Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние диффузии на скорость химических реакций

    Индикатором характера процесса служит влияние на него температуры. Дело в том, что энергия активации диффузионных процессов Е 30 кДж) гораздо меньше энергии активации химического взаимодействия Е 5 40 кДж). Следовательно, константа скорости химической реакции гораздо чувствительнее к изменению температуры, чем коэффициент диффузии. Действительно, если на каждый градус скорость взаимодействия изменяется на 10—30%, то скорость транспорта веществ изменяется всего лишь на 1—3%. Поэтому понижение температуры нередко приводит к смещению процесса из диффузионной области в кинетическую. [c.154]


    Скорость химических реакций с повышением температуры резко растет. Для гетерогенных реакций температурный коэффициент скорости обычно ниже, чем для гомогенных, так как при этом накладывается влияние других факторов, и наиболее медленной стадией процесса является не сама химическая реакция, а процессы диффузии, адсорбции и т. п. Зависимость скорости гомогенной реакции от температуры приближенно описывается эмпирическим правилом Вант-Гоффа при нагревании на 10° константа скорости увеличивается в два-четыре раза, т. е. [c.338]

    Гетерогенные процессы, сопровождаемые химической реакцией, могут быть трех типов 1) когда реакция протекает на поверхности раздела фаз, этот тип характерен для процессов с участием твердой фазы Т — Ж Т—Г Г — Ж — Т и др. 2) когда реакции протекают в объеме одной из фаз после переноса в нее вещества из другой такие процессы наиболее распространены и могут идти с участием любых фаз в системах Г — Ж, Ж — Ж (несмешивающиеся), Т — Ж, Г — Ж—Т и др. 3) когда реакция происходит на поверхности вновь образующейся фазы этот тип возможен для процессов взаимодействия твердых фаз. Если гетерогенный процесс идет в кинетической области, то для первых двух указанных типов справедливы законы кинетики гомогенных процессов. При этом скорость процесса лимитируется скоростью химических реакций, описывается кинетическими уравнениями реакций, порядок которых зависит от числа и природы реагентов. Для кинетики гетерогенных процессов в диффузионной области характерны следующие особенности а) сравнительно малые величины условной энергии активации б) сравнительно малое влияние температуры на скорость процесса, что видно хотя бы из значений температурных коэффициентов диффузии, которые для жидкостей и газов колеблются в пределах 1,1—1,5 (если только повышение температуры не меняет фазового состояния реагентов) в) большое влияние турбулизации системы (перемещивания) на скорость процесса. [c.153]

    При изменении условий процесса, особенно температуры, может измениться относительная важность безразмерных комплексов. Так, например, увеличение температуры оказывает значительно большее влияние на скорость химической реакции г, чем на коэффициент диффузии или вязкость соответственно, влияние комплексов Ь, й, I и к в табл. 75 уменьшается с увеличением температуры. Следует подчеркнуть, что некоторые физические свойства сами являются функцией некоторых безразмерных комплексов. Так, например, эффективная теплопроводность и эффективный коэффициент диффузии в гранулированном слое зависят от числа Рейнольдса. Подобие при условии большой величины потери напора рассмотрено в примере Х-2. [c.346]


    Впрочем, невозможно четко разграничить предельные случаи от промежуточных. Очень часто можно рассчитывать на то, чтобы ускорить или замедлить ту или другую группу процессов, если найти способ воздействия на одну из них. Пусть, например, диффузия происходит исключительно в жидкой или в газообразной фазе. Тогда можно полагать, что изменение температуры будет оказывать более сильное влияние на скорость химических реакций, чем на процессы диффузии. Этот эффект можно наблюдать и в некоторых гетерогенных каталитических реакциях. В этих случаях химические явления, происходящие на уровне почти идеальной и неподвижной поверхности раздела, отличаются от диффузионных явлений, роль которых сводится к переносу вещества между этой поверхностью и газообразной или жидкой фазой. В качестве хорошего примера можно привести гидрирование этилена или пропилена, катализируемое палладием или никелем (рис. 1.2) если реакция происходит в реакторе соответствующей формы, то можно в чистом виде наблюдать переход от области, в которой реакция лимитируется в основном химическим процессом с довольно большой энергией активации, к области, в которой скорость реакции лимитируется скоростью подвода реагента, слабо зависящей от температуры. [c.19]

