Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы определение понятия

    Согласно определению, понятие раствора охватывает любые агрегатные состояния вещества жидкие, газообразные и твердые. Растворами являются нефть и жидкие нефтепродукты, газы каталитического крекинга и природный газ, продукты реакции, отводимые из химических реакторов, и атмосферный воздух, жидкие и твердые сплавы металлов и расплавленные смеси силикатов. [c.11]


    Согласно определению понятие раствора охватывает любые агрегатные состояния системы —жидкие,—газообразные и твер-дые. Примерами растворов являются нефть и нефтепродукты, естественный нефтяной газ и воздух, жидкие и твердые сплавы металлов и расплавленные смеси силикатов. Основной характеристикой раствора является совершенно равномерное распределение составляющих его вешеств друг в друге. В этом смысле необходимо отличать растворы от химических соединений и простых смесей. Химические соединения состоят из молекул одного лишь вида и с точки зрения правила фаз являются однокомпонентными системами, не подходящими под определение понятия раствора. В растворе же число составляющих веществ может быть любым, ибо молекулы их в растворе сохраняются химически неизменными. От простых смесей растворы отличаются совершенно равномерным распределением молекул компонентов по всему объему фазы, тогда как жидкие смеси, называемые суспензиями, эмульсиями или коллоидными растворами, являются системами из двух или большего числа фаз, перемешанных с различной степенью дисперсности. [c.67]

    В определении понятия коэффициентов 2 и Zi предполагается, что продукты анодного окисления (например, ионы А + и В +) являются растворимыми, т. е. полностью переходят в раствор, а не остаются, хОтя бы частично, на поверхности сплава в виде окислов, солей или иных соединений В противном случае картина растворения сплава резко усложняется, а введенные в употребление коэффициенты селективности уже не будут отвечать действительному соотношению парциальных скоростей анодных реакций. [c.30]

    Здесь автор очень не точен в определении понятия фаза . Фаза может быть гетерогенной в химическом смысле, т. е. состоять из химически различных индивидуальных веществ, что имеет место, например, в случаях растворов, сплавов, газовых смесей. Поэтому, когда определяют термодинамическую фазу (в отсутствие внешнего поля) как совокупность гомогенных частей гетерогенной термодинамической системы, одинаковых по все.м термодинамическим свойствам, не зависящим от массы, то под гомогенностью понимают только отсутствие поверхностей раздела, отделяющих друг от друга части системы, различающиеся по свойствам.—Яриж. ред. [c.215]

    Рассказ о современных материалах и о роли химии в их разработке и получении можно существенно расширить и дополнить, если рассматривать и классифицировать их по структурному признаку. В твердофазном материаловедении понятие структуры — собирательное название характеристик материалов. Оно может означать как пространственное взаимное расположение атомов или ионов относительно друг друга (кристаллическая или рентгенографическая структура), так и взаимное расположение структурных элементов и фаз в поликристаллическом материале (микроструктура или керамическая структура). Иногда еще говорят о тонкой (реальной) кристаллической структуре, или субструктуре, имея в виду поверхностные и объемные несовершенства типа областей когерентного рассеяния, остаточных микроискажений и дефектов упаковки. Обычно твердые тела делят на две большие группы — кристаллические и некристаллические (аморфные или стеклообразные). Первые характеризуются наличием дальнего порядка в расположении атомов, ионов или молекул, а вторые — отсутствием такового. Согласно современной терминологии стеклом называют все аморфные тела, полученные путем переохлаждения расплава независимо от их химического состава и температурной области затвердевания, обладающие в результате постоянного увеличения вязкости механическими свойствами твердых тел. При этом процесс перехода из жидкого в стеклообразное состояние обратим. Промежуточную группу образуют стеклокристаллические материалы, многие из которых уже рассматривались. Это ситаллы, в том числе и шлакоситалл. В группу некристаллических материалов, помимо хорошо всем известных стекол, в последнее время входят аморфные металлы и сплавы переходных металлов с неметаллами. Аморфные металлы можно получать различными методами, но среди них лишь способ быстрой закалки из жидкого состояния имеет пока практическое значение, В настоящее время применяют два основных метода 1) расплющивание капель 2) быстрая закалка расплава на вращающемся металлическом диске или барабане, охлаждаемом до очень низких температур (чаще всего до температуры жидкого азота—196 " С). Аморфные металлические материалы, полученные в виде ленты, называют металлическими стеклами. Для изготовления массовых изделий из аморфных металлов чаще всего применяют метод ударного сжатия при прессовании аморфных порошков. Среди металлических стекол, находящих практическое применение, в первую очередь интересны материалы, сочетающие свойства сверхпроводников с удовлетворительными механическими свойствами, в частности высокой прочностью и определенной степенью деформируемости. Интересно, что и в этой области используют приемы частичной кристаллизации металлических стекол. По сути дела так получают стеклокристаллические материалы с требуемыми меха- [c.157]


