Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент инертных газов

    Первый член этого выражения дает энергию взаимного отталкивания атомов, и, так как 8 12, он существен только на небольших расстояниях. Второй член соответствует вандерваальсовому притяжению t приблизительно равно 6 (экспериментальные значения 5 и 1 получают из вириальных коэффициентов инертных газов). Сумму, выраженную уравнением (У-9), следует брать по всем межатомным расстояниям. Расстояние от данного атома до некоторой точки в решетке составляет [c.208]


    Растворимость в топливе кислорода, азота и инертных газов, являющихся компонентами воздуха, различна. При 15,5° С коэффициент растворимости кислорода в керосине равен 0,0285, азота — 0,0157. Вследствие этого, кислород растворяется в топливе в большей пропорции, чем его содержится в воздухе. Поэтому газовая смесь, которая выделяется из топлива, богаче кислородом, чем обычный воздух. Объемное отношение азота к кислороду в ней составляет 2,07 1, тогда как у воздуха оно равно 3,76 1. Это явление увеличивает пределы взрываемости смесей, образующихся с парами топлива. [c.54]

    Запас инертного газа в газгольдере должен обеспечивать создание инертных подушек в электродержателях, загрузочных течках электропечей и масляных затворах электрофильтров не менее чем в течение 2 ч. Инертный газ должен подводиться к оборудованию по стационарным трубопроводам, рассчитанным на максимальный расход инертного газа каждым потребителем с учетом коэффициента одновременности не менее 0,7. На каждом вводе инертного газа в отделение, а также на каждом ответвлении к определенному оборудованию необходимо установить обратный клапан или гидрозатвор, чтобы предотвратить загрязнение инертного таза взрывоопасными и токсичными производственными газами. На каждом ответвлении должны быть установлены запорный вентиль и расходомер. [c.71]

    Замена водяного пара инертным газом могла бы привести к боль-яшй экономии тепла, затрачиваемого на производство водяного пара, и к снижению расхода воды, идущей на его конденсацию. Весьма рационально применять инертный газ при перегонке сернистого сырья, так как, сернистые соединения в присутствии влаги вызывают интенсивную коррозию аппаратов. Однако инертный газ не получил применения при перегонке нефти из-за громоздкости подогревателей газа и конденсаторов наро-газовой смеси (низкого коэффициента теплоотдачи) и трудности полного извлечения отгоняемого нефтепродукта из газового потока. [c.204]

    Диффузионное уравнение (4.14) весьма похоже на кинетическое (4.13), разница состоит лишь в том, что перед концентрацией Н появился коэффициент 0,82 постоянная а -= гT d заменена постоянной Ф = Ок 1(Р, и уравнение относится к среднему значению Н. Эта формальная разница отражает разницу реальных физических процессов и показывает, что поведение системы в случае ее разбавления, например, инертным газом будет существенно зависеть от того, в какой области протекает процесс. Если процесс протекает в кинетической области, то разбавление не повлияет на период задержки воспламенения, который определяется лишь парциальным давлением смеси На—О . В диффузионной же области разбавление должно затянуть период индукции Т из-за понижения коэффициента диффузии О = Од/Р. Этот вывод подтвержден экспериментально [39, 53]. [c.299]


    Применение газа с газовоздушной инертной смесью с коэффициентом инертности выше единицы обусловливает смещение пределов взрываемости в область значений, превышающих реальную концентрацию газа в газовоз-душно-инертной смеси. [c.191]

    Ряс. 61. Зависимость температуры воспламенения газа от коэффициента инертности  [c.192]

    Рабочей температурой горения раб называется температура, определяемая осуществляемым термотехнологическим процессом при коэффициенте расхода воздуха а или введении инертных газов. Рабочая температура горения должна быть выше температуры воспламенения топлива. [c.152]

    Требуемая химическая активность теплоносителя обеспечивается принимаемым коэффициентом расхода воздуха а в горелке (форсунке) и воздухом или инертным газом, подаваемым в камеру смешения топки для снижения температуры продуктов горения топлива. Напомним, что химическая активность теплоносителя при а < 1 восстановительная, при а = 1 — нейтральная и при а > 1 — окислительная. [c.153]

