Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции первого порядка простые

    Рассмотрим самый простой случай обратимых реакций, когда прямая и обратная реакции имеют первый порядок и описываются следующей схемой  [c.33]

    Рассчитывают константу скорости реакции, проводят простейшую оценку погрешности в определении константы скорости и определяют порядок реакции. Полученные экспериментальные данные подставляют в кинетические уравнения реакций различных порядков. Порядок реакции соответствует тому уравнению, в котором величина константы скорости постоянна. На основании проведенных вычислений находят, что данная реакция является реакцией первого порядка. Для расчетов предлагается вариант программы, написанный на языке РХ 1 и РОЯТ НАМ - 4 (см. приложения 1,2). [c.41]


    Казалось бы, порядок реакции легко можно определить по виду стехиометрического уравнения. Однако опыт показывает, что порядок, по которому развивается реакция во времени, часто не совпадает с порядком, определяемым по стехиометрическому уравнению. Иными словами, порядок реакции не всегда совпадает с ее молекулярностью. Лишь в наиболее простых случаях наблюдается это совпадение. Реакция может быть бимолекулярной, но протекать по кинетическому уравнению реакции первого порядка и т. п. Примером могут служить реакции гидролиза уксусноэтилового эфира и тростникового сахара в разбавленном водном растворе  [c.142]

    Порядок реакции не всегда удается определить по химическому уравнению даже в простейших случаях. Например, по уравнению реакция инверсии тростникового сахара является двухмолекулярной и должна быть реакцией второго порядка. (В данной реакции участвуют два вещества сахароза и вода.) Фактически она протекает как реакция первого порядка. Объясняется это тем, что инверсия проводится при большом избытке воды, вследствие чего концентрация воды во времени почти не изменяется. Таким образом, скорость инверсии зависит от изменения во времени концентрации только одного вещества— сахарозы, т. е. эта реакция проходит как реакция первого порядка. [c.123]

    Такие простые соотношения между константами процесса получаются только для реакций первого порядка. Если же порядок реакции отличен от первого, получаются более сложные соотношения между константами. Если порядок реакции, протекающей на поверхности, равен т, то на основании сказанного выше [c.314]

    Достаточно ли близки параметры рассматриваемого реактора к параметрам простых идеализированных моделей Какую ступень превращения можно ожидать, если реакция имеет первый порядок и протекает при постоянной температуре, а константа скорости равна 1,8 мин- Какие из приведенных выше сведений не являются необходимыми для решения этой задачи  [c.104]

    Если 1=1, реакция называется реакцией первого порядка по реагенту Аь если 1 = 2, то реакция называется реакцией второго порядка по Аь Для простого кинетического уравнения (10.7) суммарный порядок реакции равен сумме показателей степеней, т. е. Епг. Коэффициент пропорциональности к называется константой скорости и, согласно уравнению (10.7), имеет размерность Для реакции первого порядка к обычно выражают в с или мин- . Если суммарный порядок реакции равен двум, то к выражают в М -с .  [c.286]


    Нахождение простого дразнения скорости интегральным методом. Выясним, можно ли описать кинетику указанной реакции каким-либо простым уравнением скорости. Для этого применим интегральный метод. В столбце 3 табл. 6 и на рис. 111-24 показана проверка кинетических уравнений второго порядка в соответствии с рис. 111-5. Экспериментальные точки не укладываются на прямую. Следовательно, реакция не является элементарной, бимолекулярной. На рис. 111-25 показана проверка кинетического уравнения первого порядка согласно рис. П1-3. Данные табл. 6 снова не ложатся на прямую и порядок реакции отличается от первого. Аналогичная проверка на линейность других простых кинетических уравнений дает отрицательные результаты. [c.90]

    Примечание. Сравнивая уравнения (г) и (е), можно видеть, что если различные движущие силы не являются линейными функциями параметра системы, то выражения для суммарной скорости процесса представляют собой не простые соотношения. Эта особенность влияет на методику нахождения скоростей реакций для гетерогенных систем. Когда химическая реакция протекает по первому порядку, общее выражение скорости, учитывающее массоперенос, может быть выведено без затруднений. Однако, если реакция имеет не первый порядок и необходимо получить уравнение скорости сложного процесса, то обычно выбирают такие экспериментальные условия, при которых химическую стадию без большой ошибки можно рассматривать, как реакцию первого порядка. [c.326]