    Очень важным является вопрос о влиянии извне приложенных напряжений. Для некоторых сплавов в определенных электролитах был обнаружен порог напряжений, ниже которо-го растрескивания не наблюдалось. На основании этого сделано заключение [I—7], что для всех сплавов имеется критическое напряжение, ниже которого они не растрескиваются, и при этом напряжении их можно безопасно эксплуатировать. ОднакО это положение является весьма дискуссионным во-первых, многие сплавы, склонные к КР, вообще не обнаруживают критического напряжения во-вторых, само понятие критическое напряжение неопределенно, поскольку оно зависит от состава коррозионной среды. Кроме того, если долго выдерживать под нагрузкой высокопрочный сплав, склонный к КР, то и при нагрузке, равной критическому напряжению, он рано или поздно разрушится. В-третьих, мы не может знать точно величину остаточных напряжений в конструкции и поэтому не- [c.121]

    В первой статье сборника рассматривается целесообразность использования понятия контролирующего фактора для характеристики механизма защитного действия и систематизации различных видов антикоррозионной защиты. Остальные работы сборника посвящены конкретным вопросам экспериментального исследования процессов коррозии и защиты металлических систем. В сборнике нашли отражение такие важные разделы, как исследование газовой коррозии при термообработке сплавов, коррозии и защиты металлов при травлении в кислотах, кислотостойкости металлов при повышенных температурах, коррозии нового металлического конструкционного материала — титана, его сплавов, сплавов ниобия с танталом и новые исследования по межкристаллитной коррозии нержавеющих сталей. В сборнике помещены последние работы по исследованию коррозионной усталости сталей и по коррозии и защите в некоторых производствах химической промышленности. Цель сборника — на основе современных методов исследования и имеющихся научных достижений указать некоторые новые пути и дать вполне определенные рекомендации нашей промышленности по борьбе с коррозионным разрушением. [c.3]

    Понятие анализ газов в твердых телах относится к определению водорода, азота, кислорода (иногда также углерода) и редких тазов в металлах, сплавах, полупроводниках, тонких [c.370]

    Лекции по теоретической химии относятся к начальному периоду научного творчества Д. И. Менделеева. Поэтому здесь мы видим зарождение многих мыслей, развитых автором в последующие годы научной деятельности. К ним можно отнести утверждение об отсутствии резкой грани между химическими соединениями определенного состава и такими системами, как растворы, сплавы, кремнеземистые соединения , изоморфные смеси признание химической природы сил, действующих при образовании растворов высокую оценку понятия о молекуле, только что введенного в химию благодаря работам Авогадро, Жерара и Канницаро наконец, предвидение решающего значения атомных весов и форм соединений для разработки естественной классификации (будущей периодической системы) химических элементов. [c.10]