    Большое влияние на скорость химических реакций в полимерах оказывает форма макромолекулы, а также образование вторичных (надмолекулярных) структур при агрегировании макромолекул (гл. III). При этом может замедляться скорость диффузии низкомолекулярных реагентов и реакция проходит только по границе раздела отдельных надмолекулярных структур. Если же реакция идет в растворе полимера, то свернутая или выпрямленная форма макромолекулы соответственно затрудняет или облегчает вероятность столкновения реагента с функциональными группами макромолекул. [c.34]

    Механизм гетерогенных процессов сложнее гомогенных, так как взаимодействию реагентов, находящихся в разных фазах,, предшествует их доставка к поверхности раздела фаз и массообмен между фазами. Гетерогенный процесс представляет собой совокупность взаимосвязанных физико-химических явлений и химических реакций. Для количественной характеристики сложного технологического процесса в ряде случаев допустимо расчленение era на отдельные стадии и анализ каждой из них. Такой анализ позволяет, например, установить, в какой области— диффузионной или кинетической — идет процесс, и при расчете пренебречь той стадией, которая оказывает малое влияние, если только скорости диффузии и химических реакций не соизмеримы. [c.153]

    Однако необходимо считаться и с влиянием выбранного растворителя на скорость собственно реакции гидрирования альдегидов. В случае жидкофазных реакций растворитель может оказывать очень заметное влияние на скорость химической реакции. В одних случаях растворитель влияет на скорость химической реакции, не меняя механизма. Так, диэлектрическая проницаемость среды может влиять на электростатические силы, действующие между реагирующими частицами. Вязкость растворителя может влиять на скорость диффузии реагирующих веществ и, следовательно, на скорость гетерогенно-каталитических реакций. Способность растворителя адсорбироваться на поверхности катализатора также может существенно сказываться на скорости реакции. [c.158]

    По-видимому, в тех случаях, когда константа скорости реакции немала, гидродинамические изменения в потоке не успевают оказать заметного влияния на характер химического взаимодействия реагентов и ускорение переноса определяется главным образом за счет химической реакции. Для медленных реакций диффузия и химическая реакция протекают одновременно, и в этих условиях фактор ускорения будет зависеть от гидродинамики потока, В частности, расчеты Крылова [400] для реакции первого порядка показьшают, что при А 1Л(1 <1 [c.275]

    В ряде случаев скорость одной из стадий (диффузии или химической реакции) настолько мала, что она определяет скорость процесса в целом. Аналогичное положение характерно для некоторых процессов теплопередачи или массообмена. Определяющую стадию можно обнаружить, экспериментально изучая влияние различных переменных на скорость самого процесса. Так, например, если суммарная скорость процесса быстро возрастает с увеличением температуры в соответствии с законом Аррениуса, то определяющей стадией является химическая реакция. В других случаях скорость процесса может изменяться с изменением величины поверхности раздела фаз или расходов веществ в соответствии с закономерностями, характерными для процесса массопередачи. [c.174]

    Кривые показывают, что степень использования внутренней поверхности катализатора снижается по мере увеличения скорости химической реакции и физического сопротивления движению реагента. Кроме того, видно, что в данной системе реагенты — катализатор увеличение фактора эффективности связано с размером частицы и в меньшей степени — с коэффициентом массопередачи р [последний приблизительно нронорционален Изменение этих двух параметров в опытах по исследованию превращения позволило установить, что физический перенос влияет на полную скорость превращения. Таким образом, если на скорость превращения не влияет скорость движения жидкости, то можно утверждать, что торможение внешней массопередачей отсутствует внутренняя диффузия, однако, может быть ограничивающим фактором. Чтобы получить окончательное решение, исследуют влияние диаметра частиц. [c.177]


    Как уже говорилось во введении, процесс горения слагается из двух стадий подвода окислителя (и отвода продуктов сгорания) за счет молекулярной или турбулентной диффузии (смешения) и протекания химической реакции. В зависимости от условий либо та, либо другая стадия может стать определяющей, либо влияние диффузионных и кинетических факторов может быть сопоставимым. Если скорость химической реакции гораздо больше скорости диффузии, то определяющей является диффузия, процесс горения протекает в диффузионной области. В противоположном случае процесс определяет кинетика (кинетическая область горения). При сопоставимом влиянии диффузии и кинетики процесс протекает в промежуточной области. [c.63]

    Влияние температуры на скорость химической реакции во много раз значительнее, чем на ряд других процессов, таких, как, например, скорость диффузии, изменение вязкости среды, поверхностное натяжение, осмотическое давление и т. д. [c.135]