    Можно также непосредственно ввести равновесные концентрации в уравнение скорости реакции и проинтегрировать его. Рассмотрим, например, простой случай, когда реакции, протекающие в прямом и обратном направлениях, имеют первый порядок  [c.176]

    При изучении скоростей реакций часто получаются линейные графики, которые несложно интерпретировать, однако во многих случаях результаты не столь просты. Так, иногда реакция может иметь первый порядок при низких концентрациях, но второй при высоких. Иногда получают дробный или даже отрицательный порядок реакции. Интерпретация сложных кинетических данных требует большого искусства и значительных усилий. Даже относительно простая кинетика часто вызывает проблемы при интерпретации данных, связанные с трудностью проведения достаточно точных измерений [29]. [c.292]

    Рассмотренные здесь стадии сложных реакций имели первый порядок. Эти простейшие схемы приводили к интегрируемым в квадратурах системам дифференциальных уравнений. В других более сложных случаях возможны лишь приближенные решения с применением численных методов. [c.721]

    Во всех рассмотренных выше примерах удавалось получить более или менее законченные конечные выражения для определения оптимальных условий проведения реакции в реакторе идеального смешения. Практически это стало возможным благодаря тому, что рассматривались предельно простые случаи с реакциями первого порядка, допускающими относительно простое аналитическое выражение критерия оптимальности. В более сложных случаях, в особенности для реакций, имеющих порядок, отличающийся от первого, решение существенно усложняется и, как правило, требует применения численных методов для получения конечных результатов.  [c.116]

    Большинство химических реакций протекает в несколько стадий. Даже если скорость реакции описывается простым кинетическим уравнением, реакция может состоять из ряда стадий. Одной из задач кинетики является определение промежуточных стадий, потому что только таким путем можно понять, как протекает реакция. Отдельные стадии называются элементарными реакциями. Совокупность элементарных реакций представляет механизм суммарной реакции. При рассмотрении механизма говорят о молекулярности стадий, которая определяется числом реагирующих молекул, участвующих в элементарной реакции. Отдельные стадии механизма называются мономолекулярными, бимолекулярными или тримолекулярными в зависимости от того, одна, две или три молекулы вступают в реакцию на данной стадии. Для элементарных реакций молекулярность (моно-, би- и три-) совпадает с их порядком (соответственно первый, второй и третий), но по отношению к суммарной реакции эти термины не являются синонимами. Например, мономолекулярная стадия механизма имеет первый порядок, но реакция первого порядка не обязательно долл<на быть мономолекулярной, как будет показано ниже (разд. 10.12). [c.292]

    Скорость реакции, катализируемой ферментом, как правило, оказывается прямо пропорциональной концентрации фермента. Если изменять концентрацию субстрата, то обычно при низких его концентрациях реакция имеет первый порядок по субстрату, а по мере увеличения концентрации субстрата порядок реакции приближается к нулевому (рис. 10.10,а). Фактически измеряемые скорости суммарной реакции являются скоростями, относящимися к стационарному течению реакции. Когда смешиваются растворы фермента и субстрата, вначале происходит очень быстрая реакция фермента с субстратом, скорость которой можно измерить только с помощью специальных методов (например, релаксационных методов, разд. 10.2). Механизм стационарной реакции можно понять, если рассмотреть следующую простейшую схему реакции, описываемой суммарным уравнением 5 = Р  [c.320]


    Арис и др. [37, 38] отмечают, что если даже все реакции при крекинге газойля имеют первый порядок, различная реакционная способность компонентов исходного сырья должна отражаться на общем порядке реакции. Это также соответствует заключению об устойчивости, развитому в работе [24]. Многие авторы установили, что протекание большого числа параллельных реакций первого порядка с разными константами скоростей может дать в результате общий средний порядок, превышающий единицу [39, 40]. Общий порядок IV, предложенный авторами [24], дает возможность количественного сопоставления различных видов сырья с помощью простого параметра, не требующего знания их группового состава. Такой метод очень привлекателен для обработки экспериментальных данных, полученных в разных условиях, но он не имеет прогностических возможностей, так как W не учитывает состава сырья. Для устранения этого недостатка необходимо найти возможность предсказания У. Один из вариантов указывается в работе [41], где предложен критерий для группировки различных компонентов сырья без получения предварительной информации о соответствующих константах скорости их крекинга. Такой подход может привести к количественному определению W на основе данных о составе исходного сырья. [c.127]

