Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сложные эфиры как основания

    В работе [10] изучали влияние н-бутаиола на-кинетику реакций гидролиза сложных эфиров, катализируемых карбокси-пептидазой В. На основании зависимости скорости ферментативной реакции от начальной концентрации субстрата (табл. 11) предложить кинетическую схему реакции (приняв двухстадийный механизм действия фермента) и определить константу ингибирования н-бутанолом. [c.91]


    Реакция Дарзана. Реакция заключается в конденсации альдегидов и кетонов со сложными эфирами а-галогензамещенных алифатических карбоновых кислот в присутствии спиртовых растворов алкоголятов щелочных металлов. Наиболее эффективным катализатором является грет-бутоксид калия. Реакция не останавливается на стадии образования хлоргидрина. В присутствии сильного основания происходит дегидрогалогенирование с образованием глицидного эфира  [c.228]

    К первому относятся металлокомплексные соединения переходных металлов (Ре, Со, N1, Си, Мп, Мо) и в качестве лигандов к ним — соединения хелатного типа (шиффовы основания, дитиофосфаты, дитиокарбаматы, р-дикетоны), имеющие в своем составе атомы Ы, 8, О, Р. Выбор лигандов обусловливается термоокислительной стабильностью (при 150—280°С) соединений, полученных на их основе. Для повышения их растворимости в нефтяных фракциях [0,1-"8% (масс.)] применяют комплексы, содержащие олеофильные заместители (алкильные, алк-оксильные или ароматические). К второму типу относятся Ыа-, К-, Ы-, Mg-, Са-, Зг- и Ва-соли карбоновых, дитиофосфорных и дитиокарбоновых кислот. Третий тип металлсодержащих ингибиторов окисления включает сульфиды, оксиды, гидроксиды и соли, диспергированные в нефтепродуктах при 150—250 °С с помощью ультразвука и другими методами. К четвертому типу противоокислителей относятся почти все перечисленные металлсодержащие производных алкилароматических аминов, замещенных фенолов и хинонов. Такие композиции присадок эффективны и в синтетических маслах на основе сложных эфиров при температуре до 250—260°С. В ряде случаев использование этих композиций позволяет получить присадки полифункцио-нального действия. [c.94]

    Оксид бария и оксид кальция. Оксид бария более эффективен, но менее доступен. Его применяют для высушивания гигроскопических органических оснований, например пиридина и пиперидина. Этиловый спирт, абсолютированный оксидом бария, содержит 0,1% (масс.) воды. Оксид кальция дешев, но обла-дает средней осушающей способностью. Так этиловый спирт после абсолютирования оксидом кальция содержит до 0,4% (масс.) воды. Оксиды бария и кальция нельзя применять для обезвоживания соединений кислого характера и сложных эфиров. [c.172]

    Спектрофотометрическое определение витамина А и его сложных эфиров, основанное на реакции с хлоридом сурьмы (111) [29]. Для определения применяют раствор, содержащий 10—15 М. Е. витамина А в 0,3 мл хлороформа, пе содержащего воды и спирта Этот раствор вливают пипеткой в кювету с толщиной слоя 1 см. Прибавляют 3 мл раствора хлорида сурьмы (1П) и через 8 с измеряют оптическую плотность при 620 нм относительно воды Содержание витамина А определяют по калибровочному графику. Приготовление хлороформа, не содержащего спирта и воды, — см Витамин Dj [c.484]


    Поскольку спирты не обладают ингибирующим действием, природные ингибиторы в топливах нафтенового основания представляют собой, очевидно, фенолы. Следует отметить, что в дифференциальных спектрах остатка смеси фракций и фракции 3 обнаружена довольно широкая полоса, которую можно отнести к карбонильной группе сложных эфиров (v=1740 см ). В дифференциальном спектре остатка, определенного относительно исходного топлива эта полоса отсутствует, т. е. по содержанию сложных эфиров топливо и остаток различаются мало. Вместе с тем по окисляемости топливо и остаток существенно различны. Кроме того, интенсивности пика, соответст- [c.85]

    Общий метод получения сложных эфиров основан на реакции между кислотой и спиртом, которую проводят Б присутствии кислотных катализаторов, например серной кислоты  [c.345]

