Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гистерезис и структура пор

    Заслуживают внимания данные рассмотрения зависимости молекулярно-массового распределения бифункционального преполимера различной полидисперсности и распределения цепей между узлами разветвления в реакциях образования трехмерных структур [49]. Весьма неожиданным оказалось влияние молекулярной массы в диапазоне (2,3 5,0) Ю" сегментированных эластомеров на температуру стеклования, сопротивление многократным деформациям, раздиру и гистерезис. Вероятно, причину аномального поведения этих систем следует искать в реструктурировании и упорядочений самих сегментов [50]. [c.539]


    Структура торфа весьма чувствительна к различного рода физическим и физико-химическим воздействиям, что вызывает соответствующее изменение его гидрофильных и водных свойств. Наиболее существенно эти параметры изменяются при обезвоживании, когда в процессе дегидратации торфа усиливаются меж- и внутримолекулярные взаимодействия через поливалентные катионы, содержание которых в торфе достигает 2 мг-экв/г с. в. (грамм сухого вещества), или посредством водородных связей. В определенных условиях ковалентные или ионные взаимодействия переходят в комплексные гетерополярные, вследствие чего при обезвоживании и интенсивной усадке в надмолекулярных образованиях торфа протекают необратимые процессы. Изменение водных свойств торфа при высушивании до низкого влагосодержания наглядно проявляется в явлении гистерезиса на графиках сорбции — десорбции воды, изменяются также его диэлектрические свойства при высушивании — увлажнении [215] и водопоглощение при различной степени осушения пахотного горизонта торфяной почвы [216]. [c.66]

    На рис. 1У-5, в, г показана петля гистерезиса для мембраны с более жесткой структурой, о чем свидетельствует меньшая площадь петли. Для такой мембраны характерна более высокая устойчивость в работе. У мембран с большей площадью петли гистерезиса при непрерывной работе проницаемость снижается значительно быстрее и момент, когда [c.177]

    Петля гистерезиса С = /(Р) для ацетатцеллюлозных мембран а — нормальное положение мембраны № 1 (с менее жесткой структурой) — активным слоем к раствору 6 — противоположное положение мембраны № 1 в — нормальное положение мембраны № 2 (с более жесткой структурой) г — противоположное положение мембраны № 2. [c.178]

    Для адсорбентов с переходными порами характерна изотерма адсорбции с петлей капиллярно-конденсационного гистерезиса (рис. И1.10). Адсорбции соответствует нижняя кривая, а десорбции — верхняя. При малых давлениях, когда не происходит капиллярная конденсация, гистерезиса не наблюдается. Начало его появления зависит от природы адсорбента и адсорбата. Пористая структура адсорбента разнообразна. Однако считается, что ее можно смоделировать тремя видами пор 1) конусообразными, [c.135]

    Большинство тиксотропных жидкостей после определенной выдержки восстанавливают свою обычную вязкость. Некоторые жидкости восстанавливают свою структуру быстро, другие медленно. График зависимости напряжения сдвига т от скорости сдвига у для тиксотропных жидкостей говорит от эффекте гистерезиса кривые, полученные при увеличении скорости сдвига, не совпадают с кривыми при уменьшении скорости сдвига. [c.184]


    Характерная особенность адсорбции воды волокнами текстиля, а также веществами, подобными им по своей структуре, — это явление гистерезиса. При любой данной температуре влажности эти волокна обнаруживают два вида равновесного влагосодержания, зависящего от того, образуется ли оно с сухой или с мокрой стороны. Например равновесное влагосодержание вискозы составляет— при 25° С и 65% относительной влажности — с мокрой стороны 15,4%, а с сухой— 13,1%. В кругах, причастных к торговле, принято определять равновесие с сухой стороны и называть полученную таким способом величину равновесного влагосодержания равновесной влагой. [c.216]

    Влияние подложки на формирование структуры и свойств ПУ в случае изготовления крупногабаритных изделий чрезвычайно велико. Особенно важное значение имеет совместимость подложки и покрытия при охлаждении. Так как коэффициенты линейного термического расширения подложки и ПУ различны, при охлаждении наблюдается гистерезис изменения линейных размеров ПУ под влиянием подложки, а также вследствие различий в термическом расширении ПУ в двух взаимно перпендикулярных направлениях (рис. 7-16). В связи с [c.441]

