Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пиролиз газообразных углеводородо схема

    Производство хлоропренового каучука на базе ацетилена в промышленном масштабе впервые в СССР было осуществлено на НПО Наирит . Ацетилен, получаемый из карбида кальция и пиролизом газообразных углеводородов, в результате каталитической димеризации превращается в моновинилацетилен (МВА), а последний путем каталитического гидрохлорирования — в хлоропрен. Продукт эмульсионной полимеризации хлоропрена выпускается в товарном виде как хлоропреновые латексы, или после выделения различными способами полимера из латекса в виде хлоропренового каучука. Укрупненная технологическая схема производства МВА приведена на рис. 30. [c.144]


    Из стадийной схемы пиролиза метана вытекает, в частности, что образование пироуглерода должно протекать через промежуточное образование газообразных углеводородов. Нами были поставлены специальные опыты [50], в которых графитовый стержень (диаметр [c.216]

    Целью процесса пиролиза является получение ароматических углеводородов и газа с высоким содержанием непредельных соединений (30—40%). В связи с внедрением каталитических методов ароматизации нефтепродуктов значение процесса пиролиза как источника получения ароматических соединений уменьшается, но возрастает его значение как способа получения непредельных газообразных углеводородов. Последовательность превращений углеводородов в процессе пиролиза может быть представлена следующей схемой  [c.62]

    Охлаждение потоков осуществляется за счет применения этиленового и пропиленового холодильных циклов с несколькими уровнями холода. Схема является достаточно гибкой и пригодной при переработке пирогаза широкого состава — от пиролиза газообразных и легких углеводородов до тяжелого жидкого углеводородного сырья. [c.781]

    На этой схеме изображена углеводородная цепь и указаны (пунктирными линиями) места расщепления молекулы. На ней видно, что молекула расщепляется на разные по длине части. Наряду с получением целевого продукта — бензина — образуются более легкие продукты расщепления — газообразные углеводороды непредельного характера. К наиболее легким углеводородам, как бы наиболее мелким осколкам, принадлежит интересующий нас этилен. Суммарное количество газов и содержание в них этилена зависит от условий термической обработки. При обычном термическом крекинге (температура 400—450° С) количество крекинг-газа от взятого нефтепродукта составляет 7%, а при каталитическом — около 20%. Количество этилена от веса всех газов составляет примерно 2%. При термической обработке нефти, протекающей при значительно более высокой температуре порядка 700° С (при так называемом пиролизе), выход газов доходит до 40%, а содержание этилена в них до 19—20%. [c.72]

    Расчет печи начинают с выбора типа и конструктивной схемы. Методика расчета зависит от назначения печи. Например, печи для получения этилена и других олефиновых углеводородов пиролизом газообразного сырья рассчитывают как аппараты для газофазных процессов. Печи пиролиза жидкофазного сырья, используют для получения как жидких, так и газообразных продуктов. Поэтому такие печи необходимо рассчитывать с учетом сложности образующейся газожидкостной системы. [c.123]


    В патенте /87/ описана схема установки для пиролиза (или коксования) твердых отходов, содержащих углеводороды (например, парафиновые отложения из нефтяных резервуаров, отработанные отбеливающие земли, отработанные катализаторы). Пиролиз производили в кипящем слое частиц песка, шамота, корунда или кокса при пропускании через кипящий слой дымовых газов с температурой 600-800°С. Продукт пиролиза охлаждали путем орошения углеводородной фракцией и затем разделяли на жидкую и газообразную части. [c.165]

    Состав жидких продуктов пиролиза обусловливает гибкость технологических схем их переработки. Так, из пироконденсата или легкой смолы в одном гидрогенизационном процессе в зависимости от спроса потребителя можно получать ароматические углеводороды или высокооктановый компонент автомобильного бензина. Особенность состава жидких продуктов пиролиза предопределяет и возможность их практически безотходной переработки, так как образующиеся газообразные и жидкие углеводородные фракции находят промышленное применение. [c.57]

    Высокая эффективность процессов тепло- и массообмена во взвешенном слое обусловили развитие работ по созданию установок пиролиза по этому принципу [69]. В настояш,ее время построена промышленная установка получения этилена большой производительности в одном агрегате (свыше 20 ООО т/го0 этилена) [70]. Схема установки приведена на рис. 53. Установка предназначена для переработки газообразных и жидких углеводородов, включая и сырую нефть. В качестве теплоносителя используется кварцевый песок, разделенный на фракции. Процесс осуш ествляется при разбавлении водяным паром. Установка работает следующим образом. [c.75]