    Следует, однако, ограничить обсуждение реакций с участием веществ, не являющихся катализаторами в полном смысле слова, поскольку в противном случае мы бы ушли слишком далеко от главного предмета изложения — явления истинного катализа. Многие реакции ускоряются кислотами или основаниями, которые затем расходуются во вторичных прототропных процессах и не регенерируются. Например, при катализируемом основанием гидролизе сложного эфира основание расходуется в побочной реакции нейтрализации образующейся при гидролизе карбоновой кислоты. Переход основания в сопряженную кислоту наблюдается и в других реакциях, например при катализируемом основанием бромировании ацетона. В ходе ацетилирования бензола, катализируемого хлоридом алюминия, последний образует комплекс с продуктом реакции — ацетофеноном и уже не может действовать как катализатор. [c.11]

    Этот механизм согласуется с тем фактом, что омыление сложных эфиров основаниями обычно протекает путем расщепления связи ацил — кислород, т. е. связи между карбонильным углеродом [c.454]

    На основании изучения механизма гидролиза сложных эфиров установлено, что процесс действительно протекает в две стадии  [c.551]

    Общий метод количественного определения сложных эфиров основан на реакции омыления их растворами щелочей. Для открытия и определения сложных эфиров фенолов при малом их содержании применяется реакция образования гидроксамовых кислот. [c.296]

    Сернокислотный метод основан на способности изобутилена реагировать с серной кислотой. Эта реакция хорошо изучена еще А. М. Бутлеровым. Взаимодействие изобутилена с серной кислотой идет с образованием сложного эфира серной кислоты и триметилкарбинола, так называемой изобутилсерной кислоты [c.724]

    На об )атном направлении этого процесса основан прямой синтез сложных эфиров из карбоновых кислот и олефинов. Реакция экзо-терми на и обратима, иричем ее термодинамические характеристики можно рассчитать из последовательности процессов гидратации олефина и этерификации спирта  [c.209]

    Каталитическое действие кислот на ряд химических реакций связано с тем, что одно из исходных веществ в этих реакциях является основанием, и кислота, передавая ему протон, переводит его в протонизованную форму, обладающую более высокой реакционной способностью. Так, Протонизованная молекула сложного эфира [c.245]

    Процесс получения СПД, разработанный во ВНИИНЕФТЕХИМе, основан на каталитическом окислении деароматизированного керосина (содержание ароматических углеводородов не должно быть более 1% по массе), выкипающего в пределах 220—300 °С и содержащего не менее 50% (масс.) нафтеновых и изопарафиновых углеводородов. При окислении указанной выше фракции в определенных условиях образуется сложная смесь кислородсодержащих соединений в виде низших и высших карбоновых кислот, спиртов, кетонов, лактонов и сложных эфиров. В качестве примеси в продуктах окисления могут содержаться и дикарбоновые кислоты. [c.180]

    Все эти реакции также катализируются кислотами, однако алкоголиз более эффективно ускоряется основаниями. Гидролиз сложных эфиров катализируется и кислотами, и основаниями, причем в последнем случае реакция протекает необратимо, поскольку образуется соль карбоновой кислоты. [c.237]

    В качестве растворителей предлагались различные простые и сложные эфиры гликолей, фурфурол и органические основания [15]. Смит и Браун [16] исследовали возможность использования метилового спирта, этилен- [c.211]

    В зависимости от природы, стадии химической зрелости и состава твердых топлив в их первичных смолах содержится различное количество парафиновых, ароматических и гидроароматических углеводородов, фенолов, многоядерных ароматических соединений, органических оснований, карбоновых кислот, кетонов, спиртов и сложных эфиров. [c.246]

    Среди кислородных соединений нефти наиболее слабыми основаниями являются кетоны, затем следуют альдегиды, карбоновые кислоты, сложные эфиры и, наконец, [c.229]


    Другой часто применяемый способ получения сложных эфиров карбоновых кислот основан на взаимодействии солей карбоновых кислот с алкилирующими средствами (галоидными алкилами, диалкил-сульфатами)  [c.262]

    Способ, при котором для отделения спиртов от углеводородов используют борную кислоту, основан иа том, что последняя со всеми спиртами легко образует триалкилбораты. Борные эфиры нелетучи и термически весьма устойчивы, поэтому углеводороды можно от них отогнать. Последние остатки нейтрального масла рекомендуется удалять перегретым водяным паром. В заключение сложные эфиры борной кислоты гидролизуют горячей водой, выделяя таким образом спирт и регенерируя кислоту. Этот метод, который после метода перегопки является паиболее распространенным, потому что ои применим во всех случаях, также пригоден для выделения в чистом виде высших спиртов с 12—20 атомами углерода. [c.551]

