Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение золе растений

    Определение путем перманганатометрического титрования осадка нитрокобальтиата калия очень часто применяется при анализе минералов и силикатов [57, 140, 1331], почвы [2, 9, 23, 42, 105, 147, 197, 293, 316, 430, 431, 579, 703, 726, 1686, 1890, 2023, 2281, 2456, 2542, 2610, 2630, 2701, 2727, 2818, 2895], стекла [31], цемента [1417], магния и его сплавов [417], удобрений [1100, 2750], растительных объектов [622, 1669, 2701, 2899], золы растений [789, 957, 2023], пищевых веществ [2044], воды и рассолов [41, 83, 281, 1999, 2296], биологических объектов [43, 143, 259, 590, 778, 834, 1020, 1049, 1061, 1172, 1579, 1706, 1780, 1864, [c.71]


    Определение кобальта спектральным методом после извлечения в виде дитизоната [1464]. К раствору почвы (или золы растений) прибавляют 20 мл 40%-ного раствора цитрата аммония, устанавливают pH около 8,3 и экстрагируют раствором дитизона в хлороформе. Экстракт выпаривают досуха, растворяют остаток в хлороформе и переносят экстракт в стакан с 100 мл графита высокой чистоты и выпаривают раствор досуха, продувая в стакан воздух. Графит с концентратом примесей нагревают 15 мин. в муфельной печи при 450° С, извлекают из стакана, смешивают с 10 мг карбоната лития и определяют кобальт, медь, цинк спектральным методом..  [c.213]

    Моющее действие золы растений было известно древним грекам и египтянам за 2000 лет до н. э. А в X—XI вв. люди научились извлекать из золы серое гигроскопичное (притягивающее влагу из воздуха) вещество, которому дали название поташ (вероятно, от немецких слов ПОТТ — горшок и аш — зола). Раствор, получаемый после обработки древесной золы горячей водой, выпаривали досуха и прокаливали в горшках. Для получения поташа сжигали древесину только определенных пород — сосну, клен и березу. Но самой богатой поташом была зола подсолнечника. О количестве производимого и вывозимого за границу русского поташа, который славился высоким качеством, можно судить по сохранившимся записям в Книге икряной и поташной отдачи , относившейся к 1653—1654 гг. Иностранцам было продано в тот период 520 бочек поташа (около 418 т). Как называется этот ценный продукт в настоящее время  [c.248]

    При определении 25—100 мкг Mg/50 мл в присутствии 1—20 мг Са стандартное отклонение составляет 6 отн. %. Метод использован для определения магния в золе растений, в силикатах и известняках после отделения Ге, А1, Т1, Мп и Р. [c.161]

    Описано определение галлия в золе растений с использованием экстрагирования его хлороформными растворами диэтилдитиокарбамата, 8-оксихинолина и дитизона. После отгонки хлороформа и добавления растворов соли берил- шя (внутренний стандарт) и нитрата калия (буфер) смесь комплексов металлов озоляют, остаток растворяют в царской водке, выпаривают, растворяют в ЫС1 и наносят на угольный электрод В 1 г сухого растительного материала возможно определение 1 мкг Ga [1221] [c.191]

    Предел чувствительности определения для каждого элемента не является постоянной величиной и зависит от сложности спектра, источника возбуждения и дисперсии спектрографа. Для повышения чувствительности определения особо важных элементов имеется возможность подобрать соответствующие условия. Одним из способов, не изменяя существа метода, применить его для определения очень малых количеств веществ являются предварительные химические отделения. Так, например, можно в 500 раз повысить концентрацию следов некоторых элементов в золе растений, отделив их от основных компонентов, таких, как щелочные и щелочноземельные металлы и фосфор, осаждением оксихинолином Фракционная дистилляция в источнике возбуждения спектра также может быть использована как средство концентрирования искомого элемента с целью повышения чувствительности метода. При анализе урановых продуктов на содержание следов примесей анализируемую пробу переводят в окись, прибавляют окись галлия в качестве коллектора и отгоняют 33 летучих элемента прокаливанием в вольтовой дуге . В результате этого чувствительность определения повышается, достигая от нескольких миллионных частей до 0,1 %. Этот процесс в достаточной мере поддается контролю, чтобы его можно было использовать- для количественного анализа. [c.179]


    Серия работ, посвящённых спектрохимическому определению следов примесей в ряде объектов с использованием экстракционных методов, опубликована Полем. В частности, им описано определение циркония совместно с большим числом других примесей в водах [681] и золе растений [682]. [c.188]

    Для определения марганца в воде, в золе растений, когда железо содержится в небольших количествах, можно исполь- [c.153]