    На практике стремятся к исключению влияния диффузии на кинетику реакции. Этого можно добиться, например, путем интенсивного перемешивания. Оно уменьшает толщину диффузионного слоя б, что приводит к возрастанию константы скорости диффузии р. Перевода процесса из диффузионной области в кинетическую можно добиться понижением температуры. Поскольку константа скорости химического превращения сильнее зависит от температуры, чем коэффициент диффузии, то при низкой температуре процесс лимитируется не диффузией, а собственно химическим превращением. [c.768]

    Температура на процессы гетерогенных реакций оказывает очень сложное влияние, так как воздействует не только на скорость химической реакции, но и на процессы диффузии, на летучесть или растворимость продуктов реакции. Однако вообще влияние температуры на скорость гетерогенных реакций однозначно с повышением температуры с к о р о с т и г е т е р о г е н н ы х pea к ц и й р а с т е т. [c.131]

    При высокой температуре скорость химической реакции возрастает быстрее, чем скорость диффузии, и поэтому суммарная скорость процесса будет определяться диффузионной стадией (диффузионная область гетерогенного процесса). При этом гетерогенная реакция характеризуется первым порядком реакции, слабой зависимостью скорости процесса от температуры и незначительным влиянием на скорость процесса величины поверхности раздела фаз. Скорость во многом начинает определяться факторами, влияющими на диффузию. [c.123]

    Кинетика химического растворения и выщелачивания зависит от связанных между собой и протекающих одновременно физикохимических и химических процессов на поверхности твердого тела и диффузионных процессов доставки компонентов раствора к поверхности растворяемых частиц и продуктов реакций в толщу раствора. Скорость химического растворения и выщелачивания тоже выражают уравнением (2), но при этом влияние физико-химиче-, ских и химических факторов (констант скоростей химических реакций на поверхности твердого тела или в растворе, толщины диффузионного слоя, коэффициентов диффузии, энергии кристаллической решетки и др.) учитывается константой скорости реакции. Для переходной области при определенных условиях [c.28]

    Температура оказывает влияние на константу скорости химической реакции и на коэффициент массопередачи в процессе диффузии. [c.55]

    Третий подход основан на рассмотрении системы уравнений конвективной диффузии с химической реакцией в пограничном диффузионно-реакционном слое с учетом модельных представлений. Такой подход дает возможность построить приближенное математическое описание хемосорбционного процесса, учитывающее влияние на скорость массопередачи определяющих параметров (число Рейнольдса, концентрации реагентов в газе и жидкости, давление, температура, константы скорости и равновесия реакции, стехиометрические коэффициенты и др.). [c.6]

    Соотношения (4.36) и (4.37) указывают на то, что в общем случае в условиях развитой поверхностной конвекции р зависит от концентраций реагентов, константы скорости химической реакции, вязкости и коэффициента молекулярной диффузии, причем количественно характер указанных зависимостей определяется областью протекания химической реакции. Рассмотрим влияние различных параметров. [c.134]

    При химическом растворении скорость процесса выражается различным образом в зависимости от преимущественного влияния на коэффициент растворения таких факторов, как скорость химической реакции на поверхности твердого вещества или в растворе, коэффициенты диффузии, энергия кристаллической решетки и т. д. Например, при растворении металлов, их окислов или карбонатов в кислотах реакция идет очень быстро на поверхности твердого вещества, в раствор диффундируют [c.136]

    Ионный обмен можно отнести к одному из самых сложных явлений переноса, связанных с диффузией [18, 19]. Следовательно, процесс ионного обмена осложнен влиянием внутренней и внешней диффузии, скоростью химической реакции, а также электродиффузион-ным потенциалом. Учет одного или нескольких доминирующих факторов возможен в рамках упрощенной кинетической модели [20,21]. [c.538]

    К аналогичным выводам о значительном влиянии константы скорости на условия возникновения нестабильности пришли также авторы теоретических работ [131 —133]. Л. М. Рабинович выполнил [132] анализ устойчивости ламинарной жидкой пленки, на поверхности которой протекает реакция А В, причем скорость реакции сравнима со скоростью диффузии реагирующего компонента. Получено характеристическое уравнение и определены области стабильности для длинноволновых и коротковолновых возмущений. Установлено, что скорость нарастания возмущений увеличивается с увеличением йо/йс, диффузионного числа Ргж и особенно константы скорости поверхностной реакции и с уменьшением скорости жидкости. Аналогичные качественные результаты по влиянию константы скорости химической реакции на скорость роста возмущений сохраняют силу и при наличии в системе ПАВ [134]. По Соренсану [116] даже малейшее протекание реакции на поверхности капли приводит к изменению структуры характеристического уравнения. [c.100]