    Гупта и Дуглас [128] опубликовали результаты исследования гидратации изобутилена в третичный изобутиловый спирт на ионообменной смоле Дауэкс 50 . Реакция протекает при большом избытке воды и имеет первый порядок по пзобутилену. Обратную реакцию можно рассматривать, как имеющую первый порядок по спирту. Согласно данным авторов, константа равновесия при 100 °С соответствует минимальной степени превращения 94% они считают, что в условиях экспериментов реакция была практически необратимой. В этом случае для простой реакции первого порядка - - 0 С = [c.194]

    Для проведения простых реакций первого порядка в каскаде аппаратов идеального смешения их реакционные объемы должны быть одинаковыми, а в случае когда реакции сложные и порядок основной реакции выше, чем побочных реакций, объем каждого последующего аппарата в каскаде больше объема предьщущего. При низких концентрациях исходных веществ требуемый реакционный объем будет меньше в случае использования аппаратов смешения, а не аппаратов вытеснения. [c.131]

    Здесь л снова указывает на порядок реакции десорбции. Для простого выделения первого порядка этот максимум, очевидно, не зависит от начальной концентрации при любой форме кривой нагревания. Когда энергия активации десорбции является функцией концентрации или десорбция происходит как реакция второго порядка, тогда при повышении начальной концентрации максимум [c.127]

    Константа скорости адсорбции на металлах обычно высока и сочетается с малой энергией активации последним членом в уравнении в больщинстве случаев можно спокойно пренебречь. Следовательно, этот метод приводит к приближенному значению энергии активации десорбции. Когда десорбция протекает как простая реакция первого или второго порядка, то порядок может быть определен построением графика зависимости ln(iV/n ) от /RT. Прямая линия получается в том случае, когда показатель степе- [c.132]

    Методом вращающегося сектора была изучена полимеризация метакриламида в водном растворе [22]. Реакция имеет первый порядок по мономеру, как в простой реакционной схеме. Константы скорости и параметры графика в аррениусовских координатах лежат в указанных выше пределах. Во многих случаях, однако, кинетика катализируемой радикалами полимеризации виниловых мономеров в растворе не является простой, в част-лости, порядок по мономеру обычно лежит между 1 и 1,5. Были предложены различные варианты механизма этой реакции например, образование комплекса, клеточный эффект, обрыв на первичных радикалах, рекомбинация первичных радикалов при участии растворителя [23]. [c.144]

    Как показали Я- Б. Зельдович и Д. А. Франк-Каменецкий, одна йз простейших форм функции ср (с), имеющих простое аналитическое решение, отвечает автокатализу второго порядка (квадратичное разветвление цепей), сопровождаемому параллельной реакцией расходования активного вещества по реакции первого порядка (порядок реакции определяется по активному веществу). Действительно, взяв в качестве одной из наиболее простых функций, удовлетворяющих указанным выше граничным условиям, [c.619]

    К мономолекулярным относят такие реакции, в которых активированный комплекс образуется из отдельной реагирующей молекулы. При определенных условиях это реакции первого порядка, но при низких давлениях порядок реакции становится вторым. Хотя на первый взгляд эти реакции и кажутся простыми, но на самом деле приходится сталкиваться с некоторыми трудностями при их истолковании, поэтому на этом вопросе необходимо специально остановиться. Строго говоря, как и тримолекулярные реакции. [c.118]

    Необходимо выяснить, связан ли первый порядок по амину А1 в прямой реакции с его ролью как исходного вещества или же с его каталитической активностью. Проведение опытов и кинетическое исследование стали бы значительно проще, а выводы выиграли бы в четкости, если бы превращение системы протекало полнее (отдельная реакция). Хотя реакция морфолина А1 с Ы-ме-тил-Ы,Н -дифенилмочевиной (111) так же не идет до конца, все же степень ее превращения более значительна поэтому для продолжения исследования рассмотрим именно эту систему, воспользовавшись методом простой замены. В табл. П1-33 содержатся некоторые данные по этой системе. [c.339]