    Понятие валентности сначала развилось на Основе экспериментальных фактов, что в простых соединениях наблюдаются преимущественно определенные стехиометрические отношения между известными видами атомов. С самого начала это понятие нельзя было (по крайней мере без больших натяжек) приложить к значительным областям, как, например, к соединениям одинаковых атомов, металлическим сплавам и многим органическим соединениям правда, изучение этих областей подвигалось медленно. Несмотря на это и несмотря на все возрастающее число исключений, все же продолжало, и вполне справедливо, господствовать убеждение о [c.173]

    К изучению данного вопроса Н. С. Курнаков приступил не случайно. Интересуясь природой определенных и неопределенных соединений, он не мог не обратить внимания на обширную область определенных химических соединений, образование которых не согласовывалось с господствующим в то время представлением об атомности элементов. К таким соединениям относились так называемые сложные основания и сложные кислоты. Включение в эту группу гидратов значительно расширяло понятие о сложных основаниях и придавало необыкновенный интерес изучению веществ этого класса, поскольку, по мнению Н. С. Курнакова, аммиачно-металлические соли и гидраты занимали промежуточное положение между обыкновенными химическими соединениями, подчиняющимися закону кратных отношений, и необозримой областью растворов, сплавов и веществ, носящих общее название неопределенных соединений [6]. [c.153]

    I. Общее определение теплоемкости. Молекулярная теплоемкость газов при постоянном объеме и постоянном давлении (26) 2. Калория. Тепловое значение / (27) 3. Кинетическая теория и теплоемкости. 4. Теплоемкость химических соединений и сплавов. Закон Нейманна-Коппа и правило Реньо (31) 5. Пользование справочниками (32) 6. Недостатки кинетической теории теплоемкости (34) 7. Уточнение понятия теплоемкости. Истинная теплоемкость (34) 8. Зависимость теплоемкости от температуры. Переход от истинной теплоемкости к средней (3 ) 9. Методы измерения теплоемкостей (38) [c.300]


    Существз ют многочисленные доказательства того, что скорость перемещения атомов различных компонентов сплава неодинакова. Скорости диффузии каждого компонента сплава, определенные при помощи радиоактивных изотопов, можно отождествить с истинными скоростями самодиффузии. Понятие самодиффузии применимо только для гомогенных сплавов. В бинарной системе, характеризуемой неоднородностью состава, скорость диффузии каждого компонента в поле химического градиента концентрации (скорость гетеродиффузии) не совпадает со скоростью самодиффузии, за исключением идеальных или разбавленных твердых растворов. [c.151]

    Сплавы, легированные алюминием, могут работать в воздушной среде, вакууме и атмосферах, содержащих примесь серы и сернистых соединений. Их используют в основном для изготовления нагревателей промышленных электропечей. Сплавы, легированные кремнием, жаростойки в воздушной и азотсодержащих средах. Они применяются для изготовления нагревателей промышленных и лабораторных электропечей, бытовых приборов и других аппаратов. Наличие нескольких марок сплавов в составе каждой группы объясняется особенностями поведения нагревателей в эксплуатации, разным уровнем технологической пластичности сплавов, дефицитностью никеля, а также традицией применения сплавов в серийных конструкциях электропечей и электронагревательных устройств. Наиболее важными эксплуатационными характеристиками сплавов являются предельная рабочая температура, срок службы и величина удельного электрического сопротивления. Понятие предельной рабочей температуры не является строго определенным. Это рекомендуемая максимальная температура, при которой еще обеспечивается экономически эффективный срок службы нагревателей толстого сечения. Значения предельной рабочей температуры, указываемые в справочниках и маталогах, являются в определенной степени условными, и вопрос о сравнительной стойкости сплавов-аналогов может быть надежно решен пока только путем испытания нагревателей в одинаковых условиях. Ниже приведены предельные рабочие температуры ( 7др ) сплавов в различных средах. [c.107]