    Определение в биологических материалах, почвах, золах растений и т. п,  [c.249]

    Абсорбционный метод был применен при анализе зол растений и других биологических материалов а также легированной стали Приводим ход определения хрома в стали. [c.282]

    Определение в золе растений [c.287]

    Самуэльсон с сотрудниками [65 ] использовали анионит в цитратной форме для удаления ванадия [IV], железа [III], алюминия, меди (И), никеля и кобальта перед определением щелочноземельных металлов. Определение осуществляют в слабокислой среде на анионите, переведенном в цитратную форму обработкой избытком лимонной кислоты с последующей промывкой умеренным количеством воды. Важно, чтобы анионит не содержал слабоосновных групп. При высоком значении pH в колонке могут поглощаться щелочноземельные металлы. Если соблюдать соответствующие условия, то можно обойтись без добавки каких-либо комплексообразователей к анализируемому раствору, а также без обработки анионита лимонной кислотой после стадии поглощения. Анализируемый раствор просто пропускают через колонку и после промывки водой магний, кальций, стронций и барий определяют в вытекающем растворе. Метод применим для определения кальция в золе растений [67]. [c.317]

    За короткое время комплексометрическое титрование нашло широкое применение в различных областях аналитической химии. Наибольшее применение оно получило для определения кальция и магния, и не только в воде и в различных минералах, но также и в биологических материалах (в крови, моче), в золе растений, в лекарствах и т. д. Впервые этот метод в его ацидиметрическом варианте получил применение, как было уже указано, для определения общей жесткости воды. В следующих параграфах будет приведен краткий обзор методов, опубликованных до настоящего времени. [c.68]

    В воде и золе растений, в селене высокой чистоты примеси концентрируют экстракцией смесью дитизона с 8-оксихинолином в хлороформе с последующим спектральным определением 20—30 элементов в концентрате [39—42]. [c.176]

    Предложены способы определения золота в сурьме, гальванических покрытиях и золе растений с использованием графитового (тип П) и насыщенного каломельного электродов. [c.43]

    Определение золота в золе растений . Растворяют 0,05—0,1 г золы растения, хорошо растертой и прокаленной при 400—500 °С, в 5 мл смеси азотной и соляной кислот (1 3) в стеклянном тигле объемом 20—25 мл. Выпаривают раствор на водяной бане до состояния влажных солей, добавляя 2—3 кристалла хлорида натрия. Растворяют влажный остаток в 1 М соляной кислоте, переносят в мерную колбу емкостью 100 мл и доводят до метки той же кислотой. Затем продолжают анализ, как указано в методике определения золота в сурьме. [c.44]

    Починок X. И. Объемное определение меди-после выделения ее тиосульфатом. Завлаб., 1947, 13, № 8, с. 1012—1014. 5291 Починок X. Н. и Марченко А. П. Колориметрический метод определения магния в золе растений. Укр. хим. журн., 1951, 17, вып. 3, с. 417—422. 5292  [c.204]

    Метод может быть также применен для определения иодидов в X. ч. препаратах хлорида натрия, хлорида калия и пр., определения иода в воде буровых скважин, питьевых водах, почвах, золе растений и пр., а возможно также для изучения обмена этого микроэлемента в организме животных и человека. [c.326]

    Для определения магния и кальция в золах растений и почвах авторами работы [22] на базе монохроматора F-4 сконструирован двухлучевой спектрофотометр второй пучок проходит под пламенем через горизонтальную трубку, входящую в конструкцию удлиненной горелки прибор дает возможность измерить поглощение 0,3% чувствительность обнаружения магния и кальция сравнительно невысока — 0,005 и 0,8 мкг/мл соответственно. Исследование влияния различных катионов на атомно-абсорбционное определение натрия (интервал концентраций 1 — 100 мкг/мл) проведено в [23] установлено, что калий, магний, марганец и алюминий не мешают определению, но кальций и железо мешают отмечают также влияние со стороны марганца и алюминия при их совместном присутствии. Определение Na при избытке Са описано в [84]. Опубликованы атомно-абсорбционные методы определения Сг и Си в железе и сталях [24, 83] Fe в карбиде вольфра-228 [c.228]

    Исследователи неоднократно проводили параллели между содержанием микроэлементов в нефти и в организме животных и в растениях. Известно, что животные л растения способны накапливать отдельные элементы в количествах, в десятки и сотни раз превышающих их концентрацию в окружающей среде. В углехи-мии давно пользуются как доказательством растительного происхождения углей соотношением определенных элементов, характерным для золы растений, но никогда не встречающимся в природных минералах. Наличие в нефт1 многих элементов, характерных для растений и животных, тарже является доказательством их генетического родства. [c.222]


