется из высшего алюминида системы никель—алюминий. Содержанием последнего определяется и активность катализаторов, приготовленных из многофазных сплавов. [c.303]

    Катализаторы на основе окиси алюминия. Дегидратирующая активность катализаторов из окиси алюминия сильно снижается, если они в процессе приготовления нагревались выше 600°. Этанол при пропуска  [c.412]

    Растворы комплексов хлористого алюминия с окисленными соединениями, содержащие избыток хлористого алюминия, являются очень активными катализаторами в реакциях алкилирования изобутана этиленом. Этилирование идет уже при комнатной температуре в присутствии катализаторов, приготовленных смешением 1—3 молей хлористого алюминия и 1 моля ацетона, этилацетата или этилового эфира [12]. Комплексы, содержащие эквимолекулярные количества хлористого алюминия и ацетона, этилового эфира или метанола, также являются катализаторами. С другой стороны, растворы хлористого алюминия в молярном избытке этих органических соединений неактивны в реакциях алкилирования [39]. [c.321]

    Наиболее распространены катализаторы из сплавов никеля с алюминием. Они отличаются высокой активностью, простотой приготовления, хорошей теплопроводностью и высокой механической прочностью. Эти катализаторы пирофорны, поэтому их хранят, транспортируют и работают с ними под слоем жидкости (вода, спирт, метилциклогексан и другие) [191, 192]. [c.166]

    Окись кремния и сульфаты металлов, содержащиеся в катализаторе, снижают его активность. Катализаторы конверсии отравляются под действием сернистых соединений, в частности сероводорода [223, 224], в связи с превращением никеля в соответствующие неактивные соединения — сульфаты и сульфиды никеля. На свойства катализаторов существенно влияют качество применяемого сырья и условия их приготовления. Сырьем для производства катализаторов являются глинозем, соли алюминия (сульфат), никеля (сульфат, нитрат), магния, кальция и др. [c.88]

    Дальнейшее развитие процесса гидроочистки потребовало разработки специфических катализаторов, более активно способствующих гидрированию серы, азота, смол и др. и менее расщепляющих углеводородную часть топлива. В результате были созданы катализаторы на основе окиси хрома, молибдата кобальта, а затем легко регенерируемые молибденовые, никельмолибденовые, кобальтмолибденовые катализаторы, приготовленные на основе окиси алюминия. Особенно широко начали применять алюмокобальтмолибденовый и алюмоникельмолибденовый катализаторы, которые в настоящее время используются на большинстве отечественных и зарубежных установок гидроочистки (см. стр. 238). [c.186]


    Активность катализаторов зависит от носителя и способа приготовления. Для катализаторов частичной конверсии используют мелкие глобулы окиси алюминия в у-модификации. Хорошее распределение никеля достигается соосаждением никеля и алюминия из раствора солей этих металлов. Выпадающие при этом аморфные глобулы гидрогеля по мере кристаллизации постепенно распадаются [c.82]

    С высокоразвитой удельной поверхностью, устойчивой к спеканию. Развитую поверхность получить легче у тех окислов, катион которых имеет малый радиус и высокий заряд, а также имеющих характеристики, соответствующие коллоидным и стеклообразующим свойствам при очень малой растворимости в воде. Эта группа веществ используется в качестве основы носителя и для стабилизации активных фаз. Окислы алюминия являются наиболее распространенным веществом для приготовления носителей многих катализаторов. Тугоплавкие композиции, образованные двумя или более изоляторами, также эффективны, но в настоящее время за исключением цементов, их редко используют. [c.28]

    Исследование Н. С. Козлова и др. [92, с. 159] изомеризующей активности платиновых катализаторов, приготовленных на основе ультрастабильных цеолитов, показало, что при непродолжительной гидротермической обработке (при 550 и 820 °С) удаление алюминия, вышедшего из структурного каркаса, несколько увеличивает выход изомеров гексана. Однако из-за увеличения длительности термообработки в среде водяного пара изомеризующая активность таких катализаторов снижается. Следовательно, вышедший из каркаса алюминий существенно влияет на кислотные и каталитические свойства ультрастабильных цеолитов. Некоторые данные о процессах изомеризации парафинов приведены ниже  [c.320]