    Из кинетической теории следует, что в интервале стеклования структура вещества при охлаждении сначала запаздывает в нарастающем темпе, затем темп запаздывания замедляется и структура замораживается. В интервале размягчения также наблюдается запаздывание перестройки структуры, но несколько иначе, чем при охлаждении. В результате в температурном ходе изменения структуры (а следовательно, и физических свойств) должен иметь место гистерезис даже при одинаковых скоростях охлаждения и нагревания, что и наблюдалось экспериментально. Однако рассмотренная теория не может претендовать на количественное согласие с реальным процессом стеклования из-за грубости принятой модели вещества, неучета группового механизма релаксации и конкретной структуры различных жидкостей. [c.40]

    Из рис. 9.10 видно, что совпадение кривых нагрузка — удлинение и разгрузка — удлинение (кривая 2 н 4) наблюдается при очень большой скорости деформации, когда не успевают распадаться узлы флуктуационной сетки, либо при очень медленной равновесной деформации. В обоих этих случаях в процессе сокращения образца успевает восстановиться надмолекулярная структура, которая существовала в момент растяжения, В первом случае распада узлов сетки не было и поэтому незначительные изменения надмолекулярной структуры (например, частичная ориентация сегментов макромолекул в направлении растяжения) быстро релаксировали при сокращении. Во втором случае узлы сетки распадались, наблюдалась значительная ориентация сегментов макромолекул, но все эти изменения надмолекулярной структуры успевали восстановиться полностью в процессе сокращения благодаря большой продолжительности процесса. Таким образом в тех случаях, когда релаксационные процессы при сокращении образца успевают пройти полностью, петля гистерезиса отсутствует. Отсутствие петли гистерезиса означает отсутствие потерь меха- [c.127]

    Реологические свойства тампонажных растворов с практически разрушенной структурой исследованы в работе [202], где показано влияние интенсивности предварительного перемешивания и количества коагуляционных контактов на величину эффективной вязкости. В случае перехода от больших скоростей сдвига к меньшим происходит восстановление первоначально разрушенной структуры. При этом наблюдается небольшой гистерезис, связанный с особенностью тиксотропных свойств цементного раствора. [c.69]

    К тиксотропным относятся жидкости, у которых при постоянной скорости сдвига вязкость снижается во времени. В первую очередь это явление свойственно структурированным коллоидам с небольшой прочностью структуры. Для тиксотропных систем характерно явление гистерезиса, когда в покоящейся после деформирования системе восстанавливается исходная структура, а значит, начальное значение вязкости. У реопектических жидкостей (например, красок), наоборот, вязкость во времени возрастает. [c.49]

    Затухание ультразвуковых колебаний в металлах связано с рассеянием ультразвука в нем из-за неоднородности структуры материала и поглощением его вследствие гистерезиса и теплопроводности. В однородной изотропной упругой среде и монокристаллах металлов затухание УЗК обусловлено поглощением ультразвука. При этом энергия упругих колебаний переходит в тепловую. [c.10]

    Первую, основанную на уравнении Кельвина, приближенную схему вычисления распределения объема пор по размерам по изотерме капиллярного испарения предложил Уилер в 1945 г. [13]. С тех пор предложено много вариантов методов, в большинстве случаев для адсорбентов с цилиндрическими порами. Школе де Бура принадлежит попытка учета геометрии формы пор по характеру области гистерезиса при капиллярной конденсации [14]. В принципе, это позволило бы в каждом частном случае принимать модель пористой структуры, наиболее приближающуюся к реальной, но к однозначному решению задачи это не привело. Наиболее широкое распространение получили расчеты для адсорбентов с цилиндрическими порами. С уже изложенной точки зрения автора в подобных случаях вычисляется распределение объема и поверхности пор не для реального адсорбента, а для его эквивалентной модели с принятой формой пор. [c.107]


