Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диаграмма зависимости температуры системы

    Кроме переохлаждения одной из причин отклонения кривых охлаждения от идеального хода является неравномерность распределения температуры по объему застывающей среды. Вследствие температурного градиента линии Ьс отклоняются от горизонтального направления вниз. Поэтому на кривых охлаждения систем, затвердевающих в некотором температурном интервале, излом, отвечающий температуре конца затвердевания, нередко бывает выражен нечетко. Более достоверные данные получают с помощью кривых нагревания, так как твердое кристаллическое вещество нельзя перегревать выше температуры начала его плавления. На основании кривых охлаждения строятся диаграммы зависимости температуры того или иного фазового перехода от состава системы. На основании этих диаграмм делается заключение о характере химического взаимодействия между компонентами системы. [c.227]


    Должно быть исключено чрезмерное разбавление титруемого раствора. Большое увеличение объема и вследствие этого увеличение теплоемкости системы вызовет резко выраженное отклонение от линейности в диаграмме зависимости температуры от объема титранта. Следовательно, титрант должен быть много более концентрированным, чем титруемый раствор. [c.31]

    Рассмотрим изотермы удельных изобарных потенциалов расплавов двойной системы В—А для разных температур. Установим, какие фазы находятся в равновесии при той или иной температуре, и построим диаграмму зависимости температур от состава системы, т. е. диаграмму состояния. [c.86]

    Приводим пример разбора диаграммы зависимости температуры от состава применительно к фракционированной перегонке системы, происходящей в заводской практике в ректификационных аппаратах или в дефлегматорах, применяемых в лабораториях. [c.75]

    На основании диаграммы зависимости температура — состав для системы серебро — медь определить, в каком фазовом состоянии находятся системы, обозначенные точками а, б, в, г, д, е, ж, 3 (рис. 26). [c.145]

    По экспериментальным данным строят диаграмму зависимости температуры от концентрации и получают кривую затвердевания или кривую ликвидуса бинарной системы, в средней части которой кривые обеих серий опытов должны совпасть. [c.860]

    На диаграммах представлена зависимость состояния системы, образованной двумя компонентами А и В (например, растворяемое вещество и раствор, расплав двух солей или металлов и т. д.), от температуры. На части АВ оси абсцисс откладываются отрезки, соответствующие составу системы (точка А представляет чистый компонент А, точка В — чистый компонент В). Значения темпера- [c.186]

    Диаграммы состояния дают возможность, как это ясно из изложенного выше, выявить наличие химических соединений в системе, состав этих соединений, их способность к диссоциации при плавлении. Все эти данные оказывается возможным получить на основании анализа кривых, описывающих зависимость температуры появления новой фазы от состава системы. Изучение графиков, описывающих зависимость какого-либо физического свойства системы от ее состава, является задачей физико-химического анализа. Идея подобного способа исследования сложных систем принадлежит Д. И. Менделееву. В настоящее время физико-химический анализ широко используется для исследования не только однородных растворов, но и сложных многокомпонентных многофазных систем. [c.390]


    Наибольший интерес обычно представляют зависимости свойств системы от ее состава. В случае двухкомпонентных систем эти зависимости удобно изображаются с помощью плоских диаграмм, а в случае трехкомпонентных систем—объемными диаграммами. Более сложные системы изучаются реже. Для изображения зависимости их свойств от состава разработаны специальные приемы. Примерами диаграмм состав—свойство являются диаграммы состояния, описывающие зависимость температур начала кристаллизации от состава системы (рис. ХП1, 2, 7, 8, 9, 10). [c.392]

    Мы ограничимся рассмотрением раздела физико-химического анализа, посвященного изучению зависимости температуры кристаллизации (плавления) исследуемой системы от ее состава термической анализ). Объектами термического анализа служат самые разнообразные системы — различные простые вещества (например, металлы), органические соединения, растворы, смеси солей и т. д. Результатом его проведения является построение диаграммы плавкости. [c.213]

    Зачастую невозможно найти подходящую энтальпийную диаграмму для изучаемой системы. В таких случаях следует пользоваться уравнениями,, выражающими зависимость энтальпии от давления, объема и температуры, например [c.107]

