Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутиловый спирт из свойства

Таблица 32. Свойства трет-бутилового спирта Таблица 32. <a href="/info/1608319">Свойства трет</a>-бутилового спирта

    Допустимое количество примесей зависит от природы этих примесей и требуемой степени точности экспериментальных данных. При этом нужно руководствоваться тем, что чем ближе примесь по химической природе к компонентам изучаемой системы, тем больше допустимое ее количество при одинаковой точности опытных данных. Так, при изучении равновесия между жидкостью и паром в системах, состоящих из углеводородов и бутилового спирта [122], заметную погрешность вызывает присутствие в последнем воды в количестве около 0,05%. В противоположность этому примесь 1—2% метилэтилэтилена в три-метилэтилене, используемом для исследования равновесия в системах, состоящих из триметилэтилена и полярных веществ, оказывается вполне допустимой для технических целей, так как указанные углеводороды являются весьма близкими по свойствам изомерами. Разумеется, требования к чистоте веществ следовало бы сильно повысить, если бы задачей исследования являлось выяснение различия в поведении разных изомеров. [c.145]

    Тормозная жидкость БСК является смесью 50% касторового масла и 50% бутилового спирта. Она обладает острым пряным запахом, окрашена, как правило, в красный (оранжево-красный) цвет, благодаря наличию касторового масла обладает хорошими смазывающими свойствами, не вызывает коррозии металлических деталей гидравлического привода и не оказывает разрушающего действия на резиновые детали, но имеет неудовлетворительные вязкостно-температурные свойства. Прн температуре воздуха —20 С и ниже касторовое масло вымерзает и теряется подвижность жидкости, затрудняется ее прокачка в системе. В жаркое время хода из-за относительно низкой температуры начала кипения спирта, входящего в состав тормозной жидкости, наблюдаются случаи образования паровых пробок. [c.64]

    Амиловый спирт, обладая хорошим стабилизирующим эффектом, имеет более низкие антидетонационные свойства, что снижает его ценность как компонента автомобильных бензинов. В связи с этим работу проводили с изопропиловым, нормальным бутиловым и изобутиловым спиртами и их смесями. Эффективность действия этих стабилизаторов проверяли на бензино-метанольных смесях, в которых использовали бензин каталитического риформинга жесткого режима в смеси с бензином прямой перегонки (база А для получения бензина. АИ-93) и товарный бензин А-66 (база Б для получения бензина А-76). Метанола в смесях содержалось 14 и 16%, концентрацию стабилизатора повышали от 3—5 до 7—9%, соответственно снижая долю базового компонента. Лучшим стабилизирующим действием обладал нормальный бутиловый спирт, несколько худшие результаты получены для изобутило-вого спирта. Бензино-метанольные смеси, содержащие в качестве стабилизатора изопропиловый спирт и его смеси с нормальным и изобутиловым спиртами в соотношении 1 1, расслаивались при значительно более высоких температурах (рис. 2). [c.109]


    В гл. 7 упоминалось, что близость физических свойств изобутилена и н-бутиленов затрудняет их разделение физическими методами, хотя принципиально это и можно осуществить. Поэтому изобутилен почти всегда предварительно удаляют поглощением 50—65%-нон серной кислотой, которая в мягких условиях не реагирует с н-бутиленами. Действие серной кислоты на изобутилен описано ниже, в разделе, посвященном трет-бутиловому спирту. Дивинил не реагирует с холодной 50—65%-ной серной кислотой, и поэтому его следует удалять до или после удаления изобутилена, используя один из методов, описанных в гл. 7 (стр. 128) и гл. 12 (стр. 210), смотря по тому, как много дивинила присутствует в газе. [c.151]

    В целом за 1966—1980 гг. в нефтехимической промышленности выработка бензола возросла в 22 раза, бутиловых спиртов в 5,4 раза, полиэтилена в 3,8 раза, синтетического каучука в 3,4 раза (в том числе каучуков превосходящих по свойствам натуральные — СКИ в 69 раз и СКД — в 68 раз). [c.32]

    Рассмотрение других соединений, приведенных в табл. 15.2, позволяет предположить существование какого-то дополнительного фактора, а также наличие каких-то особых свойств у ОН-группы. Дипольные моменты альдегида, содержащего группу С=0, и -пропилхлорида гораздо больше дипольного момента -бутилового спирта, тем не менее эти соединения имеют гораздо более низкие температуры кипения. Влияние группы ОН очень велико, и вряд ли его можно объяснить простым увеличением полярности. [c.480]