    Равновесное давление компонента на границе раздела фаз учитывает влияние свойств жидкой фазы и происходящих в ней процессов на скорость абсорбции и является функцией концентрации свободных молекул абсорбтива на границе раздела фаз. Последняя при прочих равных условиях уменьшается при увеличении концентрации хемосорбента, константы скорости химической реакции м коэффициента диффузии молекул активной части хемосорбента. Противоположное влияние наблюдается при увеличении коэффициента диффузии самих молекул абсорбтива. Значение Рр, может быть найдено из экспериментальных данных по зависимости скорости абсорбции от Р и С, как это показано в работах [248, 307, 335]. [c.143]

    Скорость горения определяют по расходу вещества в единицу времени, который зависит от отношения скоростей химической реакции и процессов передачи тепла и диффузии. Это отношение в разных условиях может быть различным, несмотря на то что горит одно и то же вещество. Например, ес.тн смесь водорода и кислорода нагревать в сосуде (рис. 1,а), тщательно перемешивая содержимое, то при достижении определенной температуры смесь воспламенится сразу во всем объеме и сгорит. Температура и состав смеси будут изменяться во время горения одинаково и одновременно во всем объеме. Вследствие этого ни диффузия газа, ни теплопередача существенного влияния на процесс горения не оказывают . Скорость сгорания смеси, которую называют предварительно подготовленной, прн таких условиях полностью определяется превращением молекул водорода и кислорода в воду. Сжигание водорода в кислороде можно осуществить другим способом (рис. 1,6). Водород подается по трубке 2, а кислород — в кольцевой зазор между трубками 1 и 2. Водород и кислород смешиваются непосредственно в зоне пламени. В этом случае протекают процессы образование горючей смеси газов и отвод продуктов сгорания (диффузия), нагревание холодных газов от пламени (теплопередача) и химическая реакция в пламени. Количество сгорающего газа определяется размерами пламени. Пламя можно уменьшить либо увеличить, для этого достаточно изменить скорость подач И по трубкам либо кислорода, либо водорода, т. е. изменить условия образования смеси — диффузии. Скорость химической реакции в пламени остается практически неиз.менной. Скорость горечия в этом случае определяется диффузией, т. е. чисто физическим процессом. [c.4]

    Ранее мы рассмотрели различные случаи диффузии, сонровождаюш,ей реакции в пористых катализаторах. Используем далее результаты, полученные на этих упрош,енных моделях, чтобы установить влияние, оказываемое диффузией на некоторые параметры, которые могут наблюдаться нри экспериментальном исследовании. Если не известно влияние диффузии, искажаюш,ей истинную кинетику химической реакции, то легко получить ошибочные сведения о скоростях реакций и сделать неправильный вывод об их механизме. Важно также решить, правильно ли выбраны условия эксперимента для наблюдения истинной кинетики реакции. Таким образом, если мы хотим изучать механизм реакции, то целесообразно выбирать такие условия, чтобы диффузия пе оказывала влияния на скорость химической реакции. В то же время снособность оценить наиболее подходящий размер таблеток катализатора для промышленной реакции дает определенные преимущества, ибо неправильный выбор этого параметра может привести к финансовым потерям. Поскольку установка теплообменного оборудования и снабжение топливом в случае больших реакторов требуют больших затрат, рентабельность такого промышленного предприятия в большой степени зависит от наличия реактора, который обеспечивал бы необходимую производительность при минимальных размерах. Если размер таблеток катализатора завышен, то это приводит к непроизводительной затрате объема реактора. Использование таблеток заниженного размера может в случае медленных реакций оказать нежелательное воздействие на выход продукта. [c.205]

    Влияние массопередачи, скорости химической реакции и теплообмена в последнее время экспериментально изучалось X. Н. Саттерфильдом и Ф. Фиксом [135]. Авторы в основном подтвердили высказанные выше соображения. Они показали, например, что диффузия СОг через слой СаО как правило не оказывает существенного влияния на процесс, в то время как роль теплоподвода подчас является решающей. [c.428]