    Применение некоторых катализаторов значительно ускоряет процесс сернокислотной гидратации. Для этой цели используются соли железа, кобальта, никеля, меди, платины, серебра [41, 42], а также соединения висмута [43, 44]. Сульфат серебра [45, 46] и соли меди [47—49] сильно ускоряют гидролиз сложных эфиров серной кпслоты. Рекомендуется применять в качестве катализаторов галогениды бора пли бораты в соединении с сульфатами никеля и других тяжелых металлов [50]. Необходимые для этого реакционные условия определены Поповым [51]. При высоком давлении и высокой температуре каталитическое действие проявляют сульфаты органических оснований, например изопроииламина, анилина, наф-ти.талшна, хинолнна [52], а также сульфаты и галогениды цинка, магния, бериллия [53] и алюминия [54]. Соли алюминия обладают каталитическим действием при высоком давлении и низких температурах в водном растворе. Наконец, следует упомянуть еще кремневую или борвольфрамовую кислоту и их соли [55], однако процессы с их участием протекают прн 200—300 °С под давлением уже, в газообразной фа.зе. [c.60]

    Образование сложных. эфиров. Непосредственная этерификация кислоты спиртом была рассмотрена выше, так как она тесно связана с гидролизом сложных эфиров, в других разделах обсу кдались приемлемые способы получения сложных эфиров посредством реакций замещения (стр. 214) и присоединения (гл. 15). Наиболее общие способы лабораторного синтеза сложных эфиров состоят в ацилировании спиртов посредством производных кислот. Часто для этой цели используются хлорангидриды и ангидриды кислот самый удобный способ превращения небольших количеств кислот в сложные эфиры основан на образовании промежуточного продукта — хлорангидрида кислоты. Этим путем иолучают прежде всего сложные эфиры фенолов, так как ввиду иеб. агоириятных констант равновесия их нельзя синтезировать не-носредсткенной этерификацией фенолов. Даже хлорангидриды кислот с большими пространственными затруднениями легко превращаются в сложные эфц()ы. [c.310]

    Наилучший способ введения а,р-двойной связи в доступный насыщенный сложный эфир основан на способности сульфоксидов [152] и селеноксидов [153] легко претерпевать сы -1,2-элиминирование схема (85) . Для синтеза исходных а-селенильных и а-сульфенильных соединений существует набор достаточно селективных методов. [c.35]

    Это еще одна реакция, в которой участвуют карбанионы, полученные из сложных эфиров, например карбанион (111), но в этом случае карбанион присоединяется к карбонильному атому углерода другой молекулы сложного эфира. Основанием для рассмотрения этой реакции именно здесь, а не в ряду реакций производных карбоновых кислот (см. разд. 8.6) является то, что производных карбоновых кислот (см. разд. 8.6) является то, что дольной конденсации альдегидов (см. разд. 8.4.4). Например, для этилэтаноата (ацетат) (112) соответствующие Превращения [c.254]

    Классический метод анализа сложных эфиров, основанный на реакции омыления, не может быть применен при исследова- [c.278]

    При гидролизе сложных эфиров применяют как кислоты, так и основания. В производстве мыла из жирюв и масел в качестве катализатора и реагента чаше всего используется едкий натр. Вероятно, наиболее известным кислотным каталитическим гидролизом жиров в жирные кислоты и глицерины является процесс Твитчела. Жир с 25-50% воды, 0,75-1,25% катализатора Твитчела и 0,5% серной кислоты кипятят в течение 20-48 ч. Образующийся глицерин растворяется в избытке воды и отделяется от расплавленных жирных кислот /34/. [c.341]

    Даже в тех случаях, когда сложноэфирную конденсацию двух разных эфиров осуществить нельзя, соответствующие эфиры кетоиокислот часто можно получить посредством ацилирования енолят-ионов хлорангидридами кислот. Еноляты надо предварительно приготовить, действуя на сложный эфир основанием, таким, как трифенилметилнатрий, гидрид натрия и амид натрия. Затем хлорангидрид кислоты присоединяют к этому еноляту [c.326]

    Полученные таким путем сложные эфиры ошиовой кислоты совершенно нерастворимы во всех обычных растворителях, кроме третичных оснований, особенно пиридина, растворов, в которых они выделяются в виде слабоокрашешшх кристаллических продуктов с двумя молекулами кристаллизационного пиридина. Такие соединения могут рассматриваться как координационные комплексы, предположительно имеющие структуру [c.367]