    В работе совместно с С. М. Петровым автор исследовал интервалы перехода и константы диссоциации ряда цветных и флюоресцентных индикаторов в неводных растворителях в бутиловом спирте, ацетоне и их смесях с водой. Оказалось, что влияние растворителей на силу индикаторов подчиняется тем же закономерностям, которые были установлены ранее для кислот и оснований, не имеющих индикаторных свойств. В табл. 47 Приводим данные о константах диссоциации цветных индикаторов в ряде неводных растворителей. Здесь приведены наши данные для бутилового спирта, ацетона и его смесей с водой, метилового и этилового спиртов. [c.460]

    Изопропиловый и в особенности трег-бутиловый спирт, пиридин, нитробензол, диметилсульфоксид, ацетонитрил, метилэтилкетон отличаются большой протяженностью относительной шкалы кислотности и, следовательно, обладают высокими дифференцирующими свойствами. [c.412]

    У метилового спирта СНд—О—Н радикал СНз не обладает электроноакцепторным характером, а следовательно, не вызывает дополнительной поляризации О—Н-связи, не повышает кислотных свойств гидроксила. Если эти рассуждения правильны, то у спиртов, содержащих дополнительные электроноакцепторные заместители, кислотные свойства должны повышаться. Опыт подтверждает это. Например, перфтор-т/ тг-бутиловый спирт [c.153]

    Физические свойства бутиловых спиртов [c.139]

    Грунтовку и эмаль наносят на окрашиваемую поверхность пневматическим распылением. Грунтовку разбавляют до рабочей вязкости смесью этилового и бутилового спиртов, взятых в соотношении 3 4, а эмаль — растворителем Р-5. Грунтовку сушат при 15—20°С в течение 15—30 мин, а каждый слой эмали при той же температуре в течение 24 ч. Окрашенное техническое средство сдают в эксплуатацию после его выдержки при 15—20 °С в течение 5—7 сут. Для обеспечения необходимых сплошности и антикоррозионных свойств толщина покрытия должна составлять 80—90 мкм. При проведении лабораторных исследований и испытаний на горизонтальных резервуарах (см. Приложения 2 и 3) было установлено, что покрытие на основе грунтовки ВЛ-08 и эмали ЭП-56 обладает стойкостью к длительному воздействию нефтепродуктов в интервале температур от —50 до - -50°С, действию горячей воды и атмосферному воздействию физико-механические показатели покрытия удовлетворительны. [c.60]

    Как видно из таблицы, октановые числа смешения большинства стабилизаторов щзевышают 100 пунктов. Для эфирной "головки" (отход производства бутиловых спиртов ) этот показатель равен 168 пунктам по моторному методу, т.е. по антидетонационным свойствам он превышает все известные высокооктановые добавки к бензинам. Кубовый остаток и [c.33]

    Наличие в составе грунтовки и эмали меламиноформальдегидной смолы значительно повышает водостойкость готового покрытия. Эмаль и грунтовку доводят до рабочей вязкости разбавителем РКБ-1 (ТУ 6010-1326— 72) или смесью бутилового спирта и ксилола (или сольвента), взятых в соотношении 1 1. Материал покрытия наносят на новерхность пневматическим распылением или обливом. Грунтовку и эмаль сушат при 120 °С в течение 1 ч. Для обеспечения необходимых сплошности и антикоррозионных свойств толщина покрытия должна составлять 40—55 мкм. [c.73]

    На практике для разделения аминокислот и пептидов основного характера используют системы, содержащие фенол и крезол, для нейтральных — смеси с бутиловым спиртом и уксусной кислотой или с амиловым спиртом, а для кислых аминокислот и пептидов — системы, содержащие соединения основного характера (обычно пиридин). Если соединение плохо растворимо в подвижной фазе и остается на стартовой линии, следует увеличить гидрофильность системы, например, добавлением муравьиной кислоты, метанола или формамида. Если же вещество хорошо растворимо в подвижной фазе и движется вместе с фронтом растворителя, следует использовать органический растворитель с более выраженными гидрофобными свойствами, например изоамиловый, бензиловый спирты и др. [c.126]


    СВОЙСТВА БУТИЛОВЫХ СПИРТОВ [c.337]

    Результаты изучения адсорбционного равновесия в системе и-бутиловый — к-кротиловый спирт на цеолитах NaX и СаА показали, что н-кротиловый спирт избирательно сорбируется цеолитами обоих типов. Среднее значение коэффициента разделения при нормальном давлении 150 °С (газовая фаза) на цеолите NaX составляет 7,35. При содержании в исходной смеси 8% (масс.) н-кротилового спирта концентрация последнего в десорбате, извлеченном из цеолита NaX, составляет 40%. Рафинат представлял собой химически чистый бутиловый спирт. Эти свойства цеолитов в рассмотренной системе могут быть использованы в промышленности синтетического каучука. [c.355]