    Анализ в древности. Химический анализ проводится с незапамятных времен. Первый аналитический прибор — весы — известен с глубокой древности. Анализу подвергали руды, сплавы, изделия из драгоценных металлов. У римского историка Плиния описана методика анализа золота, еще раньще об оценке содержания золота писал император Вавилона. Плиний пишет об использовании экстракта дубильных орешков в качестве реактива. С помощью папируса, пропитанного экстрактом, отличали медь от железа (в растворе сульфата железа папирус чернел). В древности умели определять концентрацию по удельному весу само понятие удельный вес известно по крайней мере со времен Архимеда. По-видимому, вторым по времени появления аналитическим прибором был ареометр, он описан в трудах древнегреческих ученых. В произведении Теофраста О камнях говорится об определении золота с помощью так называемого пробного, или пробирного, камня способ этот применяется и до сих пор, наприм в инспекциях пробирного надзора. [c.14]

    Наметившееся сближение между адсорбционной и фазовой теориями пассивности можно усмотреть и в трактовке природы пасси-вируюшего слоя, которая дается в работах других авторов. В частности, Мансфельд и Улиг [30] хотя и утверждают, что пассивная пленка, возникающая на сплавах элементов с незаполненными -подуровнями, состоит главным образом из хемосорбированного кислорода, но отмечают, что она может содержать определенную фракцию металлических ионов, но не в обычных стехиометрических соотношениях. Здесь уже трудно провести грань между понятиями хемосорбционный слой кислорода и фазовая пленка. [c.25]

    ЛИЗ содержания в материале хим. элементов, связанных химически с определенными атомами или группами атомов разновидность качественного и количественного. химического анализа. В отличие от фазового анализа, предназначенного для разделения и хим. анализа фаз гетерогенной системы (напр.,. eтaлличв-ского сплава), в процессе В. а. устанавливают хим. природу атомов (совокупности атомов), с к-рыми связан тот или иной хим. элемент в изучаемом материале определяют количество одного и того же хим. элемента, связанного с этими атомами (со-вокупностя.ми атомов) устанавливают содержание различных валентных форм одного и того же элемента в материале. Следовательно, с помощью В. а. определяют не хим. соединения (напр., сульфид меди, карбонат свинца), поскольку они могут и не образовывать в материале самостоятельных фаз, а лишь элементы, химически связанные с определенными атомами (совокупностью атомов) материала (напр., медь сульфидную, свинец карбонатный). ВЪвязи с этим обычно оперируют понятиями о форме нахождения , проявления того или иного хим. элемента в исследуемом материале. Осн. приемом В. а. является перевод в раствор одного из компонентов сложной смеси веществ с помощью избирательного растворителя. В качестве растворителей применяют растворы различных кислот, щелочей и солей. При исследовании материалов, содержащих анализируемый элемент в соединениях, близких [c.180]

    Радиус связанного атома можно считать либо ионным (кристаллическим), либо атомным. Атомные радиусы разделяют на металлические, которые мы находим в металлах, сплавах или в интерметаллических соединениях, и ковалентные, характерные для неметаллов и вообще для ковалентных молекул. Ковалентные радиусы в свою очередь подразделяют на тетраэдрические, октаэдрические и др. Безусловно, нужно различать радиусы при ординарной, двойной и тройной связях. Однако при наличии кратной связи понятие радиуса атома теряет в значительной степени свою определенность, так как в этих условиях атом следует рассматривать как сильно искаженную сферу в этом случае более целесообразно пользоваться межъядерным расстоянием. Вообще говоря, это справедливо также для всех молекул, имеющих формы плоского квадрата, тригональной бипирамиды или любого другого неправильного многогранника. Имеются еще два дополнительных вида радиусов для связанного атома, близких к атомным ковалент- [c.107]