    Как было показано Я- Б. Зельдовичем [84], Д. А. Франк-Каменецким [92] и др. [76, 85, 85а, 86, 87], гетерогенные каталитические реакции могут протекать в диффузионной, переходной и кинетической областях. В первой области скорость химического превращения во много раз выше скорости массопередачи и поэтому результирующий эффект, определяемый лимитирующей стадией, зависит только от условий диффузии. В кинетической области, наоборот, скорость диффузии значительно выше скорости химической реакции в адсорбированном слое и, как следствие, скорость массопередачи не оказывает уже заметного влияния на динамику превращения. В переходной области взаимозависимости весьма сложны, так как на процесс одновременно воздействуют собственно кинетические и диффузионные факторы. [c.51]

    Если скорость диффузии и скорость химической реакции, рассмотренные независимо друг от друга, соизмеримы, то имеется переходная область. Один и тот же процесс, в.зависимости от условий его проведения, может лежать в различных областях. Большое (влияние на характер протекания гетерогенного химического процесса оказывают давления реагирующих веществ,..хкоррстц.п охо,крв, пористость катализатора и темпера- [c.312]

    Одним из основных методов её исследования является анализ поляризационных кривых, отражающих зависимость скорости процесса г от величины электродного потенциала е. Такие кривые можно получить компенсационным методом, потенциостатически или гальваностатически с применением неподвижного электрода или вращающегося дискового электрода. Природу замедленной стадии можно установить по форме кривой, ее изменению с изменением температуры, концентрации и состава электролита. По характеру зависимости предельного тока от скорости вращения дискового электрода можно разграничить влияние диффузии и химической стадии. Форма кривых изменения потенциала электрода во времени при постоянной плотности тока или без него дает возможность судить об отсутствии или наличии пассивационных явлений. Температурная зависимость скорости электрохимических реакций (температурно-кинетический метод) используется для расчета [c.138]

    Для химической кинетики одним из наиболее важных является во1Прос о влиянии диффузионных факторов на константы скоростей химических реакций. Эта проблема рассматривалась в работах Смолуховского [1], Дебая [2], Нойеса [3]. Если диффузия частиц, участвующих в химической реакции, протекает медленнее по сравнению со скоростью самой реакции, то взаимное пространственное расположение реагирующих частиц не будет одинаковым, что приводит к различиям в скоростях реакции. Таким образом, уже из самого общего рассмотрения очевидна важная роль диффузии в химических реакциях. Ясно, что для протекания мономолекулярных реакций диффузия не имеет существенного значения. Тримолекулярные реакции маловероятны и факт их протекания в растворах не доказан окончательно. Следовательно, наибольший интерес представляет анализ роли диффузии в кинетике бимолекулярных процессов. [c.264]

    При рассмотрении влияния диффузии на скорость химической реакции мы исходили из предположения о фиковоком характере диффузии. В то.м случае, когда межмолекулярными взаимодействиями пренебречь нельзя (например, в реакциях ионного типа), вместо уравнения (12.11) необходимо иопользовать уравнение Дебая [c.266]

    Для полимеров нехарактерно полное превращение реагирующих функциональных групп, которое определяется не только стехиометрией реакции, но и наличием макромолекул как кинетических единиц. В процессе химических реакций в полимерных цепях лишь часть функциональных групп участвует в той или иной реакции, а другая часть остается неизменной вследствие трудности доступа реагента к функциональным группам, например внутри свернутой макромолекулы, или вследствие наличия каких-либо видов надмолекулярной организации в полимерах, нли в результате малой подвижности сегментов макромолекул в массе, в растворе и т. д. При этом должно соблюдаться условие, чтобы скорости диффузии реагирующих компонентов не являлись лимитирующим фактором, т. е. скорость химической реакции не должна контролироваться диффузией и скоростью растворения реагирующих веществ. Речь идет, таким образом, о влиянии чисто полимерной природы вещества на характер химических реакций и степень превращения компонентов. В любой макромолекуле полимера после химической реакции всегда присутствуют химически измененные и неизмененные звенья, т. е. макромолекула, а следовательно, и полимер в целом характеризуются так называемой композиционной неоднородностью. Она оценивается по двум показателям неоднородность всего состава в общем, т. е. композиционный состав конечного продукта (процент прореагировавших функциональных групп) и неоднородность распределения прореагировавших групп по длине макромолекуляриых цепей. Неоднородность может иметь различный характер сочетания одинаковых звеньев измененных и неизмененных функциональных групп статистическое их распределение по длине цени с ограниченной протяженностью (диады, триады, т. е. два, три одинаковых звена подряд) или более протяженные типа блоков в блок-сополимерах (см. ч. Г). Малые по длине участки одинаковых звеньев могут быть расположены вдоль цепи тоже статистически или регулярно и таким образом композиционная неоднородность полимеров после каких-либо химических реакций имеет достаточно широкий спектр показателей, которым она характеризуется. [c.216]