    Активным катализатором для полимеризации этилена является не безводный хло])истый алюминий, а продукт присоединения последнего с этиленом. Поэтому процесс получения смазочных масел можно разделить на две ступени — приготовление катализатора и собственно полимеризация. [c.599]

    Наиболее распространены катализаторы из сплавов никеля с алюминием. Они отличаются высокой активностью, простотой приготовления, хорошей теплопроводностью и высокой механической прочностью. Эти катализаторы пирофорны, поэтому их [c.163]

    Другие исследователи пришли к тем же выводам. Апплебей [17], обсуждая механизм, которьш окиси, в особенности окись алюминия, повышают ак тивность железных катализаторов при синтезе аммиака, указывает, что хотя одно железо и является активным катализатором, оно быстро теряет свою активность добавление промотора препятствует этому падению активности. Катализатор, приготовленный из Ре О , активнее катализатора, полученного из РбзОз. Применение окиси алюминия, как промотора, связано с изоморфизмом закись-окиси железа и Ре(АЮ2)г, последняя главным образом создает условия для промотирования, именно создает барьеры из окиси алюминия, которые препятствуют росту кристаллов или коалесценции активных центров железа. [c.370]

    Молибден и никель добавляли в виде окислов, которые превращались в сульфиды в ходе самой реакции. Активность этих катализаторов увеличивалась до постоянной величины в течение первых 3 дней работы вследствие перехода окислов в сульфиды. Эта постоянная активность почти точно совпадала с активностью катализатора, приготовленного для сравнения из сульфидов. Как показано на рис. 11, сама окись алюминия не гидрирует среднее масло. При добавке одного только никеля (кривая 1) наблюдается недостаточная степень гидрирования. Добавление все больших количеств МоОз (кривая 2) приводит к получению катализаторов более активных, как в отношении гидрирования, так и рафинирования, при этом активность достигает предельного значения. На наиболее активных алюмомолибденовых катализаторах среднее масло получается недостаточно чистым, с более низкой анилиновой точкой, чем получаемое с ХУЗг-катализатором (44° С). На основе молибдена и никеля (кривая 3) получается вполне [c.287]

    Структурообразующие промоторы стабилизируют активную фазу катализатора, например, по отношению к нагреванию или каким-либо другим воздействиям. По-видимому, их роль сводится к увеличению срока жизни микрокристаллической фазы катализатора, неустойчивой вследствие термодинамически самопроизвольной термической рекристаллизации (укрупнения) кристалликов катализатора. Хорошо изученным примером подобного действия промотора является промотирование окисью алюминия железного катализатора синтеза аммиака. Активность катализатора, приготовленного восстановлением Рез04 при 550 °С и 100 атм, быстро уменьшается при проведении процесса. Добавление небольшого [c.284]

    Железный катализатор готовят из чистой окиси или чистого гидрата окиси железа. Окись железа пропитывают раствором нитратов калия, алюминия и бария. На сто частей окиси железа берут примерно по одной части каждой из указанных солей. После этого окись железа высушивают и прокаливаютпри700—800°С. При этом происходит разложение нитратов и образование ферритов, например Ва(РеОг)2. Полученный порошок помещают в количестве 20—30 г в трубку и восстанавливают водородом при 500—600° С. В качестве катализатора можно брать и обыкновенное порошкообразное железо, но его активность несколько ниже активности катализатора, приготовленного описанным способом. [c.121]


    В табл. 110 приведены результаты испытаний катализаторов, приготовленных из различных источников железа [130]. Катализаторы приготовлялись пропиткой железа щелочью (0,5% КдО). В катализаторы А3210 и L3009 была введена окись алюминия в качестве связующего вещества. Катализаторы, приготовленные из тонкого порошка окиси железа, пригодной для изготовления минеральных красок, окалины из-под валков, гетита и сидерита (из Пенсильвании), работали при температурах ниже 235°. Эти катализаторы были подобны цементированным катализаторам, приготовленным из тонкого порошка магнитной руды (стр. 193—194), и в течение всего испытания показали почти постоянную активность, в противоположность постепенному уменьшению активности, наблюдавшемуся при испытаниях катализаторов аммиачного типа. Катализатор, приготовленный из руды, добытой в штате Алабама, обладал несколько меньшей активностью, приблизительно равной активности плавленых катализаторов аммиачного типа. Низкую активность катализаторов, приготовленных из сварочного железа,и лимонита, вероятно, можно объяснить присутствием в исходных материалах некоторых дезактивизирующих составных частей. Так, первый из упомянутых катализаторов содержал большое количество окиси кремния (30% в исходных веществах) и восстанавливался с трудом второй катализатор был неактивным, вероятно, благодаря высокому содержанию в нем серы (общее содержание серы составляло 1,2%). Из этих опытов может быть сделано заключение, что для приготовления активных катализаторов можно использовать дешевый железный порошок при двух условиях во-первых, он не должен содержать веществ, являющихся каталитическими ядами в синтезе углеводородов или же затрудняющих восстановление катализатора во-вторых, он должен быть пропитан щелочью. [c.234]