    В присутствии примесей процесс теплопередачи определяется уже не скоростью отвода тепла, выделяющегося при конденсации, а, главным образом, интенсивностью движения частиц пара из центральной части трубок к поверхности, на которой происходит конденсация. Движение пара обусловлено как диффузией, так и конвективным обменом. Скорость движения пара к поверхности определяется разностью парциальных давлений у поверхности и в основной массе. В процессе конденсации воздух концентрируется у поверхности охлаждения и создает дополнительное сопротивление движению пара к поверхности. Ограниченный приток пара к поверхности постепенно вызывает увеличение толщины экранирующего слоя инертных газов, поэтому коэффициент теплоотдачи снижается. В парогазовой смеси всегда присутствует некоторое количество инертных примесей даже после эффективного их удаления, что приводит к уменьшению парциального давления водяного пара н снижению температуры к. а следовательно плотности теплового потока на теплообменных секциях. [c.135]

    Особенностью процесса конденсации парогазовой смеси является существенное изменение состава потока по мере конденсации его паровой части. Так, если на входе в аппарат поток может содержать в основном паровые компоненты с небольшими добавками инертного газа, то на выходе картина может быть прямо противоположной. Это обстоятельство, а также изменение температуры потока (в отличие от конденсации чистого компонента) приводит к тому, что теплофизические свойства потока, а следовательно, и коэффициент теплопередачи могут существенно изменяться вдоль поверхности теплообмена. В этом случае, как уже отмечалось в гл. 1, для расчета площади поверхности не могут быть использованы простые зависимости (1.15) и (1.16), основанные на допущении о постоянстве теплоемкостей потоков и коэффициента теплопередачи. Более того, в ряде случаев не дают удовлетворительного результата и методы, описанные в разделе 1.3, основанные на более сложных посылках. Кр ме того, прогнозировать конкретный вид зависимости коэффициента теплопередачи вдоль поверхности бывает очень сложно. В этой ситуации наиболее надежные результаты мог т быть получены путем численного интегрирования уравнения теплопередачи, т. е. непосредственный расчет по общей формуле (1.14). Практически это делается следующим образом. [c.190]

Фиг. 4.7. Приведенные значения третьего вириального коэффициента для инертных газов и расчетные кривые для потенциалов (9 — 6), (12-6) и (оо-6). Фиг. 4.7. Приведенные значения третьего <a href="/info/6094">вириального коэффициента</a> для <a href="/info/1596">инертных газов</a> и расчетные кривые для потенциалов (9 — 6), (12-6) и (оо-6).
    Усовершенствования межмолекулярных силовых моделей ограничиваются, с одной стороны, появлением большого числа свободно варьируемых параметров, а с другой стороны, увеличением объема численных расчетов. Последнее обстоятельство становится менее существенным благодаря широкому распространению больших ЭЦВМ, что, бесспорно, ведет к активному наступлению на проблему в целом, начиная с инертных газов [132, 133, 171, 178, 185]. В этой связи необходимо отметить, что различные свойства при различных температурах дают неодинаковую информацию о потенциальной энергии взаимодействия. Например, прп очень низких температурах по вязкости получается информация о хвосте потенциальной кривой, а из второго вириального коэффициента — о дне потенциальной ямы. Таким образом, достаточно точные значения коэффициента с члена могут быть получены экстраполяцией на 0° К кажущегося значения с определенного по вязкости [202]. Если же найти с из потенциальной модели, описывающей данные по В Т) и т] (Г) вблизи температуры Бойля, то полученное значение будет зависеть от выбранной модели и заметно отличаться от действительной величины [173]. К настоящему времени не существует единой точки зрения на относительную чувствительность различных свойств при различных температурах. [c.266]


    С кинетической точки зрения критерий Ра имеет также определенный физический смысл, который может быть раскрыт следующим образом. Анализируя уравнение (III.60) с учетом того, что объемный коэффициент абсорбции равен = Glv ДУ, мо. кно видеть, что численно критерий равновесности показывает ко.[ичество компо-. нента, абсорбируемого из единичного объема инертного газа в единицу времени при движущей силе абсорбции, равной единице. [c.147]

    Су пач — начальная концентрация адсорбируемого вещества в газе, кг/м инертного газа Н — высота слоя адсорбента, м Ь — коэффициент, определяемый по табл. Х1-4 и зависящий от отношения "а чон/ v вач (Су нон — концентрация вещества в газовом потоке, выходящем из адсорбера, кг/м инертного газа) К у — коэффициент массопередачи,-1/сек с, — концентрация адсорбируемого вещества в адсорбенте, равновесная с концентрацией потока, поступающего в адсорбер, кг/м адсорбента. [c.729]