    Для обнаружения несистематических погрешностей опытных данных о равновесии в бинарных системах эти данные изображаются в виде диаграмм, выражающих зависимость состава пара от состава жидкости (кривые у—х) и зависимость температур или давлений при кипении и конденсации соответственно от состава жидкости и пара (кривые t—х, у или Р—х. у). Разброс точек дает возможность судить о величине случайных погрешностей. Для качественной проверки Бушмакиным [177] был рекомендован способ проверки с помощью зависимости коэффициента относительной летучести а от х. Достоинство этого метода заключается в чувствительности а к колебаниям. составов пара и жидкости. Однако для области малой концентрации одного из компонентов это превращается в недостаток, так как небольшие абсолютные погрешности в определении составов фаз вызывают большое отклонение величины а. [c.155]

    Зависимость взаимной растворимости жидкостей от температуры при постоянном давлении представляют на диаграммах состояния в координатах температура — состав. На рис. 127 приведена диаграмма состояния для системы вода — анилин, в которой взаимная растворимость двух жидкостей увеличивается с ростом температуры. На этой диаграмме кривая аКЬ, называемая кривой расслоения, делит диаграмму на две области гомогенную, лежащую выше кривой расслоения (незаштрихованная область), и гетерогенную, находящуюся под кривой расслоения (заштрихованная область). Фигуративные точки в гомогенной области, например точка (1, изображают состояние однофазной дивариантной системы (С = 2 — 1 + 1 =2). Любая фигуративная точка, лежащая внутри гетерогенной области, например точка О, изображает состояние двухфазной равновесной системы, обладающей при постоянном давлении одной степенью свободы (С = 2 — 2 -г 1 =1). [c.386]

    Давление насыщенного пара над чистым этиловым спиртом при этой температуре 2,960-10 Па, а над чистым дихлорэтаном 3,113-10 Па. Вычислите общее давление над системой при всех заданных концентрациях. Постройте диаграмму зависимости парциальных и общего давления насыщенного пара от состава системы. Сделайте вывод относительно характера растворов, коэффициентов активности компонентов раствора, изменения объема при смещении и тепловом эффекте смешения. [c.211]

    Изменения фазового состава и структуры железоуглеродистых сплавов, то есть системы железо—углерод в зависимости от температуры при различном содержании компонентов в ней представлены на упрощенной (не учитывающей существование р - и 5-форм железа) диаграмме состояния этой системы (рис. 3.1). Буквенные [c.40]

    Изобары на Н—S-диаграмме воды в области жидкого состояния имеют форму логарифмических кривых, изогнутых в сторону оси Н. Это объясняется логарифмической зависимостью энтропии системы и небольшим увеличением теплоемкости воды при повышении температуры. На участке аЬ  [c.113]

    Этим двум степеням свободы отвечают температура и давление, поэтому рассмотрим Р—Т-диаграмму воды (рис. IV. 1). Линия ОК — зависимость температуры кипения воды от давления (давления насыщенного пара над водой — от температуры). Линия ОВ — зависимость температуры таяния льда от давления (давления системы—от температуры). Линия О А—зависимость температуры сублимации льда от давления (давления пара над льдом — от температуры). Тогда часть диаграммы между линиями [c.193]

    Изменения, происходящие с жидкостью при растворении в ней нелетучего вещества, отражаются и на ее фазовой диаграмме. Действительно, графики зависимостей температур фазовых переходов от давления смещаются на АР = f (Ха) (рис. V.5, штриховые линии). Кривая начала кипения раствора О К ровно на АР ниже кривой кипения чистого растворителя 0/<. Смещается, соответственно, и тройная точка диаграммы О, и кривая начала кристаллизации раствора О В. Неизменной остается лишь кривая сублимации, так как в кристаллическом состоянии система является гетерогенной и каждый ее компонент ведет себя независимо от другого. [c.211]