    С помощью этого метода можно рассчитывать свойства не только углеводородов, но и других соединений. Однако наличие сильно полярных связей (вследствие более значительного влияния их на другие связи) может существенно снижать точность результатов расчета и тем самым ограничивать его применимость. ГринЗ указывает, что согласно этому методу можно было бы ожидать, что разность теплот образования (АЯ , гэз) между бутаном и изобутаном, пентаном и изопентаном, бутантиолом-1 и бута тиолом-2, пропантиолом-1 и пропантиолом-2, нормальным и изопропиловым спиртами будет одинакова. В действительности же это соблюдается только для первых четырех из указанных пар (углеводороды и тиолы), для которых разность равна 2,00 0,10 ккал/моль, но для пропиловых спиртов она почти в 2 раза больше (3,71) и для пары нормальных первичного и вторичного бутилового спиртов она равна [c.271]

    При синтезе цеолиты получают обычно в Ыа+-форме. Эти катионы могут быть обменены на эквивалентные количества других с образованием различных ионообменных модификаций, имеющих разнообразные каталитические свойства. Для каждого типа цеолита сечения пор и их входные отверстия (окна) имеют молеку-лярны е размеры и являются строго постоянными [215, 220]. Это позволяет достичь высокую селективность катализатора. Так, с помощью цеолитов удается дегидрировать бутиловый спирт из его смеси с изобутанолом или гидрировать олефины нз смеси их с изо-олефинами [221]. В табл. 18 даны диаметры пор и размеры окон некоторых цеолитов. Синтетические цеолиты можно получить гидротермальным синтезом в виде кристаллов с размерами порядка микрона. Синтез цеолитов в Ыа+-форме сводится к осаждению щелочного алюмокремнегеля с последующей его кристаллизацией [222—227]. [c.172]

    При действии избытка 100%-ной серной кислоты при комнатной температуре нормальные первичные спирты превращаются в алкипсерные кислоты, не образуя диалкил сульфатов [8], но после длительного стояния от кислоты отслаивается сложная смесь углеводородов, относящихся главным образом к парафиновому ряду. При этерификации первичных изоспиртов с разветвленными цепями, включая изобутиловый,. изоамиловый и оптически активный амиловый спирты, кроме сложных эфиров, получаются соединения, обесцвечивающие бромную воду. Наибольшее количество этих соединений отмечено при этерификации изо-бутилового спирта. При действии серной кислоты вторичные и третичные спирты сначала превращаются главным образом в сложные эфиры, которые при стоянии в присутствии избытка серной кислоты образуют углеводороды. Маслянистый слой, медленно отслаивающийся от серной кислоты, содержит большой процент насыщенных углеводородов [9]. Водород, необходимый для их образования, освобождается путем диспропор-ционирования типа сопряженной полимеризации [10], в результате которого получаются циклоолефины, остающиеся в кислом растворе. Из цетилового спирта получается вещество с т. пл. 50°, обладающее свойствами парафинового воска. Цикло-гексанол превращается в высококинящие углеводороды [11]. Кислый сульфат, приготовленный из трифенилкарбинола [8], представляет собой сильно диссоциированную кислоту, судя по его низкому молекулярному весу в растворе сернох кислоты. Он разлагается водой, регенерируя трифенилкарбинол. [c.8]

    Улучшение качества нефтепродуктов связано с использованием различных присадок и добавок. Например, для улучшения качества автомобильных бензинов предусматривается добавление к ним присадок, обеспечивающих высокие антиокис-лительные, антикоррозионные, антиобледенительные свойства, использование нетоксичных антидетонаторов и высокоэффективных добавок метил-грег-бутилового эфира, вторичного бутилового спирта, алкилата и изомеризата. Улучшение качества дизельных топлив связано с развитием процессов гидроочистки и депарафинизации, обеспечивающих очистку продуктов от серы и понижение температуры застывания. [c.181]

    Сравнение свойств метилового и mpem-бутилового спиртов позволяет судить о важной роли стерических особенностей растворителя в сольватационных явлениях. [c.240]