    Показано [155, 156], что использование для приготовления алюмоплатинового катализатора оксида алюминия с бидисперсным распределением размера пор способствует значительному росту каталитической активности, селективности и стабильности катализатора в реакции Сб-дегидроциклизации алканов. Синтезированные на основе бидисперсного оксида алюминия алюмоплати-иовые катализаторы хорощо зарекомендовали себя в реакциях каталитического риформинга индивидуальных [c.243]

    В 1933 г. весьма важные результаты были получены Гейером [25] при воздействия фуллеровой земли и некоторых синтетических катализаторов на пропилен при 350°, хотя Гейер не предполагал, что его результаты могут быть объяснены предложенной недавно теорией реакции с ионом карбония. Гейер быстро пропускал над катализатором пропилен и, кроме полимеров пропилена, получил олефины, парафины и изопарафины, содержащие ст пяти до восьми и больше атомов углерода. Синтетический алюмосиликат обладал приблизительно той же активностью, что и фуллерова земля, а искусственный катализатор, приготовленный из 1 % окиси алюминия на кремнеземе, обладал в 20 раз большей активностью, чем активность лучшей фуллеровой земли. [c.89]

    В литературе имеются весьма противоречивые данные о влиянии условии термообработки алюмоплатиновых катализаторов на их активность в реакции изомеризации, что связано с различными способами их приготовления и испытания в связи с зткм зтот вопрос бьш специально изучен. Гидроксид алюминия (бемит), получаемый синтетически, содержит до 80% воды. После сушки при 110-130 °С содержание воды уменьшается до =6,5%. Для получения каталитически активного у-оксида алюминия он должен быть подвергнут прокаливанию при определенной температуре. Результаты испытания в реакции изомеризации н-пентана платиновых катализаторов, приготовленных на основе гидроксида алюминия, содержащего фтор и прокаленного при различных температурах, показали, что с увеличением температуры прокаливания от 130 до 650 °С их каталитическая активность проходит через максимум, который соответствует температуре 500 °С (табл. 2.4). По технологии приготовления катализатора оксид алюминия после прокаливания подвергается гидратации при погружении в водный раствор НгРсС] отсюда вытекает необходимость вторичной термической обработки катализатора для удаления из него воды. [c.50]

    Влияние природы, количества и способа нанесения металлического компонента катализатора на его каталитические и физико-химические свойства. Современные катализаторы изомеризации парафиновых углеводородов готовят осаждением металлов на носители, обладающие кислотными свойствами. Для катализатора высокотемпературной изомеризации необходимо, чтобы металл обладал дегидрирующей активностью в условиях реакции изомеризации. Не менее ражны гидрирующие свойства металлического компонента, которые обеспечивают защиту поверхности носителя от отложения полимеров. В связи с этим аибольшее распространение получили катализаторы, приготовленные нанесением металлов VIII группы на оксид алюминия или алюмосиликаты. [c.51]

    При гидродеалкилировании ароматических углеводородов для получения бензола и нафталина используют обычно алюмохромовые, алюмокобальтмолибденовые и алюмомолибдеиовые катализаторы. Для снижения кислотных функций катализаторы часто промотируют щелочными металлами. Изучение процесса гидродеалкилирования а-метилнафталина показало, что наиболее активным является хромугольный катализатор, однако в связи с затруднениями, возникающими при его окислительной регенерации, предпочтительны катализаторы, приготовленные на основе окиси алюминия [186]. [c.83]