    К настоящему времени описаны условия атомно-абсорбционного определения 76 элементов в различных объектах сплавах, чистых металлах, нефтепродуктах, реактивах, почвах, золах растений, биологических жидкостях, водах и т. д. Метод высокоэкспрессен, характеризуется низкими пределами обнаружения — позволяет определять 0,1—0,005 мкг/мл примесей в растворе с погрешностью 1—4%. [c.36]

    Для определения марганца в воде, золе растений, если присутствует железо в небольших количествах, можно использовать в качестве реагента формальдоксим [28], [29]. Марганец (И) реагирует с фор-мальдоксимом в щелочной среде с образованием окрашенного в красно-бурый цвет соединения, /I 455 нм, е = 1,1 10 (см. рис. 52). В растворе образуется комплексное соединение марганца с соотношением компонентов 1 6 и состава [Мп (СН2М0)д] [29]. [c.171]

    Биогеохимия по-иовому осветила мн. стороны эволюции жизни на Земле, наметила пути практич. решения ряда проблем в биологии, медицине, с. х-ве, геологии. Напр., на биогеохим. исследованиях основаны методы поисков рудных месторождений (определение микроэлементного состава золы растений). Из осадочных пород, почв и вод выделено св. 500 орг. соед. углеводородов, фенолов, хинонов, гуминовых к-т, асфальтитов, аминокислот, углеводов и их производных, липидов, изопреноидов, гетероциклов и др. Раздел Г., исследующий орг. соединения горных пород и вод, иаз. органической Г., к-рая дифференцировалась на самостоят. иаправлениа, имеющие прикладное значение Г. нефти, Г. угля и т. д. Напр., из углей в пром. масштабах извлекают Ge, и и Ga, разработана технология извлечения РЬ, Zn, Мо, изучается возможность извлечения Аи, Ag и Hg. Перспективна также добыча Ре и А1 из золы углей. [c.522]

    Гравиметрический хлороплатинатный метод в разных модификациях применяется для определения калия в силикатах [37, 803, 883, 1346, 1750, 1751, 1905, 2626, 2802], стекле [31, 139, 2856], минералах [19, 20, 299, 1565, 1737, 1785, 1798, 1805, 1932, 2168, 2370, 2566], почвах [119, 138, 1458, 1866, 2168, 2283, 2386, 2604], природных водах [281, 792, 1377, 1754, 1774, 1791, 2647], удобрениях [615, 650, 910, 1097, 1137, 1139, 1177, 1240, 1254, 1293, 1429, 1555, 1583, 1661, 1665, 1736, 1790, 1791, 2033, 2114, 2187, 2217, 2255, 2386, 2452, 2715, 2721, 2761, 2794], растительных объектах [481, 573, 2187, 2494, 2940], золе растений [ИЗО, 1458 1574, 1798, 2723], биологических объектах [1188, 1334, 1500, 2158], солях калия и их растворах [41, 131, 348, 797, 1402, 1403, 1790, 2112, 2639, 2761, 2878], других материалах [50, 354, 1444, 1834, 2235, 2543, 2939] [c.39]

    Как правило, наблюдается, что кремнезем осаждается внутри тканей растения в аморфной форме. Тем не менее было сообщено, что в ряде случаев происходит осаждение и кристаллического кремнезема, хотя, правда, не существует способа определения того, не является ли такое осаждение следствием механических пылевидных включений кристаллического кремнезема. Умемото [77] утверждает, что при получении золы растений методом низкотемпературной плазмы фактически удается избежать термических эффектов. (Это позволяет устранить возможную опасность, появляющуюся при использовании сильных окислителей.) Умемото сообщил, что, хотя вначале кремнезем был [c.1020]