    По понятиям, которых ныне придерживаются многие (гл. 1, доп. 77), определенные соединения отвечают только высшим температурам, а низшие суть евтектические смеси. Но здесь, как и во множестве других случаев (особенно в металлических сплавах), точки эти приходятся на вещества, представляющие определенный частичный (простой) состав. Поэтому, с своей стороны, я считаю, что евтектическим точкам (низшим температурам плавления) если не всегда, то во множестве случаев отвечает строгая определенность состава и простота отношений в числе частиц, как для настоящих определенных соединений. Причину этому до. жно искать в зависимости всяких физико-механических свойств от тех сил и отношений, которыми определяется химическое взаимодействие, т.-е. от массы действующих химических частиц. Если между двумя определенными соединениями, обладающими max. t, должен быть где - то состав с min. t, то его, по мне, вероятнее всего ждать при некотором простом отношении между числом частиц образующихся веществ, ибо все их свойства должны быть в связи с их частичным весом. Таков дух всех химических учений со времени укрепления понятий об атомах, частицах, периодичности элементов и пр. При изучении растворов и сплавов не должно упускать из внимания те явления, которые выступают между водою и серною кислотою. В них еще не все ясно, но многое яснее, чем в других растворах или в сплавах. А. В. Сапожников показал, что прибавка к крепкой серной кислоте уд. веса 1,842 азотной уд. веса 1,4 — 1,5 увеличивает уд. вес, напр., до 1,86. [c.530]

    Обыкновеннейшим примером неопределенных химических соединений служат растворы. Но изоморфные смешения, столь обычные между кристаллическими соединениями кремнезема, образующими кору земную, столь важные для применения металлов к практике, составляют также примеры неопределенных соединений. И если в гл. 1-й и во многих других частях этого сочинения доказывается необходимость признать в растворах переходы к определенным соединениям (в диссоциированном состоянии), то тем более это относится к изоморфным смесям и сплавам. По этой причине в различных местах этого сочинения я обращаюсь к фактам, заставляющим признавать во всех изоморфных смесях и сплавах существование определенных химических соединений. Такое мое мнение о изоморфных смесях (развиваемое с 60-х годов) находит особенно ясное подтверждение в исследованиях Б. Розебума (1892) (а также многих других) над растворимостью и кристаллизациею смесей хлорноватых солей калия и таллия КСЮ и Т1С103. Он показал, что при различном содержании в растворе обеих солей выделяются кристаллы или с избытком первой соли от 98 до 100%, или с избытком второй соли от 63.7 до 100%, т. е. в кристаллическом виде или первая насыщается второю, или вторая первою, как при растворении эфира в воде, притом растворимость смеси, содержащей 36.3 и 98% КСЮз, одинакова, как одинакова упругость насыщенного эфирного раствора воды и водяного раствора эфира (доп. 70). Но как могут существовать жидкости, смешивающиеся во всех пропорциях, так и некоторые изоморфные тела могут быть в кристаллах при всевозможных отношениях между составными частями. Такие системы Вант-Гофф называет твердыми растворами. Эти же понятия развивал затем Нернст (1892), а Витт (1891) приложил к уяснению явлений при окрашивании тканей. [c.140]

    В изучении определенных и неопределенных соединений сыграли большую роль исследования твердых растворов. Еще в 1885 г. В. Ф. Алексеев начал исследование твердых растворов на системах из кислот салициловой, бензойной и фенола, а также металлические сплавы. В 1880 г., еще до установления общего понятия о твердых растворах (1890, Вант-Гофф), П. А. Лачинов изучал образование твердых однородных фаз переменного состава жирными кислотами холевой, желчной и стеариновой [2]. Большой научный интерес и практическое значение твердых растворов для минералогии, технологии и металлургии привлекли к ним внимание русских ученых. В 1894 г. А. А. Кракау проводит исследование упругости диссоциации и электропроводности твердой системы палладий — водород. А. В. Сперанский изучает упругость пара двойных систем органических тел и устанавливает, что упругость паров твердых растворов следует тем же законам, как упругость паров жидких растворов . Подробный обзор учения [c.150]