    Это нашло подтверждение при дальнейшей разработке вопроса. В соответствии с таким вариантом разложения, — отмечал автор,—выделение водорода наблюдается необязательно [90, стр. 1587]. Дальнейшие исследования [91] в этом направлении привели к интересному экспериментальному наблюдению газовая смесь продуктов пиролиза циклогексапа содержала большое количество водорода (40%). В этом было принципиальное отличие от пиролиза к-гексана, который почти не давал водорода. Сущность такого различия становилась понятной из работ П. Д. Зелинского [109], показавшего, что кольца из пяти или семи атомов углерода цо прочности связи между атомами углерода и водорода в реакциях дегидрогенизации больше похожи на парафины, чем на гидроароматические углеводороды, и, следовательно, гидроароматические углеводороды в реакциях дегидрогенизации проявляют определенные черты ароматического характера. Поэтому разрыв связи между двумя углеродными атомами идет так же легко, как между С и Н. В пользу этого свидетельствовал и тот факт, что в газообразных продуктах разложения присутствуют этилен и метан. Д. Джонс предложил следующую схему реакции  [c.76]

    Перечисленные нефтепродукты содержат в основном реакционноспособные углеводороды, в частности ароматические и олефиновые, которые и являются мономерами для получения продуктов нефтехимического синтеза, в том числе и нефтеполимерных смол. Чаще всего процессы получения смол сочетаются с процессами получения мономерных или полимерных продуктов, а также нефтяных дистиллятов топливного или любого другого назначения, что позволяет создать комплексные схемы переработки нефти и способствует большей экономической эффективности производства. Основным процессом получения исходных продуктов, применяемых для полимеризации с целью производства нефтеполимерных смол, является пиролиз жидкого и газообразного нефтяного сырья. [c.33]

    На рис. 8 изображена схема регенеративной печи. Печь имеет небольшую топку 2 в середине камеры, а в полостях с обеих сторон насадку 1 и 3 в виде фасонных плиток из плавленной окиси алюминия, образующих сплошные каналы диаметром 6 м.м. После фазы пиролиза печь продувается паро 1 я в левую часть подается холодный воздух. Нагреваясь на насадке 1, возду> попадает в топочную камеру, где сжигает поступающее сюда холодное газообразное топливо продукты горения выходят с правой стороны печи и нагревают насадку 3. После нагрева, в регенератор 3 подается сырье, которое подвергается пиролизу. Проходя по регенератору 1 газы пиролиза нагревают насадку, а сами охлаждаются, зате.м система продувается паром и повторяется цикл разогрева в обратном направлении, т. е. оправа входит холодный воздух, нагревающийся на насадке 3, который сжигает топливо, а продукты горения нагревают насадку в регенераторе 1 и т. д. Таким образом, полный цикл состоит из 4-х фаз две фазы разогрева, две фазы пиролиза, протекающие с попеременным изменением направления. Печи этого типа обычно применяются для пиролиза газообразных углеводородов (метана, этана, пропана) с целью получения ацетилена, где образуете. также этилен. [c.46]

    Другой вариант оформления аналогичного процесса — пиролиз газообразных углеводородов в попеременно работающих горизонтальных печах, разработанных фирмой Wulf. Этот процесс получил в настоящее время распространение за рубежом. Печь состоит из двух одинаковых секций (правой и левой) с высокоогнеупорной насадкой. Цикл работы печи состоит из четырех фаз. Схема работы печи изображена на рис. IV.8. [c.180]


    Производство ароматических углеводородов на нефтеперерабатывающих и нефтехимических заводах непосредственно связано с общей схемой переработки нефти. На нефтеперерабатывающих заводах топливного направления основным процессом производства ароматических углеводородов является каталитический риформинг бензинов, на нефтехимических заводах — пиролиз газообразных п жидких углеводородов. Ароматические углеводороды могут быть получены на специальных установках, где они являются основным продуктом (наряду с ними получается компонент автомобильного бензина) и на установках, нредназначенных для одновременного получения ароматических углеводородов и высокооктанового компонента. В обоих случаях образуется водородсодержащий газ. [c.10]

    На рис. 37 представлена схема установки для пиролиза бензина (схема пиролиза газообразного сырья отличается тем, что водная промывка газов пиролиза заменена масляной и имеется первичная ректификация). Сырье подают насосом при 1—1,2 МПа в паровой подогреватель Т-1, где оно нагревается до 100°С затем сырье смешивают с водяным паром и двумя потоками подают в коллекторы, где поток разветвляется на четыре в каждом коллекторе. Пройдя часть труб конвекционной секции печи П-1, смесь паров бензина и водяного пара поступает в трубы реакционного змеевика. Газ выводят из печи при 840—850 °С и во избежание пиролитического уплотнения непредельных углеводородов подвергают быстрому охлаждению в закалочном аппарате А-1. Он представляет собой конденсатор смешения, куда подают водный коиденсат. За счет теплоты испарения конденсата температура газа пиролиза снижается до 700°С. Охлаждение на 140—150°С достаточно, чтобы за несколько секунд пребывания газа на участке от закалочного аппарата до котла-утилизатора Т-2 прекратить реакции пиролиза. Последующее снижение температуры происходит в закалочно-испарительном агрегате (котел-утилизатор), где тепло газов пиролиза используется для производства водяного пара высокого давления. [c.117]