    В котором А ж в — некоторые параметры, имеющие малое значение А 10 , В 10 ). Автором статьи было показано [18], что уравнение (3) является частным случаем проанализированной схемы в условиях, когда превалирует обрыв цепей на стенках реактора. При этом коэффициенты АжВ просто выран<аются через константы скорости реакций зарождения, развития и обрыва цепей на стенках. Заметим, что первый порядок реакции обусловлен реакцией зарождения цепей. [c.344]

    По изменению высоты пиков, измеренных на масс-спектрометре, всегда можно при помощи уравнения (3) найти значение Р. Если Р не зависит от начального давления реагента, то гетерогенная реакция имеет первый порядок и экспериментальные результаты легко описываются уравнением типа Аррениуса Р=В ехр (—ЕШТ). В некоторых случаях значение Р, найденное из уравнения (3), зависит от давления реагента, тогда Р уже нельзя выразить в простой форме через измеряемые величины и результаты лучше описывать другими способами. Если реакция имеет порядок /2, то Р уменьшается при увеличении начального давления р1 реагента для реакции второго порядка Р увеличивается с ростом р1. [c.546]

    Кинетика химических реакций в большей мере зависит от количества одновременно участвующих в них молекул. В соответствии с этим различают moho-, би- и, редко, тримолекулярные реакции (рис. 64), большего количества молекул, взаимодействующих в процессе реакции, практически не наблюдается. Многие химические процессы, описываемые различными громоздкими стехиометрическими уравнениями, обычно представляют собой совокупность нескольких последовательных, а иногда и параллельных элементарных реакций, каждая из которых принадлежит к одной из упомянутых кинетических групп. Вследствие такой миогостадийности макроскопически наблюдаемых процессов вводится понятие о порядке реакции. Он определяется суммой показателей степеней, в которых концентрации исходных веществ входят в кинетическое уравнение. В простейших случаях порядок реакции определяется наиболее медленной стадией сложного химического процесса. Порядок реакции может быть уменьшен, если одно или два вещества, участвующих в реакции, взяты с большим избытком и концентрация их практически не изменяется. Скорость необратимых реакций первого и второго порядков (dxldt) и соответствующие им константы [c.153]

    За скоростью гидролиза реакционных смесей, нагревавшихся в запаянных трубках при 100°, следили по скорости образования кислоты. В воде, в отсутствие солей меди скорость уменьшалась со временем быстрее, чем это можно объяснить простым первым порядком. Найдено, что реакция замедляется образующейся или добавленной сначала кислотой. Однако результаты плохо воспроизводились. Поскольку неустойчивость результатов могла зависеть от образования во время реакции органической фазы, был применен 50%-ный водный диоксан, который растворяет продукты реакции. Первый порядок вновь не наблюдался, но в противоположность реакции в воде скорость на этот раз возрастала со временем характерным для автокаталитической реакции образом. Было обнаружено, что за наблюдаемый авго-катализ косвенно ответствен кислород. Когда кислород был удален предварительным дегазированием растворов до реакции, только 7% иодониевой соли гидролизовалось за 24 часа. С другой стороны, растворы, запаянные с воздухом, прореагировали за то же время полностью. В воде не наблюдалось никакого увеличения скорости благодаря кислороду или добавленной перекиси водорода, но в 50%-ном водном ацетоне скорость [c.138]