    Исследования, проведенные Н. М. Чирковым и другими, показали, что гидратация этилена, т. е. его соединение с водой, может происходить непосредственно в присутствии фосфорной кислоты, как катализатора. Для приготовления катализатора берут в качестве носителя обычный алюмосиликат, предварительно обработав его 20%-ной серной кислотой, чтобы снизить содержание окиси алюминия. Это увеличивает активность катализатора. Полученный носитель пропитывают 65%-ной фосфорной кислотой Н3РО4 и сушат при 100° С. Был предложен фосфорнокислый катализатор, нанесенный на уголь, содержащий 2—3% силикагеля (исследования Я. М. Паушкина, Т. П. Вишняковой и др. в Московском институте нефтехимической и газовой промышленности). Этот силикоугольный носитель пропитывают фосфорной кислотой и высушивают. [c.328]

    Предложено много катализаторов гидрокрекинга. Активными компонентами их являются некоторые соединения металлов VI и УП1 групп периодической системы элементов Д. И. Менделеева. Довольно часто выбор останавливают на катализаторах, содержащих сульфиды никеля и вольфрама или иикеля и молибдена, нанесенных на крекирующие пористые носители (окись алюминия, алюмо силикаты) и активированных галогеном (фтором, хлором). Соотношение компонентов — гидрирующего, расщепляющего кольца и гидроизомеризующего — в катализаторе должно быть таким, чтобы достигался, требуемый результат. Нежелательна избыточная крекирующая активность катализатора во избежание усиленного образования газов и легких жидких продуктов. Подбору катализаторов, пригодных для изменения структуры углеводородов в нужном направлении, уделяется большое внимание. Активность и селективность (по приросту индекса вязкости) зависят не только от состава катализатора, но и от способа его приготовления. Ниже указаны выход и свойства масел, полученных глубокой гидроочисткой (гидрокрекингом) деасфальтизата (плот- [c.280]

    Жидкий комплекс хлористого алюминия можно приготовить двумя способами. Его получают либо вне установки действием безводного хлористого алюминия на кубовый остаток колонны для перегопки алкилата, полученного сернокислотным методом, либо в самом реакторе, пропуская часть жидкого изобутана при повышенной температуре и соответствующем давлении над безводным хлористым алюминием, который растворяется в небольшом количестве изобутапа и, таким образом, непрерывно поступает в реактор, где затем образуется жидкий комплекс. Этим самым совершенно устраняется необходимость в аппаратуре для получения жидкого катализатора вне установки и в насосе для его транснортировання. Кроме того, активность жидкого катализатора, приготовленного вие установки, бывает несколько меньше. Получают его следующим образом. [c.330]

    Много ванадия как такового, а также в виде феррованадия используется для улучшения свойств специальных сталей, идущих на изготовление паровозных цилиндров, автомобильных и авиационных моторов, осей и рессор вагонов, пружин, инструментов и т. д. Малое количество ванадия подобно титану и марганцу способствует раскислению, а большое количество увеличивает твердость сплавов. Ниобий и тантал, как дорогие металлы, применяют для легирования сталей только в тех случаях, когда необходима устойчивость по отношению к высокой температуре и активным реагентам. Сплавы алюминия с присадкой ванадия используются как твердые, эластичные и устойчивые к действию морской воды материалы в конструкциях гидросамолетов, глиссеров, подводных лодок. Ниобий и ванадий — частые компоненты жаропрочных сплавов. Ниобий применяют при сварке разнородных металлов. VjOg служит хорошим катализатором для получения серной кислоты контактным методом. Свойства Та О., используются при приготовлении из него хороших электролитических танталовых конденсаторов и выпрямителей, лучших, чем алюминиевые (гл. XI, 3). [c.335]

    Применение окиси алюминия в качестве носителя металлических катализаторов объясняется тем, что она обладает ценными для катализа свойствами, которые определяются её химической природой, структурой её кристаллической решетки и химической неоднородностью её поверхности. В качестве носителей для приготовления катализатора риформинга применяют у- и 1]- модификации окиси алюминия [60]. При изучении свойств катализаторов риформинга, приготовленных на у- или т -А120з, найдено, что катализаторы, приготовленные на основе у-ЛЬО ,, в процессе термической обработки лучше сохраняют свою удельную поверхность и каталитическую активность, чем кагализа-торы, приготовленные на основе т - модификации, поэтому в промышленности и ИрОКО используют у-АЬОз [65, 66]. [c.30]