    Наши расчеты отклонения свойств от аддитивности, вызванного реакцией, на основании криоскопических данных Удовенко показали, что анилин взаимодействует с ацетоном с образованием соединения состава АВ. Таков же состав соединения анилина с метиловым и этиловым спиртами, хотя максимум на этих диаграммах сильно размыт. Исследование системы анилин — нитробензол указывает на образование соединения состава один к одному. Криоскопические исследования Б. М. Красовицкого, Е. И. Вайля № О. М. Савченко и произведенные ими расчеты выхода реакции показали, что о-и ге-толуи-дины взаимодействуют с бутиловым спиртом и образуют соединение состава АВ . [c.252]

    К амфогерным растворителям относятся спирты и фенолы. Наиболее подробно изучены свойства кислот в спиртах. Известны константы диссоциации более 100 кислот в метиловом и этиловом спиртах довольно подробно изучены константы в бутиловом спирте и в. -крезоле, но почти нет данных о диссоциации кислот при растворении в других спиртах. [c.275]

    Зависимость физических свойств бутиловых спиртов (С4Н9ОН) от строения [c.106]

    Здесь гидроксил проявляет свои кислотные свойства, хотя эта кислотность очень мала во много раз слабее, чем у самых слабых кислот. Кислотные свойства спиртов зависят от природы радикала, с которыми связана гидроксильная группа. Кислотность простейших первичных спиртов примерно равна кислотности воды. Если же в радикал спирта ввести электроноакнепторный заместитель, например атом фтора, то кислотные свойства усиливаются. Примером может слу кить фторпроизводное третичного бутилового спирта  [c.282]

    Установите строение соединения состава С4НцК, обладающего такими свойствами а) хорошо растворяется в воде, раствор показывает слабощелочную реакцию б) при действии нитрита натрия в солянокислой среде превращается в трет-бутиловый спирт и изобутилен в) при исчерпывающем метилировании СНз1 превращается в иодид триметил-шрет-бутиламмония. [c.77]

    Метод экстракции. Нераствор 1мые в воде комплексные соединения нередко хорошо растворяются в органических растворителях — хлороформе, бензоле, диэтиловом эфире, амиловом или бутиловом спиртах и др. На этом свойстве комплексных соединений основано разделение элементов эксгракцией. Экстракция— метод разделения, который заключается в переведении соединения определяемое элемента из водного раствора в слой органического растворителя, не смешивающегося с водой. В органи еских растворителях часто растворяются также простые вещества, например свободный иод, который ле ко экстрагируется из водного раствора хлороформом или бензолом. Однако чаще всего метод экстракции применяют для переведения в органический растворитель именно комплексных соединений. [c.23]

    В связи с этим изучалась возможность улучшения свойств водных растворов композиций путем добавления кубовых остатков бутиловых спиртов (КОРБ). По результатам лабораторных исследований удалось определить наиболее оптимальное содержание продукта КОРБ в водном растворе композиции, составившее 5 г/л. При концентрациях КОРБ, равных 5 г/л и выше, температура помутнения раствора композиции ниже пластовой. Исследовалось влияние продукта КОРБ на межфазное натяжение на границе водный раствор композиции — нефть. По результатам многочисленных измерений при различных концентрациях ПАВ и КОРБ в широком диапазоне температур показано, что добавление КОРБ в композицию не оказывает заметного влияния на межфазное натяжение. [c.125]

    Вторичный бутиловый снирт по свойствам близок к и-бутанолу и в ряде случаев может использоваться как его заменйтель. Он является также исходным сырьем для получения таких важных продуктов, как етор-бутил-ацетат и метилэтилкетон. Вторичный бутиловый спирт может использоваться также для получения ксантатов, применяемых в качестве агента для флотации и ускорителя вулканизации. [c.259]

    Бутиловые спирты применяются как полупродукты в ряде важных органических синтезов. Некоторые из этих спиртоп имеют и сям()ст )ительное применение в качестпс растворителей. Основные фиг ические свойства бутилопых спиртов приведены в табл. 59. [c.421]

    Наибольшее распространение имеет жидкость БСК (ТУ 6 101533-75), которая представляет собой смесь равного количества бутилового спирта и касторового масла с добавлением органического красителя (цвет жидкости оранжево-красный). Ее можно использовать в гидроприводах тормозов и сцепления грузовых и легковых (кроме ВАЗ) автомобилей в зонах умеренного климата. При температуре ниже -17 °С жидкость БСК из-за интенсивной кристаллизации начинает переходить в твердую фазу (рис. 72). При попадании в систему воды однородность жидкости нарушается, и она становится непригодной к использованию. Аналогичные свойства имеют и другие тормозные жидкости на основе касторового масла АСК (с изопентиловым спиртом), ЭСК (с этиловым спиртом). [c.270]