    Ароматические карбоновые кислоты этерифицируются медленнее, чем алифатические, но реакции можно ускорить введением больших количеств катализатора. В отдельных случаях скорость образования сложных эфиров у ароматических кислот близка к нулю. Зависимость между скоростью реакции и строением кислот изучена достаточно хорошо. Было найдено, что введение заместителей в ароматические кислоты снижает скорость образования сложных эфиров. Наличие заместителя в орто-положении наиболее сильно тормозит реакцию при заместителях в мета- и пара-положении скорость несколько возрастает. На основании экспериментальных исследований было выведено следующее эмпирическое правило метиловые эфиры ароматических кислот не образуются, если в кольце, рядом с карбоксильными группами, стоят заместители Alk, Аг, С1, NO2. NHa, СООН и т. д. Это можно пояснить рядом примеров. Меллитовая кислота (I) совершенно не дает эфира, пиромелли-товая же (II) образует 90% эфира, так как в ней орто-положения свободны  [c.468]

    Из косвенных методов получения спиртов наиболее известен метод, основанный на присоединении серной кислоты к олефинам. Эту реакцию еще в XIX в. изучал Бутлеров она приводит к образованию MOHO- или ди-сложных эфиров серной кислоты, которые затем гидролизуются в соответствующие спирты. [c.193]

    По стойкости к полярным растворителям — сложным эфирам, кетонам, тетратидрофурану, окислителям, основаниям, хлорсуль-фоновой кислоте и фтористому водороду резины на основе пер-фторированных каучуков типа СКФ-460 и ЕСД-006 значительно превосходят другие резины, в том числе и резины на основе сополимеров винилиденфторида. Вулканизаты на основе перфторалкилентриазиновых эластомеров совершенно не стойки к щелочам и аминам. [c.520]

    Кроме кислот, в нефтях идентифицирован ряд фенолов н обнаружены кетоны (следы). На основании наблюдений Разумова можно предполагать присутствие в нефти Сахалина сложных эфиров, фенолов и карбоновых кислот. Для ряда нефтей указаны сложные эфиры, фураны и бепзофураны. [c.361]

    Менее изучена гомогенная реакция, катализируемая цианид-и фторид-ионами. Несмотря на то что некоторые из них были уже давно известны (ср. [411Ь]), только в последнее время они привлекли к себе особое внимание. Например, тетрабутиламмо-нийцианид в ТГФ или ацетонитриле вызывает присоединение нитроалканов, спиртов и хлороформа к а, -ненасыщенным кето-нам и сложным эфирам [413]. В этих растворителях ионные пары нитрил/четвертичный аммоний не защищены водородными связями и ведут себя как основания. Кротонитрил димеризуется, акрилонитрил полимеризуется [413]. [c.219]

    Второй важной группой карбонильных соединений нефти являются сложные эфиры. О концентрации этих КС чаще всего судят по разности кислотных чисел до и после смыления вещества. В последние годы для той же цели широко используется метод, основанный на анализе области поглощения карбонильных функций в ИК спектрах [110, 659—661]. С помощью такого метода Г. Дженкинс [659] измерил концентрации сложных эфиров в 29 нефтях различных месторождений. Он считает, что в большей части нефтей присутствовали только нативные эфиры, хотя не исключает и возможности загрязнения некоторых образцов компонентами поверхностно-активных веществ, применявшихся при добыче и обезвоживании нефти, или продуктами окисления, образовавшимися при хранении. Обнаруженные им сложные эфиры являют я высокомолекулярными, так как они не содержались в [c.108]

    Функциональные производные. К ним отнесены ацетали, оксимы, гидразоны, сложные эфиры, галогенангидриды, амиды, арилиды, уреиды и т. п., а также соли органических оснований с неорганическими (например, хлоргидраты, сульфаты) или с органическими (ацетаты, бензоаты) кислотами, или соли органических кислот с органическими основаниями (например, с пиридином, пиперази-ном и т. п.). Как уже указано, названия функциональных производных (светлый щрифт) помещены после материнских названий или после названий замещенных производных. При этом повторяющиеся материнские названия или названия замещенных символизируются прочерком с запятой (—,), а иногда, в случае сложных замещенных производных, — двумя (—, —,) прочерками. [c.394]