    Джекобе [1074] определял вольтамперометрически 5,0-10 — —2,50-10 г-ион л Аи анодным окислением золота, электролитически осажденного на электроде из угольной пасты. Электролиз проводят при +0,1 в (отн. н.к.э.) в течение 15 мин, анодное растворение выполняют при потенциале от +0,3 до +1,3 в, анодный пик наблюдается при +0,85 в. Фоном служит 0,1 М НС1. Метод позволяет анализировать смеси Аи + Ag. Предложен [535] инверсионный вольтамперометрический метод определения 10 —10 % Аи с применением электрода из угольной пасты. Метод заключается в электролитическом выделении золота при контролируемом потенциале +0,2 в на поверхности электрода в виде пленки на фоне 0,1—1,0 М НС1 в течение 15—30 мин с последующим растворением золота при линейно изменяющемся потенциале от +0,2 до + 1,3 б. Метод применен для определения 1-10 % Аи в сурьме 0,22—1,01% Аи в покрытиях на вольфраме и молибдене 0,32% Аи в покрытиях на вольфрамовой нити, намотанной на никелевую деталь (0,9—1,3)-10 % Аи в золе растений. Ошибка при определении 5-10 % Аи равна +12%. Позже этот метод применен [91] для определения 0,3 мкг мл Аи в полупроводниковых сплавах Sn — Au после разделения компонентов методом тонкослойной хроматографии. Фон 1 М НС1, потенциал предварительного электролиза +0,2 в, потенциал электрорастворения 0,2—1,3 в, время накопления 10 мин. Найдено 0,29+0,01 мкг мл Аи (и = 6, а = =0,95), коэффициент вариации 2,8%. Монин [1242, 1243] определял 25—500 нг мл Аи методом пленочной полярографии с накоплением. Золото выделяют в течение 5 мин электролизом на электроде [c.174]

    Мейнке [1225] отмечает высокую чувствительность активационного определения золота по сравнению со спектральными, фотометрическими и амперометрическими методами. Он более об ьективен, чем пробирный анализ, а при низких содержаниях золота (меньше 0,5—1 г/т) и более точен [321]. Эти обстоятельства в сочетании с быстротой и простотой метода способствовали его применению в контроле производства, при анализах золы растений, почв, пород и рудоносных кварцевых жил [328]. [c.190]

    При анализе почв и золы растений для устранения влияния РЬ и d вводят комплексон П1 [87]. В присутствии Fe(HI) анализ проводят на фоне щелочного тартратного раствора [221]. Фон состава 9 М NaOH + 6% маннита применяют для быстрого и высокочувствительного определения хрома в его сплавах с молибденом на полярографе переменного тока [93]. Потенциал полуволны r(VI) равен —0,65 в (отн. Hg-анода). Величина диффузионного тока восстановления r(VI) пропорционалвна содержанию хрома в растворе в большом диапазоне концентраций — от 0,1 до 200 мг л. Для навески 0,5 з пределы обнаружения хрома равны 0,005% при воспроизводимости 5% и 0,001% при воспроизводимости dz20%. Железо(ПГ) восстанавливается при —1,1 в и не мешает определению хрома. Однако его присутствие оказывает влияние на постоянство диффузионного тока. Так, при 1000-кратном избытке Fe(IH) диффузионный ток убывает через 45 мин. [c.54]

    По другому варианту можно определять кальций после осаждения его хлораниловой кислотой фотометрированием окраски раствора, полученного после растворения осадка хлоранилата кальция. Осадок растворяют в 5%-ном растворе комплексона III [815, 908, 1010, 1502] и фотометрируют розовую окраску при 520—530 [815, 1502] или 650 нм. В этих условиях определения не мешают даже 10 г Mg/д [1502]. Метод точен и результаты хорошо воспроизводимы [908]. Вместо комплексона III рекомендуют [1617] применять 50%-ный изопропанол, растворенный в 0,6%-ном растворе Fe lg. Розовую окраску затем фотометрируют при 480—500 нм. Метод, основанный па использовании в качестве реагента хлораниловой кислоты, применен при определении кальция в биологических объектах [815, 879, 908, 909, 1010, 1502, 1559, 1617] почвах [1383] почвенных вытяжках и золе растений [1143] растительных материалах [1580] пищевых продуктах [746] и воде [1131, 1143, 1164] глиноземе [1064]. [c.97]

    При определении магния в растительных материалах атомноабсорбционным методом [894] золу растений увлажняют 6 N HG1, на песчапой бане выпаривают почти досуха, растворяют остаток в 10 м.ч 6 N НС1 и разбавляют водой до 100 мл. Отфильтровывают небольшой объем и определяют в нем магннй атомно-абсорбционным методом. Условия определения приведены выше (см. Определение в карбонатных породах ), [c.207]

    Диэтилдитиокарбаминаты. Экстракционно-фотометрический метод с помощью диэтилдитиокарбамина (ДДТК) и различных органических растворителей применен для определения меди в алюминии и стали [279], сложнолегированных сталях [280], свинце и кабельных свинцовых сплавах [281], цирконии, цирка-лое-2 и в сплавах урана [282], металлическом уране [283], в присутствии кобальта [284], никеля и кобальта [285], в газовой саже [286], почвах и золе растений [287, 288], в сыворотке крови [289]. [c.248]