    Общий вид энтальпийной диаграммы представлен на рис. Х1П-7. Верхняя кривая дает зависимость энтальпии паров от их состава, а нижняя — энтальпии жидкости от ее состава. Равновесные составы и 1/1 на энтальпийной диаграмме, отвечающие температуре системы представлены точками и А , а прямая А А- , соединяющая эти точки, называется конодой. На графиках изотерм коноды располагаются горизонтально, а на энтальпийной диаграмме — наклонно под разными углами к оси абсцисс. Поэтому для удобства построений энтальпийную диаграмму обычно совмещают с графиком изобарных температурных кривых. Вертикальный отрезок между кривыми энтальпий паровой и жидкой фаз равен У— Г, т. е. скрытой теплоте испарения (конденсации). [c.241]

    Имея ряд кривых охлаждения сплавов различного соста[ва, можно построить диаграмму зависимости температуры начала выделения кристаллов от состава. На оси абсцисс откладывают процентный состав, считая длину взятого отрезка за 100%. Температуру откладывают на оси ординат. Такие диаграммы называются диаграммами состояния или диаграммами плавкости. Диаграмма состояния системы висмут — кадмий представлена на рис. 39, //. Точка Е соответствует эв гектике. Область в верхней части диаграммы над кривой АЕВ соответствует жидким сплавам всевозможного состава. Область ниже прямой СО соответствует твердым сплавам кадмия и висмута. При температуре ниже 140° С сплав любого состава будет застывшим. Поле ВЕО соответствует одновременному суш,ествованию твердого кадмия и жидких сплавов кадмия с висмутом. Поле ЛЕС соответствует одновременному существованию жидких сплавов и твердого висмута, причем содержание висмута в жидкой части сплава больше 60%. [c.193]

    Вещества, образующие пластические кристаллы, взаимно растворимы выше температур, при которых начинается пластичность. В некоторых случаях образуются почти совершенные растворы. На рис. 15 приведена диаграмма зависимости температуры точки плавления от состава для системы циклопентан — 2,2-диметилбутан (неогексан). Каждое из этих соединений ниже точки плавления имеет по два перехода. У циклопентана, который плавится при 179,7° К, точки перехода 122 и 138° К, а у неогексана, который плавится при 174,2° К, соответствующие точки 127° и 141° К-В обоих случаях оба перехода первого порядка. Легко видеть, что кривая солидуса нигде не идет ниже температур нижних переходов обоих соединений. Однако она проходит значительно ниже температуры верхнего перехода циклопентана. Кривая d представляет, как показывают калориметрические измерения [13], начало разделения фаз в твердом состоянии. Это разделение фаз соответствует нижнему переходу циклопентана. При таком переходе циклопентан в форме, устойчивой ниже точки низкотемпературного перехода (безвращательной), отделяется от смеси, пока его содержание в твердом растворе не достигнет примерно 70%. Следовательно, смеси [c.500]

    Драктически для определения температуры кипения жирных кислот двухкомпонеятной системы удобнее пользоваться диаграммой /—(X, У), т. е. диаграммой зависимости температур кипения и конденсации смеси от равновесного состава жидко-сти и пара низкокипящего компонента (рис. 4). [c.13]

    Фазовые состояния вещества отражаются диаграммами зависимости температуры устойчивого состояния фазы от давления в системе. Для воды изменение фазового состояния представлено более 14 полиморфными видами льдов [196], из которых при положительных температурах существуют льды V, VI, VII, VIII. Помимо основных областей существования указанных льдов экспериментально установлено, что фазовые границы одного льда имеют место и в области стабильности другого льда. Так, например, лед VI в равновесии с водой может находиться в области стабильного существования льда VII [197] и наоборот, что указывает на то, что тройные точки не полностью описывают фазовые состояния вещества. Таким образом, фазовые границы сосуществования аллотропной формы льда могут сдвигаться в области термодинамической устойчивости другой фазы льда в виде системы лед в воде как при положительных, так и отрицательных температурах. [c.63]

    На рис. 10 представлены взятые из статьи Кэммингса (С и т-mings, op. it.) диаграммы, зависимости температуры кипения от состава при постоянном давлении для системы O2-SO2. Одна из этих диаграмм построена дляГ 40 ат, другая для 90 ат Давление в 40 ат лежит ниже критического давления каждого из компонентов и вследствие этого зависимость получается непрерывная. Давление [c.644]