    Важнейшие новые твердые катализаторы, ведущие к образованию стереорегулярных полимеров, можно классифицировать на четыре группы предварительно формованные окислы металллов перемеппой валентности на носителях с большой удельной поверхностью промотированные окиснометаллические катализаторы твердые катализаторы, приготовленные осаждением непосредственно в реакционной зоне из солей металлов переменной валентности и ме-таллорганических соединений предварительно обработанные осажденные катализаторы. Предварительно приготовляемые окиснометаллические катализаторы включают никель на угле [79], окись молибдена на окиси алюминия [79], молибдат кобальта на окиси алюминия [108] и окись хрома на алюмосиликате И8]. Активность этих катализаторов можно изменять в широких пределах введением различных промоторов, в частности, металлов I, II и III групп периодической таблицы, их гидридов и металлорганических производных [35]. Из осажденных важнейшими являются катализаторы, приготовляемые взаимодействием четыреххлористого титана с алкильными производными алюминия, бериллия, магния илп цинка [107]. Предварительно обработанные осажденные катализаторы включают соли металлов переменной валентности, восстановленные до низшей валентности, например, треххлористый титан, в сочетании с металлорганическими соединениями. [c.285]

    Метод приготовления катализатора часто оказывает сильное влияние на активность его в реакциях изомеризации алкенов. Окись алюминия, приготовленная осаждением из изопронилата алюминия, обладает активностью в реакциях скелетной изомеризации [1], в то время как осажденная из щелочного раствора оказывается значительно менее активной [86]. Окись алюминия, содержащая фтор, более активна в реакциях изомеризации, чем приготовленная пептизацией уксусной кислотой [69]. Температура прокаливания также оказывает влияние на активность окиси алюминия. [c.86]

    Для каталитического окисления могут применяться платиновые катализаторы, приготовленные различным образом платина на угле, платина на окиси алюминия, платиновая чернь. Наблюдаются значительные отклонения в активности катализаторов, полученных одним и тем же способом. Наилучшим растворителем для проведения этой реакции является вода, но в случае необходимости могут быть использованы ацетон, метилэтилкетон, диоксан, гептан и петролейный эфир в бензоле, уксусной кислоте и этилацетате реакция протекает очень медленно. Так как при комнатной температуре скорость окисления слишком низка, реакцию ведут обычно при температурах от 50 до 100° С. Для окисления первичной спиртовой или альдегидной группы в карбоксильную группу оптимальным является интервал pH 7—9, для окисления вторичной гидроксильной группы в карбонильную предпочтительной является слабокислая среда, так как в слабощелочной среде (pH 7,3) происходит дальнейшее окисление первоначально образующихся кетосахаров с разрывом углерод-углерод-ных связей. Так, при окислении 3-бензил- )-арабопиранозида в этих условиях была получена двухосновная кислота XXII  [c.85]

    При гетерогенном катализе реакция происходит на поверхности катализатора, поэтому особую роль играет величина поверхности, а также химический состав и структура поверхностного слоя катализатора. В свою очередь, структура катализатора зависит от способа его приготовления, в частности от термической обработки. Наилучшимн каталитическими свойствами обладают катализаторы, приготовленные прп возможно более низкой температуре и имеющие несовершенную кристаллическую структуру. Поэтому катализаторы на базе оксидов чаще всего получают разложением соответствующих гидроксидов или малоустойчивых солей — оксалатов, нитратов и т. д. Катализаторы на базе металлов обычно изготовляют путем восстановления их соединений водородом. Например, часто применяемый в качестве катализатора оксид алюминия полу чают обезвоживанием гидроксида при температуре не выше 400 °С. Никелевые катализаторы, используемые для реакций гидрирования, получают восстановлением оксида никеля водородом при 300 °С (если катализатор получать прп более высокой температуре, его активность снижается). [c.51]


Смотреть страницы где упоминается термин Активность, катализаторов и их приготовление алюминий: [c.302]    [c.70]    [c.29]    [c.37]    [c.204]    [c.70]    [c.5]    [c.54]    [c.55]    [c.52]    [c.78]    [c.109]    [c.84]    [c.84]    [c.351]    [c.191]    [c.167]    [c.142]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.294 , c.295 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий активная

Катализатора активность

Катализаторы активные



© 2025 chem21.info Реклама на сайте