    Трибутилфосфат (эфир фосфорной кислоты) (С4Н90)зР=0)— бесцветная жидкость, плохо растворима в воде, хорошо — в органических растворителях. Получают взаимодействием нормального бутилового спирта с Р0С1з. Трибутилфосфат применяют в аналитической химии, радиохимии для разделения элементов, близких по свойствам трансурановым элементам, при переработке ядерного горючего, в производстве различных пластмасс и др. [c.138]

    Гидрофобные свойства бутанолоксикремнегелевых смазочных композиций, зависят от степени этерификации поверхности орто-кремниевой кислоты (1 48104) нормальным бутиловым спиртом. [c.333]

    В работе изучены состав и свойства базовых компонентов новых профилактических смазок - продуктов нефтехимических производств, отходов производства бутиловых спиртов, средних дистиллятных фракций вторичных процессов и прямой перегонки нефти. В качестве загущающих и депрессорных присадок были исследованы прямогонный мазут и гудрон с установки АВТМ-9, крекинг-остатки с установок ТК-3, обводненный и обезвоженный товарный мазут марки 100 . Физико-химические характеристики дистиллятных [c.7]

    Продукт присоединения ацетона к дикетену, который может быть получен с выходом 91%, представляет собой стойкую жидкость. Поскольку он обладает многими химическими свойствами дикетена, его можно использовать как стойкий источник дикетена. Так, при кипячении в толуоле в присутствии ацетата кальция аддукт дает дегидрацетовую кислоту (выход 1%), при реакции с м-бутиловым спиртом в присутствии п-толуолсульфо-кислоты образует м-бутиловый эфир ацетоуксусной кислоты (выход 95%), а при его взаимодействии с анилином в ксилоле в присутствии диэтаноламина получен анилид ацетоуксусной кислоты (выход 45%). Катализируемая кислотами реакция кетонов с дикетеном наблюдалась и другими исследователями [И], которые, однако, неправильно полагали, что продукты реакции представляют собой производные изопропенилового эфира ацетоуксусной кислоты (LV1). [c.246]

    В состав рацемической модификации, имеют одинаковые физические свойства (кроме направления вращения поляризованного света) и, следовательно, их нельзя разделить обычными методами фракционной перегонкой или фракционной кристаллизацией. В этой книге часто упоминаются эксперименты, проводимые с оптически активными соединениями, такими, как (+)-б/по/)-бутиловый спирт, (—)-2-бромоктан, (—)-а-фенилэтилхлорид, (+)-а-фенилпропиоамид. Как же получаются такие оптически активные соединения  [c.225]

    Однако это справедливо только для низших спиртов, в которых ОН-группа составляет значительную часть молекулы. Длинная алифатическая цепь с небольшой ОН-группой на конце в значительной степени сходна с алканами, и физические свойства таких соединений отражают это. Изменение растворимости в воде с увеличением числа атомов углерода происходит постепенно первые три первичных спирта смешиваются с водой растворимость н-бутилового спирта составляет 8 г на 100 г воды, н-пентилового — 2 г, н-гексилового — 1 г, а высших спиртов еще меньше. На практике считают, что в воде растворимы лишь ндэрмальные первичные спирты, содержащие до 4—5 атомов углерода. [c.478]

    Для улучшения свойств и увеличения ресурсов в состав автомобильных бензинов во все возрастающих количествах вводят кислородсодержащие соединения — метиловый и ewop-бутиловый спирты, метил-трет-бутиловый и метил-трети -амиловый эфиры (МТБЭ и МТАЭ). Они являются высокооктановыми добавками к бензинам и имеют октановые числа смешения 120—150 пунктов (низшие алифатические спирты, метил-отрет-бутиловый эфир). В связи с тенденцией использования бутиленов для производства метил-mpem-бутилового эфира, алкилата или втор-бутилового спирта возрастает роль процессов получения высокооктановых компонентов бензина из пропан-пропиленовой фракции. [c.126]


Смотреть страницы где упоминается термин Бутиловый спирт из свойства: [c.315]    [c.219]    [c.145]    [c.58]    [c.648]    [c.861]    [c.318]    [c.246]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.428 , c.431 ]




ПОИСК





Смотрите так же термины и статьи:

Бутилового вторичного спирта кислый сульфат, получение свойства

Бутиловые спирты Бутиловый спирт, свойства

Бутиловый спирт

Бутиловый спирт из производные, свойства

Бутиловый эфир масляной кислоты, получение окислением бутилового спирта кислоты, свойства



© 2025 chem21.info Реклама на сайте