    Определение эффективных коэффициентов диффузии проводится следующим образом. По одну сторону диафрагмы подается газообразный реагент, скорость диффузии которого нужно измерить. Можно также использовать смесь этого реагента с инертным газом. По другую сторону диафрагмы подается чистый инертный газ. Давление газов по обе стороны диафрагмы должно быть полностью уравнено. Реагент, продиффундировавший из право й части сосуда в левую, захватывается током газа, и концентрация реагента в выходящем из камеры потоке определяется аналитически. Одновременно для контроля измеряется количество реагента, выходящего из правой части сосуда. В отсутствие химической реакции скорость диффузии реагента в установившихся условиях, очевидно, равна количеству реагента, вымываемому из левой части сосуда в единицу времени. В соответствии с этим эффективный коэффициент диффузии может быть вычислен по формуле  [c.366]

    Теплоотдача при конденсации паров, содержащих газы, менее интенсивна, чем теплоотдача при конденсации чистых паров. Содержание в водяном паре 1% воздуха уменьшает коэффициент теплоотдачи на 60%, а содержание 3% воздуха — на 80%. Дальнейшее увеличение примесей воздуха в меньшей мере влияет на величину коэффициента теплоотдачи. Указанное явление объясняется тем, что при конденсации паров, содержащих инертные газы, возникает дополнительное термическое сопротивление, оказываемое инертными газами, скапливающимися у понерхности пленки. [c.144]

    Избыточное давление в топочном устройстве обеспечивается посредством его герметизации. Топка под давлением состоит из двух камер (см. рис. 59), заключенных ь общем корпусе камеры горения I и камеры смешения 2. В камере горения происходит сгорание жидкого или газообразного топлива. Если топка предназначена для производства инертного (не содержащего кислорода) газа, то топливо сжигают при расходе воздуха, близком к теоретическому образующиеся продукты сгорания смешиваются далее в камере смешения с основным потоком инертного газа, поступающим в штуцер 3 через кольцевое пространство печи в результате смешения вторичный поток нагревается до требуемой температуры. Если (как в процессе каталитического крекинга) топка под давлением служит для подогрева воздуха, то коэффициент избытка воздуха в камере горения может быть принят более высоким, и содержащие кислород дымовые газы смешиваются с подогреваемым воздухом. [c.180]

    SOs (fi) 10,6% O2 (С) и 79,2% N2 (D). Определить коэффициент диффузии паров воды в смеси инертных газов. [c.305]

    Модель Леннард-Джонса получила самое широкое распространение. Несомненно, ее успех объясняется способностью обеспечить согласие с большим количеством экспериментальных данных с помощью всего лишь двух параметров. Потенциал Леннард-Джонса имеет довольно реалистическую форму везде, кроме области отталкивания, где он возрастает недостаточно круто. Чтобы устранить этот недостаток некоторые авторы совсем недавно предложили использовать большие значения 6. Так, Даймонд, Ригби и Смит [62] нашли, что значение 5= 18 обеспечивает лучшее согласие вторых вириальных коэффициентов инертных газов с экспериментом, чем 3= 12. Можно ожидать, что такой же результат получится и для коэффициентов переноса. [c.240]

    Это уравнение предполагает, что свободный радикал ОН, диффундируя к стенке, может адсорбироваться ею и в конечном счете разрушаться в результате гетерогенной рекомбинации с другим свободным радикалом. Ускорение реакции в присутствии инертного газа, как полагают, связано с уменьшением скорости диффузии ОН к поверхности сосуда. Согласно диффузионной теории [22] предполагается, что способность стенки к обрыву цепи е, т. е. среднее число столкновений активного центра со стенкой до его разрушения значительно больше, чем отношение длины свободного пути к диаметру сосуда скорость реакции (V) в этом случае обратно пропорциональна давлению и квадрату дйаметра сосуда. Принимая скорость реакции (V) равной произведению средней концентрации ОН на коэффициент К , можно выразить зависимость скорости реакции ог давления п диаметра сосуда уравнением  [c.243]

    В качественном отношении уравнение (6) согласуется с данными по влиянию на скорость реакции диаметра сосуда, давления, разбавления инертным газом и состава смеси. Как показывает уравнение, при диаметре сосуда ниже критического скорость реакции падает до пуля. Уравнение (6) дает кривые такого же типа, как изображенные на рис. 1, но все же в меньшей стспсни соответствует экспериментальным данным, чем приведенное выше эмпирическое уравнение (1). Например, рассчитав коэффициенты а и 6 по скоростям реакции при давлении 300 мм рт. ст. в сосудах большого диаметра, можно вычислить, что скорость реакции станет равной пулю в сосудах с диаметром 7, 10 и 14 мм при давлении соответственно 300, 200 и 150 мм рт. ст. В действительности же, при тех жо давлениях, кроме давления в 150 мм рт. ст., реакция идет с измеримой скоростью в сосуде диаметром 5 мм. Точно так же, рассчитанные по уравнению (6) скорости реакции в сосуде с диаметром 29 мм при давлениях 200 и 150 мм рт. ст. были равны соответственно 13,3 и 6,0 мм рт. ст. в минуту в то время, как экспериментально определенные скорости составили 7,5 и 2,8 мм рт. ст. в минуту. [c.244]