    Возможность алкилирования органических кислот олефинами была предсказана Н. А. Меншуткиным [3—5] на основании его замечательных исследований диссоциации сложных эфиров третичных спиртов на кислоту и олефин, развитых позже Д. П. Коноваловым [6—8]. Д. П. Коновалов [1, 2] эксперлмеитально установил, [c.7]

    Маргапцевокислым калием (в пиридиновом растворе) смолы и асфальтены окисляются в кислоты практически не омыляются имеют низкое ацетильное число с пятисернистым фосфором не реагируют. На основании этих данных Маркуссон сделал вывод, что смолы и асфальтены не содержат карбоксильных и гидроксильных групп, пе являются сложными эфирами или лактонами, или соединениями, содержащими альдегидную или кетонную группировку. Маркуссон отрицает также непредельный характер этих продуктов, указывая, что довольно высокие бромные и йодные числа смол и асфальтенов (40 —30) обусловлены не двойными связями, а присоединением галоидов к атомам кислорода или серы с образованием оксониевых или сульфониевых соединений. [c.58]

    Литература по гидролизу сложных эфиров обширна, однако все попытки объяснить гидролиз простой реакцией обменного разложения или ионизации не приводили к удовлетворительным результатам и не выяснили механизм влияния катализаторов. Первые исследования механизма реакции гидролиза относятся к началу нынешнего столетия. Интерес представляют исследования Штиглица (1908 г.), который считал, что всякий сложный эфир может реагировать как слабо диссоциированное оксониевое основание, спо- [c.547]

    Отсюда следует, что сложные эфирь , образующиеся при этерификации кислот и стшртов, могут подвергаться гидролизу в обратной последовательности, причем в присутствии как кислот, так и оснований  [c.120]

    В подобных случаях задачу определения молекулярного веса соединения удается иногда упростить, исследуя какое-либо его производное, молекулы которого обладают меньщей склонностью к ассоциации. Из уксусной кислоты СНзСООН путем замены атома водорода карбоксильной группы углеводородным остатком можно получить так называемые сложные эфиры (например, СН3СООС2Н5 — уксусноэтиловый эфир), не обладающие, в отличие от исходного вещества, способностью к ассоциации. На основании данных об упругости паров этого эфира можно вычислить истинный молекулярный вес уксусной кислоты. [c.12]

    Крахмал. Крахмал является важнейшим резервным углеводом растений. Он образуется из углекислоты, усваиваемой растениями с помощью хлорофилла, и попадает затем в различные части растения, где используется в качестве строительного вещества. В периоды сильной ассимиляции он откладывается в корнях, клубнях и семенах (особенно обильно, например, в картофеле и семенах хлебных злаков). В холодной воде крахмал почти совсем не растворим, но горячая вода растворяет его в значительной степени, причем образуется вязкий раствор, не восстанавливающий фелингову жидкость и при охлаждении застывающий в студнеобразную массу (крахмальный клейстер). Природный крахмал всегда содержит немного фосфора, количество которого в разных видах бывает различным (0,02—0,16%). Этот фосфор, по-видимому, имеет значение для энзиматического распада крахмала. Из продуктов гидролиза картофельного крахмала была выделена глюкозо-6-фосфорная кислота. На основании исследований Макэнна различают две фракции крахмала амилозу и а м и л о-пектин (вещество оболочки). Первая растворяется в воде без образования клейстера и окрашивается иодом в чисто-синий цвет. Амило-пектин, наоборот, с горячей водой образует клейстер и от иода приобретает фиолетовую окраску. Отделение амилопектина может быть осуществлено путем извлечения щелочами или посредством электродиализа отделение амилозы достигается осаждением различными органическими веществами — спиртами (например, амиловым), сложными эфирами, кетонами, меркаптанами, парафинами. [c.454]

    Со сложными эфирами, обладающими значительной СП-кис-лотностью, например с такими бифункциональными соединениями, как малоновый и ацетоуксусный эфиры, реактивы Гриньяра взаимодействуют в первук) очередь как основания  [c.298]

    Внутримолекулярная конденсация сложных эфиров двухосновных карбоновых кислот в присутствии оснований с образованием циклических р-оксозфиров (реакция Дикмана)  [c.505]


Смотреть страницы где упоминается термин Сложные эфиры как основания: [c.461]    [c.230]    [c.288]    [c.347]   
Органическая химия (1964) -- [ c.178 ]

Органическая химия (1964) -- [ c.178 ]




ПОИСК







© 2025 chem21.info Реклама на сайте