    Поскольку скорость химической реакции и диффузия продуктов окисления через окалину в зависимости от температуры подчиняются единому экспоненциальному закону, т. е. выражению, подобному уравнению Аррениуса, скорость высокотемпературной коррозии пр,и данном составе золовых отложении с повышением температуры увеличивается экспоненциально как при кинетическом, так и при диффузионном режиме окисления. Выше было сказано, что химикочминералогический состав возникающих на поверхности нагрева золовых отложений зависит от температуры поверхности и изменяется со временем. Поэтому изменяется также и коррозионная активность отложений и влияние температуры на коррозию в различных интервалах температур может оказаться различным. Иногда можно встретить и такие области процессов, где вследствие выделения из отложений коррозионноактивных компонентов интенсивность коррозии с повышением температуры снижается. [c.12]

    Чижек, Корыта и Коутецкий [79, 80], а также Коутецкий и Корыта [154] в общем виде показали, что этим соотношением можно воспользоваться как граничным условием при решении уравнения дифференциальной диффузии для вещества В. При этом получается система дифференциальных уравнений, аналогичная системе для случая необратимых электродных процессов. Таким образом, вышеприведенные работы показали, что скорость химической реакции сказывается только в реакционном слое, в то время как вне этого слоя имеет место равновесие химического процесса (Ь — аа = 0). Этот метод был использован Мацудой, Гурвицом и Гирстом (см. ниже) для решения задачи о влиянии двойного слоя электрода на скорость предшествующей химической реакции. Коутецкий [161 решил уравнения (22) и (26) методом безразмерных параметров. В случае быстрой химической реакции [условие (26)], когда устанавливается стационарное состояние между скоростью химической реакции и диффузией вещества, а о > 1, отношение мгновенного кинетического тока и к диффузионному определяется функцией [c.325]

    Т. е. от скорости реакции в ядре пламени. Если эта скорость незначительно превышает скорость реакции, протекающей в обычном стационарном фронте пламени, то градиенты концентрации, возникающие в указанный промежуток времени, являются сравнительно плоскими, а количество тепла, выделяемого реагирующими веществами, диффундирующими в ядро пламени, относительно невелико. С другой стороны, если в течение указанного промежутка времени скорость химической реакции в ядре пламени значительно больше, чем в обычном пламени, то градиенты концентрации являются сравнительно крутыми, и диффузия реагирующих веществ играет существенную роль в суммарной величине тепловыделения. В богатых смесях обычная реакция в пламени протекает при высоких температурах и высокой концентрации свободных радикалов, так что дополнительная роль искры к этим основным компонентам, участвующим в хи-мической реакции, по-видимому, сравнительно невелика. В обычном пламени бедных смесей температура и концентрация 3 свободных радикалов относительно низкие, так что можно ожи-дать, что роль искры будет весьма существенной. Таким обра- зом, можно предположить, что описанное соотношение между сум.марной теплотой пламени и энергией искрового,зажигания определяется влиянием искры, ускоряющим химическую реакцию. Это влияние мало в богатых и велико в бедных смесях. [c.17]


Смотреть страницы где упоминается термин Влияние диффузии на скорость химических реакций: [c.243]    [c.10]    [c.295]    [c.151]    [c.200]    [c.247]    [c.218]    [c.443]   
Смотреть главы в:

Методы физико-химической кинетики -> Влияние диффузии на скорость химических реакций

Диффузия и случайные процессы -> Влияние диффузии на скорость химических реакций




ПОИСК





Смотрите так же термины и статьи:

Влияние диффузии на скорость гомогенных химических реакций и реакций, катализируемых иммобилизованными ферментами

Влияние диффузии на скорость химической реакции в неподвижной среде

Диффузия скорость диффузии

Скорость диффузии

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ КОЛИЧЕСТВЕННОГО УЧЕТА ВЛИЯНИЯ СРЕДЫ НА СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ Роль диффузии и частоты столкновений в кинетике жидкофазных реакций

Химические реакции скорость

Химические скорость



© 2025 chem21.info Реклама на сайте