    Растворение металла, идущее одновременно с образованием Нг из ионов Н в растворе, представляет собой случай, в котором анодный и катодный процессы протекают на одном и том же электроде. (Эти процессы называются полиэлектродными.) При этом как диффузия, так и химические процессы могут стать лимитирующими. Ранние работы по растворению амальгам натрия [7-6] в кислотах и основаниях указывают на то, что скорость реакции имеет первый порядок по Н" и приблизительно порядок /2 по концентрации натрия. Для кислых растворов эти факты объяснялись тем, что процесс лимитируется диффузией. Однако, как показали более поздние исследования [77—80], скорость растворения металлов в различных кислотах и растворителях пропорциональна концентрации недиссоциированной формы кислоты и относительные константы скорости в различных кислотах хорошо ложатся на прямую Бренстеда. По-видимому, в этом случае лимитирующей стадией является перенос протона от молекулы недиссоциированной кислоты к поверхности металла , причем реакция подвергается специфическому катализу кислотами. При растворении солей, таких, как Na l, в системах с перемешивающим устройством предполагается, что скорость реакции лимитируется диффузией, причем диффузия происходит через пограничный слой насыщенного раствора соли на поверхности кристаллов соли. Хотя подобная картина, по-видимому, является правильной для простых солей, таких, как галогеииды щелочных металлов, в случае солей металлов переменной валентности картина может быть другой. Так, например, безводный СгС1з очень медленно растворяется в воде, при этом скорость реакции не зависит от перемешивания. Было обнаружено, что небольшое количество Сг " в растворе оказывает огромное влияние на скорость реакции. Вероятно, в этом случае осуществляется перенос заряда между частицами Сг - в растворе и Сг в твердой фазе. Эти системы, по-видимому, заслуживают дальнейшего изучения. [c.557]

    Необходимо подчеркнуть, что линейное соотношение между скоростью реакций специфического кислотно-основного катализа и концентрацией катализатора на практике наблюдается лишь применительно к разбавленным водным растворам. В водно-органических и неводных средах, а также при повышенных концентрациях компонентов, первый порядок по катализатору обычно меняется на дробный. Для объяснения таких фактов многие авторы прибегали к сложным построениям, касающимся механизма реакции на уровне субмолекулярных частиц и активированных комплексов. Просто и убедительно решил этот вопрос Гаммет [209], предложивший применять для количественной оценки кислотно-основных свойств реакционных сред величину Яо, названную функцией кислотности. В основе метода Гаммета лежит измерение в исследуемой среде степени диссоциации какого-либо вещества — индикатора, равновесное содержание недиссоцииро-ванной и ионизированных форм которого удобно для экспериментального определения (например, спектрофотометрическим [c.76]

    Однако только реакция (5) является реакцией первого порядка. Реакции (7) и (8) играют незначительную роль они, по-видимому, стабилизируются столкновением трех частиц в виду того, что последние обладают простой структурой. В реакции (в) можот иметь значение стерический эффект. Только реакция (3) является, по-видимому, единственно значительной, хотя не исключаются и прочие реакции обрыва цепи. Косвенным доказательством этого является тот факт, что свободнорадикальвый механизм дает возможность определять правильный порядок реакции и общую энергию активации ее. Кромо того, делались попытки получит непосредственные доказательства этого. [c.83]

    Порядок реакции имеет несколько разный смысл для простых и сложных реакций. Порядок простой реакции равен числу частиц, участвующих в элементарном акте, он всегда положителен и целочислен. Если сложная реакция представляет собой ряд последовательных стадий, из которых первая определяет скорость всего процесса (см. гл. II), то порядок суммарной реакции обычно равен порядку этой определяющей скорость стадии. В обше.м случае порядок сложной ре- [c.25]

    Обработка изоцианатов 3-метил-1-этил-3-фосфолен-1-окси-дом (72) представляет собой полезный метод синтеза карбоди-имидов [578] с хорошими выходами [579]. Это не простое присоедпнение одной молекулы изоцианата к другой, поскольку реакция имеет первый порядок по изоцианату и первый по катализатору. Предложен следующий механизм (катализатор изображен как КзР—О) [580]  [c.419]

    Молекулярность реакции представляет собой молекулярно-кинетическую характеристику системы, а понятие о порядке реакции следует из формально-кинетического описания. Для простых гомогенных реакций, протекаюших в одну стадию, эти два понятия совпадают, т. е. мономолекулярная реакция соответствует реакции первого порядка, бимолекулярная — реакции второго порядка, три-молекулярная — реакции третьего порядка. Для сложных реакций, протекающих в несколько стадий, формальное представление о порядке не связано с истинной молекулярностью реакций. Поэтому при формально-кинетическом описании таких процессов встречаются реакции дробного, нулевого и даже отрицательного порядка по одному из компонентов. Например, каталитическое разложение аммиака на поверхности вольфрама описывается уравнением и = А (реакция нулевого порядка, скорость которой не зависит от концентрации реагентов), разложение фосфина на стекле протекает в соответствии с уравнением и = йСрн (реакция первого порядка), стибин на твердой сурьме диссоциирует со скоростью ii = /e sbH, (реакция дробного порядка). Окисление оксида углерода, протекающее по уравнению 2С0-Ь02->2С02 на платиновом катализаторе, подчиняется зависимости v = k( o2/ o), т. е. эта реакция имеет порядок [c.216]