    Хуайт [36 э] определял свинец в сухом остатке после опрыскивания плодов, причем применял смесь из хлороформного раствора дитизона и водного раствора гща-нида калия, одновременно используемых в качестве растворителей. Холмс [45 ] определял в почве ионы РЬ2+ наряду с ионами Си2+, 2п2+ и Со +. В почве, а также золе растений определял свинец Вестергоф [38 ]. Геологические поисковые работы проводили Уэб и Мильмэн [50 ], Милки [52 , 522 ], а та клее Ловеринг, Соколов и Моррис [48 7]. Последние предложили полевой метод определения ионов РЬ2+ .  [c.306]

    Поль [53 ] спектрохимически анализировал воду, которую с этой целью последовательно экстрагировал при соответствующих pH различными органическими реагентами (диэтилдитиокарбаминатом, оксином и дитизоном). После выпаривания объединенных хлороформных экстрактов разрушают полученные комплексы хлорной или азотной кислотой, растворяют остаток в соляной кислоте, сбрызгивают полученный раствор на угольный электрод и снимают спектр в высокочастотной искре по Фейснеру. В качестве сравнительного электрода служит бериллий. Можно одновременно определить большое число элементов. Точность определений составляла 10—20%. Так как испытуемая вода содержала много железа, то последнее предварительно удаляли экстракцией эфиром из солянокислого раствора или комбинировали с экстракцией эфиром роданида. После удаления кремневой кислоты выпариванием с плавиковой и серной кислотами и выделения железа можно аналогичным образом определить около 20 элементов в золе растений [53 " ] [c.368]

    Определение марганца методом фотометрии пламени рекомендуют проводить в растворах 24, минералах ирудах Э сплавах цветных металлов 39, ферромарганце 5, ферритах сталей золе растений , вытяжках из почв в стеклах з цементе доменных шлаках , меди и сталии других объектах 8.и исключения помех рекомендуют определять марганец по методу добавок с учетом фона или же проводить предварительное ионообменное разделение  [c.285]

    Микрохимические определения различных металлов после их отделения от 5000-кратного количества фосфорной кислоты описаны И. Г. Лакомкиным [119]. Аналогичный катионообменный метод применяли для удаления мешающих фосфат-ионов перед полярографическим определением меди, цинка и марганца в золе растений [220] и перед определением меди, цинка и свинца в кровяной плазме п сыворотке [97]. [c.266]

    W. Н. Hinson, Spe tro him. a ta, 18, 427 (1962). Ионообменная обработка экстрактов золы растений для удаления анионов, создающих помехи при атомно-абсорбционном определении кальция. [c.217]

    Атомно-абсорбционный метод анализа характеризуется высокой чувствительностью, позволяющей определять некоторые элементы в концентрации 0,1—0,005 мкг1мл раствора и ниже, что оказывается для некоторых элементов выше, чем чувствительность эмиссионного спектрального анализа. Точность метода 1-—4%. Он отличается быстротой и простотой выполнения, доступностью и несложностью применяемой аппаратуры. Он быстро развивается и находит все более широкое применение в различных областях науки и техники для определения многих элементов. В настоящее время описано определение 76 элементов в разных объектах в сплавах, чистых металлах, в нефтепродуктах, в реактивах, почвах, золе растений, в биологических жидкостях, водах и др. Таким образом, атомно-абсорбционный метод применяется при решении самых различных проблем. [c.233]

    Кадмий сернистый окисляемость 2993 осаждение малых количеств меди с Сс13 345 переведение в растворимое состояние 4057 Кадмия ферроцианнды, физико-химич. анализ и применение в аналитич. химии 275 Казеин анализ 6466 определение в молоке 7647, 8397 жира в нем 6716 Какотелин, применение в объемном анализе 4570, 4571 Кал, анализ 6588, 7129 Кали едкое, приготовление из золы растений 2413 Кали-аппараты Винтслера, Гейслера, Либиха 1658 Калий, см. также щелочные металлы [c.363]

    Химимческий анализ следовых элементов в живом организме. XX. Определение меди в золе растений электролизом с контролем потенциала. [c.196]

    Атомно-абсорбционный метод использован для определения натрия в биологических материалах [9, 10], в золах растений и почвах [5, 11], в пищевых продуктах [5], в галофос-фатных фосфорах [12]. [c.138]


Смотреть страницы где упоминается термин Определение золе растений: [c.76]    [c.200]    [c.244]    [c.167]    [c.113]    [c.880]    [c.368]    [c.380]   
Аналитическая химия циркония и гафния (1965) -- [ c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Золь

Мер золит

золы



© 2025 chem21.info Реклама на сайте