    На рис. 11 приведена диаграмма конденсированного состояния двухкомпонентной системы фенол - - дифенилолпропан . Это типичная диаграмма для систем с полной растворимостью компонентов в жидком состоянии и полной нерастворимостью — в твердом состоянии, с образованием инконгруэнтно (с разложением) плавящегося соединения. Кривые АЕ, ЕС и СВ показывают зависимость температур начала кристаллизации компонентов от состава системы. Кривая АЕ соответствует началу кристаллизации фенола, а кривая ЕС — началу кристаллизации аддукта. Если бы аддукт был стабильным, кривая продолжалась бы до точки М, соответствующей [c.131]

    Для построения полной диаграммы состояния трехкомпонентной системы нужна система координат из пяти взаимно перпендикулярных осей, по которым можно было бы откладывать температуру, давление, мольные объемы различных фаз и мольные доли первого и второго компонентов, входящих в состав фаз. Осуществить подобную диаграмму невозможно. Проекция этой диаграммы на четырехмерное пространство в осях температура, давление, мольные доли двух компонентов, тоже не может быть построена. Лишь после дальнейшего упрощения, приняв, например, давление постоянным, получаем возможность построить трехмерную диаграмму, отражающую зависимость состава и числа фаз в равновесных системах от исходного состава и от температуры при постоянном давлении. Мольные объемы при переходах от одной температуры к другой или при изменениях состава, конечно, тоже меняются, но на диаграмме в выбранных таким образом осях эти изменения не отражаются. [c.421]

    Если два вещества смешать друг с другом в определенных пропорциях и смесь нагреть до высокой температуррзг, то в подавляющем большинстве случаев образуется совершенно однородная жидкость, представляющая собой раствор одного компонента в другом. Некоторые системы дадут два жидких слоя взаимно насыщенных растворов, и только немногие будут совершенно нерастворимы друг в друге ми прн каких условиях. Это относится к таким веществам, которые не разлагаются до температуры плавления. Если такой раствор пли снлав охладить, то при некоторой температуре он начинает кристаллизоваться, так как растворимость веществ с понижением температуры, как правило, уменьшается. Природа и количество выпадающего вещества обусловливается природой и количественными соотношениями компонентов в растворе. Как и при всякой кристаллизации, здесь будет выделяться теплота кристаллизации, которая влияет на скорость охлаждения сплава. В некоторых случаях охлаждение может полностью прекратиться и температура смеси в течение некоторого времени будет оставаться постоянной. Таким образом, охлаждая определенный раствор, достигают неравномерного падения температуры в зависимости от нронсходящих в сплаве процессов. Если наносить на оси ординат температуру, а на оси абсцисс — время, то будут получаться кривые, иллюстрирующие процесс охлаждения. Вид этих кривых будет в высокой степени характерен как для чистых веществ, так и для их смесей различных концентраций. В процессе кристаллизации в зависимости от состава смеси могут выпадать твердые чистые компоненты, или твердые растворы. Кривые, выражающие зависимость температуры кристаллизации и плавления от состава данной системы, называются диаграммами плавкости. Эти диаграммы подразделяются на три типа в зависимости от того, какая фаза выделяется из раствора. К первому типу относятся системы, при кристаллизации которых из жидких растворов выделяются чистые твердые компоненты, так называемые неизоморфные смеси. Второй тип представляют системы, при кристаллизации которых из жидких растворов выделяются твердые растворы с неограниченной областью взаимной растворимости, так называемые изоморфные смеси. Третий тип системы, при кристаллизации которых из жидких растворов выделяются твердые растворы, характеризуются определенными областями взаимной растворимости. [c.227]

    Исключим пока случаи, когда компоненты растворимы один в другом в кристаллическом состоянии. В остальных же системах разбавленные растворы компонента В в А обладают температурами начала кристаллизации более низкими, чем л, и тем более низкими, чем выше концентрация раствора. Следовательно, зависимость температуры начала кристаллизации от состава представится какой-то кривой, исходящей из точки а и опускающейся к средней части диаграммы. Кривая, отвечающая температурам начала кристаллизации, носит название линии ликви- < дуса (т. е. жидкости) или просто ликвидуса. [c.339]