    В связи с тем, что суммарный коррозионно-механический износ является (результатом многих процессов, а также с тем, что внимание специалистов было сосредоточено главным образом на химической коррозии наименее стойких деталей из цветных металлов или сплавов (например, вкладышей подшипников коленчатого вала), опасность и значение электрохимической коррозии долгое время недооценивались. Это помимо всего прочего привело к путанице в терминах и определениях, принятых в научно-тех1нической литературе по коррозии и защите металлов и по нефтепродуктам. В табл. 4 приведены основные понятия и термины применительно к проблеме нефтепродукты и коррозия по их состоянию на се-Г0ДНЯШ1НИЙ день. Как видно, несмотря на сопутствующие процессы необходимо четко различать коррозионные свойства нефтепродуктов (их коррозионную агрессивность или, наоборот, противокоррозионные свойства), связанные в основ1ном с химическими процессами и зависящие от способности самих нефтепродуктов вызывать или предотвращать химическую коррозию металла, и их защитные свойства, т. е. способность защищать металл от электрохимической коррозии в присутствии электролита. В соответствии с этим необходимо, в частности, различать противокоррозионные присадки к нефтепродуктам, добавляемые для улучшения их коррозионных свойств, и маслорастворимые ингибиторы коррозии, улучшающие защитные свойства нефтепродуктов. Как показано [c.15]

    Термический анализ явился результатом работы нескольких поколений исследователей, начиная с 1820-х годов. К концу XIX в. экспериментальная методика и теоретические основы термического анализа уже достигли высокого уровня развития благодаря трудам Чернова, Ле Шателье, Осмона, Розебома, Робертса-Остина, Гейкока с Невиллем, Гау и многих других ученых. Большой вклад в развитие термического-анализа сделал Н.С. Курнаков, который опубликовал исследования посредством этого метода многих двойных металлических систем (1899—1901), разработал способы нахождения состава определенных соединений в сплавах методом плавкости (1900), т. е. термического анализа, ц сконструировал самопишущий пирометр (1903), являющийся и в наше время наилучшим приборов для записи кривых охлаждения и нагревания. Все это было сделано до того, как Тамман опубликовал своп первые работы Об определении состава химических соединений без помощи анализа (1903) и О применении термического анализа к ненормальным случаям (1905) в этой статье Тамман впервые предложил название термический анализ . Подробнее см. в статье С. А. Погодин, О приоритетен. С. Курнакова в создании и разработке основных методов и понятий физико-химического анализа, Успехи химии, 21, 1034—1044 (1952). [c.392]

    В древнегреческом языке слово metallon означало шахта или рудник. Так название материала указывает на способ его получения. Внешним признаком металлов является блеск, который вызван их большой отражательной способностью и встречается почти только у них. Все металлы в основном светонепроницаемы, только очень тонкие их слои, так называемая металлическая фольга, частично пропускают падающий свет. Важнейшим признаком металлов является их кристаллическое строение, которое часто наблюдается в блестках на местах разломов. Все металлы, за исключением ртути, находятся при комнатной температуре в твердом агрегатном состоянии. С металлами связывают также понятие о веществе с высокой прочностью, при определенных условиях хорошо формующемся. Всем известны высокие тепло- и электропроводность металлов. Высокую реакционную способность большинства металлов и сплавов из них характеризуют коррозионные явления. [c.39]


Смотреть страницы где упоминается термин Сплавы определение понятия: [c.24]    [c.157]    [c.469]    [c.411]    [c.406]    [c.376]    [c.121]    [c.39]    [c.7]   
Учебник физической химии (1952) -- [ c.190 ]

Учебник физической химии (0) -- [ c.200 ]




ПОИСК





Смотрите так же термины и статьи:

Понятие о сплавах

определение понятия



© 2025 chem21.info Реклама на сайте