    При высушивании оводненного геля (при температурах ниже 150°) упругость пара соответственно падает по мере удаления воды, вначале из широких, затем из все более узких капилляров, но на стадии удаления адсорбционных слоев кривая проходит ниже, чем при оводнении (рис. 75, кривая /). Это расхождение кривых прямого и обратного процессов называется гистерезисом в данном случае Хок объясняет наличие гистерезисной петли изменением капиллярной структуры при высушивании, а Песков и Прейс — различием условий смачивания при наличии, соответственно, воздуха или воды на стенках капилляров. Внешне гель с пустыми или частично заполненными капил- [c.199]

    При десорбции присутствие воды и жесткость структуры препятствуют восстановлению связей между цепями, чем объясняется появление гистерезиса. [c.170]

    Карбонильное железо характеризуется специфической кривой первоначального намагничивания, соответствующей формой петли гистерезиса и определенными значениями составляющих магнитных потерь. При этом электромагнитные свойства карбонильного железа в блоке, получаемом металлокерамическим способом из порошка, и в частицах порошка существенно различны. Это в первую очередь объясняется изменением структуры материала при его металлокерамической обработке, а также влиянием на электромагнитные свойства размера частиц. [c.166]

    Данные, полученные при исследовании порошков со средним размером частиц около 3 мкм, но с различным химическим составом (см. табл. 27), показывают, что с уменьшением содержания углерода и азота до определенного предела потери на гистерезис уменьшаются. Однако дальнейшее уменьшение содержания примесей вызывает увеличение потерь на гистерезис и вихревые токи. Это, по-видимому, можно объяснить уменьшением количества частиц с луковичной структурой в порошках, характеризующихся низким содержанием углерода и азота. [c.191]

    Реальные адсорбенты не обладают столь однородной структурой, поэтому их поры заполня-югся (или опоражниваются) не одновременно, что приводит к наклонным ветвям гистерезиса, как это видно из рис. XIX, 7, на котором показана изотерма адсорбции пара бензола в порах допадьно однородного крупнопористого силикагеля. [c.526]

    Модели нулевой размерности или модели псевдопористого пространства. Основное назначение элементов данной модели состоит в качественном описании процессов в единичных порах, а также в тех случаях, когда капиллярная структура, функционирующая как модель, не может быть усложнена каким-либо простым способом для получения протяженного пористого пространства. Сами элементы обычно используются в качестве концеп-ционной формальной модели переноса какого-либо явления. Модель конического капилляра используется для описания капиллярного переноса жидкости к высыхающей поверхности. Модели скрещенных и параллельных с перемычкой капилляров применяются для объяснения кинематического и статического гистерезиса при капиллярном переносе жидкости или захвате замещаемой фазы. Модель порового дуплета или разъезда применяется для выявления гистерезиса при всасывании и.ли впитывании. Модель независимого домена используется для объяснения петли гистерезиса в процессах адсорбции. Используются также и другие модели, описывающие специфические явления в пористых средах с разделенными фазами [23, 31]. [c.131]

    Очень важным свойством катализаторов является их пористая структура. Ее обычно характеризуют по физической адсорбции и десорбции газов, а также методом ртутной поромет-рии. Для пор размером 20—500 А надежен и весьма полезен метод адсорбции азота. По форме петель гистерезиса адсорбции и десорбции определяют форму и размер пор [34]. Для крупных пор размером 100—150 мкм часто используют ртутную порометрию. Поскольку прилежащий угол между поверхностью ртути и несмачивающимся твердым веществом превышает 90°, ртуть может войти в поры только под давлением. Если известна зависимость объема ртути, который вдавлен в поры катализатора, от приложенного давления, то можно найти распределение пор по размерам. При этом приходится делать некоторые предположения о форме пор, а также считать, что поры выходят на поверхность и не связаны между собой. Микропоры диаметром менее 20 А нельзя надежно измерить никаким методом. Для их изучения рекомендуются молекулярные зонды различных размеров и форм. Таким образом, хотя знание nopH Toff структуры чрезвычайно важно, надежное измерение ее может быть затруднено. [c.31]