    Влияние инертного газа установлено недостаточно надежно, однако, согласно Вивиану и Берману , коэффициент кц в колонне с орошаемой стенкой действительно оказался обратно пропорциональным концентрации газа-носителя. Сведения о показателе степени при G, имеюшиеся в литературе, проявляют значительный разброс, но значение 0,7, соответствующее уравнению (IX-1), является достаточно представительным. Значение показателя степени при Dq также установлено не очень надежно. Обычно оно без особых оснований берется равным /3, но результаты экспериментальной работы Мета и Шарма показывают, что, вероятно, оно ближе к V 2- Зависимости ка от цс и Ро не имеют достаточно надежных подтверждений. [c.205]

    Блокировать активную поверхность может продукт реакции или одно из исходных веществ блокирующее вещество может стехиометрически и не участвовать в реакции. Последний случай особенно важен для каталитических реакций в ншдкой фазе. Растворители, в отличие от инертных газов в газофазных процессах, имеют, как правило, достаточно высокие адсорбционные Коэффициенты, и замена одного растворителя другим может привести к резкому изменению кинетики каталитической реакции. Блокирование поверхности исходным веществом может вызвать специфическое для гетерогенного катализа явление самоторможения процесса, когда одно иа исходных веществ, сильно адсорбируясь на поверхности катализатора, затрудняет доступ к ней остальных реагентов и тем самым замедляет каталитическую реакцию. [c.83]

    Они представляют собой различного вида теплообменники, в трубках (реже — в межтрубном пространстве) которых находится катализатор (рис. VI 1.4). В качестве теплоносителя применяют газы, высококипящие органические теплоносители, расплавленные металлы (натрий, ртуть, сплавы), расплавленные соли. Температуру в кипящих банях регулируют, изменяя давление инертного газа (азота) над уровнем теплоносителя в бане. Если теплоноситель не является кипящей жидкостью, применяют искусственную циркуляцию (лцбо прокачивают теплоноситель через систему реактор — теплообменник, либо устанавливают мешалку в самом реакторе). Из-за малой теплоемкости и низких коэффициентов теплоотдачи газы в качестве теплоносителей применяют только для проведения реакций с относительно малым тепловым эффектом. [c.267]

    Температуру внутри трубки измерить трудно, поэтому в случае однорядного расположения катализатора приходится удовлетвориться измерением температуры в конце слоя. Для этого термопару можно ввести снизу. Карман термопары может также служить как опора слоя катализатора. Температуру в рубашке, окружающей трубку с катализатором, можно поддерживать постоянной, регулируя давление инертного газа вверху обратного холодильника. Нисходящая труба (правая на рис. 2) заполнена жидкостью, а в рубашке реактора жидкость перемешивается поднимающимися пузырьками п ара. Пар частично образуется в исиарителе, но основное его количество получается при испарении жидкости, поглощающей тепло экзотермической реакции в рубашке. Смесь жидкости и пара поднимается вверх под действием разности пшотностей, обеспечивая циркуляцию. Перенос тепла в рубашке происходит в режиме кипения и поэтому очень интенсивен, а лимитирует его коэффициент теплопередачи пограничного слоя у внутренней поверхности трубки с катализатором. Скорость циркуляции в термосифоне может быть в 10—15 раз выше скорости испарения заполняющей его жидкости. Это исключает значительную разницу температур и поддерживает температуру рубашки постоянной. В данном случае допущение о постоянной температуре стенки трубки с ка-тал 1затором достаточно обоснованно. При включении нагревания термосифона температура его нижней части может быть на 20—30°С выше, и о начале циркуляции можно судить по исчезновению разности температур между низом и верхом рубашки. [c.68]

    Вся процедура описания экспериментальных данных может быть существенно механизирована с помощью обычных численных методов, которые становятся все более популярными по мере распространения быстродействующих ЭВМ. Обычно как критерий описания выбирается метод наименьших квадратов, но применяемое аналитическое определение нельзя использовать, так как теоретическая зависимость параметров нелинейна. При наличии большой вычислительной машины минимизация среднеквадратичного отклонения может быть выполнена непосредственно численным методом [104]. Если такие вычисления невозможны, то используется аналитический метод последовательных приближений [183—1836]. Первое приближение для параметров потенциала берется, например, из графического метода, затем относительно этих параметров производится разложение в ряд Тейлора. При сохранении первых членов разложения относительно корректирующих поправок к параметрам потенциала получается система линейных уравнений. Если первое приближение параметров оказывается слишком грубым, то всю процедуру можно повторить, начиная со второго приближения, полученного в первом цикле. Уолли и Шнейдер [183а] применяли этот метод для определения параметров потенциала из вторых вириальных коэффициентов, а также в расчетах для некоторых инертных газов. Этот же метод расчета применялся для метана и закиси азота [1836]. [c.247]