    Решение. Построим диаграмму зависимости давления от состава системы при постоянной температуре 313 К (рис. 20). На оси абсцисс отложим молярное содержание дихлорэтана в долях. На осях ординат отложим давления паров чистого дихлорэтана Яс,н4с1. и чистого бензола Рс,н,- Затем соединим прямой точки Яс.н. и Рс,н.с1, и проведем прямые линии, соединяющие начала Таким образом получили зави- [c.200]

    Р е щ е н и е. Построим диаграмму зависимости давления от состава системы при температуре 313 К (рис. 21). На оси абсцисс отложим молярную долю дихлорэтана в %. На осях Ьрдинат отложим давления паров чистого дихлорэтана с.н. с1, и чистого бензола Я2.н,-Затем соединим прямой точки Рс.н, и Яс.н.с , и проведем прямые линии, соединяющие начала координат с точками Рс.н.с , и Я ,н,. Эти линии показывают зависимость общего давления и парциальных давлений насыщенного с к4с1 пара над бинарной системой от состава при условии подчинения раствора закону Рауля. Нанесем на этот график точки, соответствующие экспериментальным значениям парциальных давлений компонентов, и суммы парциальных давлений. Из графика видно, что в пределах ошибок опыта раствор можно считать подчиняющимся закону Рауля, или совершенным раствором. По графику находим, что при давлении Р = 2,267" 10 Па кипеть будет раствор с молярной долей [c.210]

    В [4] предложен простой метод, с помощью которого коэффициенты теплоотдачи в бинарных системах можно рассчитать по данным для чистых компонентоа. Метод иллюстрируется на рис. 2. В его верхней части изображена диаграмма равновесия для системы А — В, пока-зьшающая зависимость мольной доли компоненты В в паровой фазе (у) от его мольной доли в жидкой фазе (х) при ностоянном давлении. На нижней части рисунка показана разность температур поверхуюсти иагрева Т .д, и парообразования Т ц1(х), соответствующая составу жидкости (х). Кривая Й) проходит через [c.415]

    В-оашЕ . 1шаико-химического анализа лежит изучение зависимости состава системы (или других 1Га 7аме1 рив СОО ГоЯнИЯ температуры, давления) от ее физических свойств (плотности, вязкости, электропроводности и др.). Найденные из опыта зависимости изображаются в виде диаграмм состояния состав — свойство. Для двухкомпонентных систем свойства откладываются обычно на оси ординат, а состав — на оси абсцисс. [c.181]

    В трехкомпонен+ной системе переменными величинами являются давление, температура и две концентрации. Обычно исследование трехкомпонентных конденсированных систем ведут при постоянном давлении. Зависимость свойств системы от трех переменных можно изобразить в виде пространственной диаграммы, которая представляет собой трехгранную прямоугольную призму. Основанием призмы служит равносторонний треугольник, характеризующий состав тройной системы, а высотой — температура. Вершины равностороннего треугольника соответствуют чистым веществам А, В и С (рис. 46). Все точки, расположенные внутри треугольника, выражают составы трехкомпонентных систем. Процентное содержание каждого из компонентов в системе тем больше, чем ближе расположена данная точка к соответствующей вершине. [c.195]

    Другой подход к корреляции данных подсказывается диаграммой для двойной системы (см. рис. 1). Кривая, представляющая константу равновесия как функцию давления для заданной температуры, может быть определена заданием критического давления. В работе [12] критическое давление в двойной системе было исиользовано для установления зависимости Ig К от Ig Р при полном отсутствии эксиеримен-тальных данных [12]. [c.101]

    На рис. VII. 2 представлена зависимость температуры кипения раствора от состава для той же идеальной системы СбНдВг— eHs l при атмосферном давлении. Эту диаграмму можно построить и теоретически, если известна температурная зависимость давления пара каждой из чистых жидкостей между их нормальными точками кипения. [c.89]


Смотреть страницы где упоминается термин Диаграмма зависимости температуры системы: [c.227]    [c.268]    [c.339]    [c.342]    [c.331]    [c.184]    [c.228]    [c.229]    [c.231]    [c.60]    [c.99]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Диаграммы системы

Температура системы

диаграмма рис температуры

зависимость от температур



© 2025 chem21.info Реклама на сайте