    На поверхности неорганических твердых веществ часто встречаются свойственные этим веществам нарушения структуры. Они вызываются присутствием на указанной поверхности иснов, загрязняющих данное вещество. Получить чистую поверхность весьма трудно и считать реальную поверхность гладкой можно в очень редких случаях. Адам (641 показал влияние шероховатости поверхности на величину контактного угла и продемонстрировал, что при передвижении капли по поверхности она имеет по фронту движения значительно больший контактный угол, чем с тыльной части. Он приписал наличие гистерезиса контактного угла вязкостному сопротивлению движению кромки жидкости на твердой поверхности. Поэтому термодинамические соотношения адгезии практически могут быть приложимы только к жидкостям, у которых имеется точное соответствие между чистой работой, затраченной на образование новой поверхности, и приростом свободной энергии, согласно уравнению (74). [c.63]

    Такие свойства, как намагниченность насыщения М , точка Кюри в , магнитострикция парапроцесса - сгруюурно нечувствительны, коэрцитивная сила Яс, магнитная проницаемость fl, магнитная восприимчивость остаточная намагниченность Мг — структурно чувствительны. Первая грутта свойств связана с наличием или температурным изменением магнитного порядка, вторая - с намагничиванием, т. е. с изменением доменной структуры. Современная теория ферромагнетизма в основном делится на два раздела - теорию спонтанного магнетизма (магнитного упорядочения) и теорию технического намагничивания (кривая намагничивания, петля гистерезиса). Как структурно чувствительные, так и структурно нечувствительные свойства зависят от фазового состозгаия твердого тела (состав и относительное содержанне фаз, их атомное упорядочение). [c.55]

    Температуры плавления и кристаллизации полимеров не совпадают. Если вода замерзает при 0°, а лед при обычном давлении плавится при той же температуре, то у полимеров всегда Г л превышает Тир на несколько градусов или десятков градусов в зависимости от скорости нагревания или охлаждения. Кривые охлаждения и нагревания кристаллического полимера образуют петлю, напоминающую петлю гистерезиса, возникающую при на-магнпчнванин н размагничивании железного сердечника (рис. 12.10). Несовпадение Тщ, и 7 пл — следствие замедленности релакса ционных процессов, необходимых для создания кристаллической структуры. Заметная скорость кристаллизации наблюдается лишь при значительных переохлаждениях, которые наступают при охлаждении расплава до температур значительно ниже 7 пл. [c.180]

    Обычно при снятии кривой течения тиксотропной жидкости на ротоционных вискозиметрах напряжение сдвига измеряется при медленном увеличении скорости сдвига. По достижении некоторого равновесного состояния скорость сдвига уменьшают так, чтобы при снятии ниспадающей части кривой (равновесной кривой) восстановление структуры по возможности исключалось, в результате получают так называемую петлю гистерезиса (рис. 12). Нижняя петля гистерезиса практически совпала с прямой и соответствует циклу полного разрушения структуры для заданной скорости сдвига. Верхняя петля гистерезиса соответствует [c.40]

    Принято считать, что в обычных условиях типичные металлы обладают фиксированной температурой перехода твердая фаза жидкость. Однако если металл подвергнуть непрерывному у-облучению, то температура фазового перехода понижается, причем при кристаллизации в большей степени, чем при плавлении. Это наглядно видно из рис. 7.17, на котором приведены термографические кривые, полученные Б. А. Данильченко, М. П. Круликовской, Л. И. Чирко для лития при постоянной интенсивности у-источника. Цифры указывают очередность нагревания и охлаждения образца без 7-излучения и под облучением. Видно, что под влиянием 7-сблучения температура перехода жидкая твердая фаза понижается по сравнению с наблюдаемой в обычных условиях. При этом обнаруживается гистерезис температур плавления и кристаллизации, т. е. степень влияния 7-облучения на процесс предкристаллизации и предплавления неодинакова. Можно предположить, что понижение температуры кристаллизации расплава обусловлено нарушением ближнего порядка за счет ослабления межатомных связей. При этом усиливается различие между структурой твердого и жидкого металла под действием 7-излучения. [c.199]

    Поглощение жидкости благодаря капиллярной структуре геля происходит по законам капиллярной конденсации, т. е. по физическим законам. Отсюда следует, что хрупкие гели могут поглощать любую смачивающую их жидкость. Этот процесс сопровождается своеобразным явлением, получившим название гистерезиса оводнения и обезвоживания. Явление гистерезиса впервые было изучено на гелях 810г и РегОз и заключается оно в том, что в гелях при одинаковых условиях опыта процессы оводнения и обезвоживания осуществляются не [c.371]