    Медленное термическое разложение нитроаминов напоминает разложение нитроэфиров Х б]. Установлено, что многие реакции разложения нитроаминов имеют первый порядок. Разложения описанных соединений характеризуются большой энергией активации и высокими значениями предэкспоненциального множителя. Автокаталитическое действие и тепловой эффект в ряде случаев усложняют простую. мономолекулярную схему разложения. Однако исследование продуктов разложения показало заметное отличие механизма разложения витроаминов от иитроэфиров. В то время как начальная стадия разложения нитроэфиров сопровождается выделением ЫОг с последующим восстановлением до N0, при разложении нитроаминов большая часть азота выделяется в виде ЫгО (табл. 111.2). Разрыв связи RN—N 2 с выделением N02 не является основным процессом при разложении нитроаминов. Поскольку конечная стадия процесса горения сопровождается воостановле-нием окислов азота, образующихся на начальных стадиях реакции, окисью углерода и водородом, можно ожидать, что сгорание нитроаминов и нитроэфиров происходит неодинаково, так как при реакции в газовой фазе в одном случае преобладает ЫгО, а в другом — N0. [c.166]

    В простых реакциях первого порядка типа А —>- В —>- С при начальной концентрации Со кмольконцентрация исходного вещества убывает по экспоненциальному закону. Изменения концентраций реагирующего с и образующегося х веществ во времени даны на рис. П-2. Графическим дифференцированием этих кривых (см. выше) определяются скорость реакции, а затем порядок ее и константа скорости, [c.32]

    Браун [7] установил, что распад перекиси бензоила в бензоле при 80° идет как реакция, имеющая порядок приблизительно 1,3 относительно концентрации перекиси. Предполагалось, что это результат одновременного протекания реакций первого и второго порядков. Установлено, что свет ускоряет распад, не влияя на кинетический порядок, а изменение отношения величина поверхности/объем реакционного сосуда не влияет на скорость распада. Более широкие исследования подтвердили сложную природу реакции, хотя не было достигнуто общего согласия относительно того, пропорциональна ли скорость реакции более высокого порядка [Са ] - или [Саф. Барнет и Воган [8] нашли, что эта реакция в бензоле при 80° идет как реакция второго порядка, но Касс [9], проводя исследования при 30°, а Бартлет, Нозаки [10] — при 80°, установили, что порядок реакции зависит от применяемого растворителя. На практике не всегда просто выбрать между порядком 1,5 и 2 в данном случае легко постулировать механизмы, которые могут объяснить оба результата [11]. [c.236]

    Реакции первого порядка. Время релаксации является обратно величино константы скорости. Для начала рассмотрим простой случай обратимой реакции, имеющей первый порядок в каждом направлении [c.70]

    Несмотря на сложность только что изложенных фактов, основной экспериментальный акт горения, по-видимому, прост. Забудем сейчас о промежуточной области температур и рассмотрим только результаты, полученные при температуре ниже 1200 и выше 1900° К (на не-графлтизированной нити) ). При этих температурах скорость горения прямо пропорциональна числу ударов молекул Ог о нить (первый порядок), С другой стороны, известно, что единственным продуктом реакции является СО и что кислород не адсорбируется нитью. Все это [c.137]


Смотреть страницы где упоминается термин Реакции первого порядка простые: [c.138]    [c.76]    [c.110]    [c.16]    [c.539]    [c.216]    [c.714]    [c.331]    [c.133]    [c.356]    [c.33]    [c.224]   
Неформальная кинетика (1985) -- [ c.16 , c.17 , c.103 , c.124 ]




ПОИСК





Смотрите так же термины и статьи:

Порядок первый

Порядок реакции

Порядок реакций и реакции первого порядка

Простые и порядка

Простые первого порядка

Реакции первого порядка

Реакции первый

Реакции порядок Порядок реакции

Реакция простая



© 2025 chem21.info Реклама на сайте