    В этих формулах йг — коэффициент массоотдачи для газа, кмоль/(м -ч X ХМПа) 3 = 4исв/ан — эквивалентный диаметр насадки, м Ряя. г — среднее парциальное давление инертного газа в газовой смеси, МПа Мг — молекулярная масса газа (газовой смеси) а — удельная площадь поверхности насадки, м7м Ксв — свободный объем насадки, м м  [c.176]

    I—количество чистого абсорбента (чистой жидкости), кмоль/сек О — количество распределяемого между фазами вещества, переходящее из газовой фазы в жидкую, кмоль/сек / — площадь свободного сечения аппарата, м У и У — содержание поглощаемого компонента в газовой фазе и равновесное в любом сечении аппарата, кмоль распределяемого вещества/кмоль чистого инертного газа X и X — содержание поглощаемого компонента в жидкой фазе и равновесное в любом сечении аппарата, кмоль распределяемого вещества/кмоль чистой жидкости ДКср —средняя движущая сила, выраженная в концентрациях газовой фазы при линейной равновесной зависимости ДА ср — средняя движущая сила, выраженная в концентрациях жидкой фазы при линейной равновесной зависимости гпи и т — числа единиц переноса при расчете по газовой или жидкой фазе [формулы (Х-78) и (Х-79)] — объемный коэффициент массопередачи, отнесенный к газовой фазе [формула (Х-72)] Kxv — объемный коэффициент массопередачи, отнесенный к жидкой фазе [формула (Х-73)]. [c.674]

    Здесь с,— количество вещества, поглощаемое единицей объема адсорбента (объемная массовая относительная концентрация), кг вещества/м адсорбента т — нродолжлтельность адсорбции, сек с — объемная массовая относительная концентрация адсорбируемого вещества в парогазовой смеси, кг вещества/м инертного газа, с у— объемная массовая относительная равновесная концентрация а. орбируемого вещества в парогазовой смеси, кг вещества/м инертного газа, У — относительный массовый состав парогазовой смеси, кг вещсства/кг инертного газа V — равновесный относительный массовый состав парогазовой смесн, кг вещества/кг инертного газа, Ку — коэффициент массопередачи, отнесенный к единице объема слоя, при выражении движущей силы процесса чере 1 [c.723]

    На рис.. 3 отношение a/a показано в виде ( )ункции разности температуры смеси в объеме Ту и те.мпературы стенки То при постоянном параметре K=(a.glal) Mlglll p ) и разной концентрации пара и наоборот. Уменьшение коэффициента теплоотдачи становится более заметным при увеличении разности Ту—То, концентрации инертного газа 1—Ух и уменьшении параметра К- При любых заданных значениях разности температур и концентрации инертного газа параметр К должен бьпъ но возможности большим, чтобы избежать значительного снижения коэффициента теплоотдачи. Увеличению К способствует большая скорость течения пара, так как коэффициент теплоотдачи паровой фазы растет с ростом скорости пара. [c.91]

    Из результатов расчета (см. табл. 4.6, рис. 4.23—4.25) видно, что наибольшие значения получены для молекулы 31Н4, меньшие — для СН4 и С04, наименьшие — для Ср4. В обратном отношении находятся коэффициенты жесткости деформационных колебаний перечисленных молекул (см. табл. 4.4). На основании этих результатов и рассчитанной зависимости величины среднего квадрата изменения внутренней энергии молекул от прицельного параметра можно предположить, что реализуется следующий механизм передачи энергии во внутренние и колебательные степени свободы молекул при столкновениях с атомами инертных газов. Первоначально энергия поступательного движения передается во вращательные степени свободы молекулы и ее деформационные колебания, далее за счет сильного взаимодействия колебательных и вращательных [c.109]


Смотреть страницы где упоминается термин Коэффициент инертных газов: [c.188]    [c.225]    [c.217]    [c.72]    [c.205]    [c.316]    [c.318]    [c.378]    [c.98]    [c.57]    [c.42]    [c.258]    [c.138]    [c.727]    [c.732]    [c.734]    [c.146]    [c.64]   
Справочник инженера - химика том первый (1969) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Газы инертные

Инертный газ



© 2024 chem21.info Реклама на сайте