    В литературе можно найти многочисленные примеры исследования влияния давления на параметры индуктивных элементов. Индуктивность компонентов, содержащих железный порошок в пластиковой матрице, обычно пропорциональна давлению, однако эти изменения не носят постоянного характера. Единственный описанный в литературе случай существенного остаточного изменения параметров в результате воздействия давления связан со специальным сердечником из материала с ориентированной зеренной структурой и с прямоугольной петлей гистерезиса. Сведения о влиянии давления на элементы устройств магнитной памяти в литературе найти не удалось, но можно предположить, что такие компоненты будут выходить из строя при однократном повышении давления, поскольку в них используются материалы, аналогичные применяелйлм в ориентированных сердечниках с прямоугольной петлей гистерезиса. [c.482]

    Др. важные параметры М.м. I. Остаточная намагниченность М, [или остаточная магн. индукция единица измерения - тесла (Тл)] количественно оценивается величиной намагниченности, сохраняющейся в образце после того, как он был намагничен внеш. магн. полем до насьпцения, а затем напряженность поля сведена до нуля. Величина М, (Д,) существенно зависит от формы образца, его кристаллич. структуры, т-ры, мех. воздействий (удары, сотрясения и т.п.) и др. факторов. 2. Коэрцитивная сила Н измеряется в А/м количественно определяется как напряженность поля, необходимая для изменения намагниченности тела от значения М, до нуля. Зависит от магнитной, кристаллографич. и др. видов анизотропии в-ва, наличия дефектов, способа изготовления образца и его обработки, а также внеш. условий, напр. т-ры. 3. Относит, магн. проницаемость ц характеризует изменение магн. индукции В среды при воздействии поля Я связана с магнитной восприимчивостью % соотношением ц = 1 -Н X (в СИ). В ферромагнетиках и ферритах ц сложным образом зависит от Я для описания этой зависимости вводят понятия дифференциальной (Цд ), начальной (ц ) и максимальной (Цмакс) проницаемостей. 4. Макс. уд. магн. энергия (в Дж/м ) или пропорциональная ей величина (ВН) , на участке размагничивания петли гистерезиса. 5. Намагниченность насыщения М, (или магн. индукция насыщения В ). 6. Кюри точка 7. Уд. электрич. сопротивление р (в Ом м). В ряде случаев существенны и др. параметры, напр температурные коэф. остаточной индукции и коэрцитивной силы, характеристики временной стабильности осн. параметров. [c.624]

    Действие внеш. электрнч. поля высокой напряженности приводит к резкому возрастанию поляризации, обусловленному ориентацией доменов преим. по полю. Процесс ориентации обычно сопровождается изменением кристаллич. структуры С., причем энергетич. барьер относительно невелик. Возрастание поляризации приводит к изменению величины диэлектрич. проницаемости , теплоемкости, коэф. термич. расширения и др. св-в С. Зависимость поляризации в С. от напряженности электрич. поля нелинейна и имеет вид петли гистерезиса. [c.308]

    Для кривой 3 принята также постоянная средняя толщина адсорбционного слоя для всей области гистерезиса, оцененная Аултоном в а = 13,0 А. И наконец, кривая 1 отвечает расчету без введения поправок на толщину адсорбционных слоев. По внешнему виду все кривые рис. 2,21 скорее выражают распределение объемов пор для самых разнообразных адсорбентов с одинаковым общим характером пористости, нежели соответствуют одному и тому же адсорбенту. При оценке структуры однороднопористых адсорбентов в первом приближении воз- [c.58]

    Изотермы некоторых более компактных структур цеолитов (например, анальцита и основного канкри-нита) указывают на аномальные свойства, вытекающие из ограниченных растворимостей твердой фазы обоих конечных компонентов обмена. Это явление может быть еще более осложнено наличием заметного гистерезиса, связанного с необратимостью процесса, как, например, при обмене в системе —Rb+ на анальците [8] (рис. 18). Если ион калия замещает ион рубидия и содержание калия в анальците достаточно велико, то богатые калием кристаллы зарождаются и растут на обогащенной рубидием матрице. Свободная энергия этого процесса положительна благодаря вкладу энергии сил натяжения, действующих на каркас, и свободной энергии раздела фаз, которая в свою очередь связана с самопроизвольным ростом обогащенных калием кристаллов до тех нор, пока общий состав твердой фазы не будет соответствовать термодинамическому равнове- [c.86]

    Теперь рассмотрим нагревание охлажденного полимера. Для краткости проанализируем только случай частично закристаллизованного полимера. Кривые 3 и 3" показывают ход зависимости гиббсовой энергии при быстром и медленном нагреваниях. В обоих случаях ход обратной зависимости не совпадает с ходом прямой зависимости, т. е. имеется гистерезис. При быстром нагревании за температурой стеклования будет сохраняться та структура, которая заморозилась при температуре стеклования и поскольку степень кристалличности этой структуры выше, чем при соответствующей температуре при охлаждении (кристаллизация продолжалась вплоть до температуры стеклования), кривая 3 будет лежать ниже, чем кривая 3. Еще ниже будут лежать значения гиббсовой энергии при медленном нагревании, так как при этом в процессе нагревания выше температуры стеклования кристаллическая структура будет не разрушаться, а, напротив, совершенствоваться (этот эффект называется отжигом). Наконец, из-за того, что дефектные кристаллы плавятся при более низкой температуре, чем идеальный, переход на кривую, отвечающую аморфному состоянию (расплаву), произойдет тем раньше, чем больше скорость нагревания. [c.32]

    НОЙ десорбцией воды (рис. 6.5). При 800 °С цеолит А перекристаллизовывается в структуру -кристобалитного типа, являющуюся, вероятно, нафаршированным производным кристоба-лита [21]. Кальциевая форма цеолита А весьма стабильна и выдерживает нагревание выше 800 °С. Адсорбция воды на цеолите А II его кальциевой форме характеризуется слабым гистерезисом, по-видимому связанным с диффузией молекул воды в малые кубооктаэдрические полости — содалитовые ячейки — в структуре цеолита. Гистерезис такого типа ярко выражен при адсорбции воды дегидратированным гидросодалитом [4, 22]. [c.467]

    Обезуглероживание порошка карбонильного железа приводит также к значительному увеличению магнитных потерь. Возрасташ1е потерь на вихревые токи порошка ВКЖ почти в 5, а потерь на гистерезис в 12 раз по сравнению с потерями первичного порошка карбонильного железа объясняется нарушением луковичной структуры при термообработке порошков и соответствующим увеличением проводимости (Т — 10 joM- M. Уменьшение удельного сопротивления феррочастиц вызывает рост потерь на вихревые токи и оказывает, очевидно, преобладающее влияние на рост гистерезисных потерь. Удаление из частиц порошка включений карбидов и нитридов должно вызвать уменьшение коэрцитивной силы и соответствующее снижение потерь на гистерезис. Однако усилившееся действие микровихревых токов в результате роста проводимости преобладает над уменьшением коэрцитивной силы термообработанных частиц порошка, и потери на гистерезис увеличиваются. [c.191]

    Тиксотропию суппозиторных основ и масс устанавливают методом непрерывного, все возрастающего разрушения структуры, как функции напряжения сдвига. Определение проводят путем увеличения числа оборотов внутреннего цилиндра прибора с 0,05 до 25,128 рад/с, достигая постоянного напряжения сдвига при максимальном числе оборотов и последующего уменьшения скорости вращения цилиндра. При переходе от малых нафузок к большим и от больших к малым получают восходящие и нисходящие кривые течения (петли гистерезиса). Наличие петель гистерезиса указывает, что дисперсные системы обладают тиксот- [c.428]


Смотреть страницы где упоминается термин Гистерезис и структура пор: [c.22]    [c.50]    [c.94]    [c.45]    [c.219]    [c.625]    [c.292]    [c.293]    [c.203]    [c.129]    [c.161]    [c.192]    [c.427]    [c.203]   
Адсорбция газов и паров Том 1 (1948) -- [ c.51 , c.532 ]

Адсорбция газов и паров (1948) -- [ c.51 , c.532 ]




ПОИСК





Смотрите так же термины и статьи:

Гистерезис



© 2025 chem21.info Реклама на сайте