    Нефтехим. произ-во начинается с получения первичных нефтехим. продуктов, частично поставляемых нефтепереработкой, напр, прямогонный бензин, высокоароматизир. бензины с установок каталитич. риформинга и пиролиза, низшие фракции парафинов и олефииов, керосин, газойль, мазут и выделяемые из них жидкие и твердые парафины. На основе первичных нефтехим. продуктов (гл. обр. непредельных и ароматич. углеводородов) производятся вторичные продукты, представленные разл. классами орг. соединений (спирты, альдегиды, карбоновые к-ты, амины, нитрилы и др.) на основе вторичных (и частично первичных)-конечные (товарные) продукты (см. схему). Жидкие, твердые или газообразные углеводороды нефти и газа (гл. обр. н-алканы) являются сырьем для микробиол. синтеза кормовых продуктов (см. Микробиологический синтез). [c.229]

    Нефтехимический потенциал промышленно развитых стран определяется объемами производства низших олефинов — этилена и пропилена. Вместе с ароматическими углеводородами, прежде всего бензолом, они формируют сырьевую основу промышленности органического синтеза. В настоящее время низшие олефины в мировой нефтехимической промышленности получают пиролизом газообразного и жидкого углеводородного сырья в печах трубчатого типа, который характеризуется практически предельными выходами целевых продуктов. Этому способствовали непрерывные усовершенствования процесса пиролиза, к основным из которых следует отнести создание и внедрение печей пиролиза с вертикально расположенным пирозмеевиком, что позволило осуществлять процесс в области малых времен контакта и высоких температур, а также включение в схемы печных блоков закалочно-испарительных аппаратов, обеспечивающих утилизацию тепла продуктов пиролиза с генерацией пара высокого давления, используемого для привода пирогазовых компрессоров [1]. Несмотря на существенное улучшение технико-экономических показателей процесса пиролиза в трубчатых печах, последний имеет ряд недостатков. Так, при переработке тяжелых нефтяных фракций ужесточение режима пиролиза обусловливает возрастание теплонапряженности поверхности реактора и требует использования более жаростойких материалов для изготовления пиролизных труб. [c.8]

    Применение газообразных углеводородов (этана, пропана, бутана) с целью промышленного получения этилена широко поставлено также в США. Например, известная фирма Келлог Компани по имеющимся в литературе сведениям (II] за последние несколько лет построила и пустила в действие в США, Англии, Италии и Канаде ряд установок по пиролизу газообразных и жидких углеводородов на олефины. По схеме Келлог компа-ни пиролиз углеводородного сырья проводится в пирозмеевиках в присутствии водяного пара. Продукты пиролиза по выходу из печи поступают в котел-утилизатор, который дает водяной пар в количестве, достаточном для удовлетворения всей потребности в нем процесса пиролиза, а также некоторое количество пара для привода компреоооров. [c.19]

    Работы Л. В. Талисмана [38, 40] и А. Н. Румянцева [41] посвящены опытно-заводской проверке высокоскоростного пиролиза газообразных парафиновых углеводородов. Принципиально отличается от всех других технологическая схема широлиза с циркулирующим теплоносителем, разработанная Б. С. Алиевым и Д. Н. Тменовым [42—44]. По этой схеме [c.42]

    Эти результаты дают основание для предположений, рассматривающих вероятный механизм реакции. Прежде всего, имеется дегидратация в пропилен. Из 0,66 моля изопропилового спирта образуется 0,18 моля пропилена и неучтенное количество воды. Так как метан единственный газообразный углеводород предельного ряда, то это указывает на инертность водорода по отношению к пропилену при 620°. Во-вторых, идет дегидрогенизация в ацетон. Данные показывают 0,24 моля водорода и 0,13 моля ацетона. Это различие в количествах ацетона и водорода объясняется тем фактом, что некоторое количество ацетона теряется, тогда как с водородом этого не происходит. Метод улавли ания водорода — почти количественный, не то что с ацетоном. Кроме того, некоторые количества ацетона могут дальше подвергаться пиролизу (в кетены и метан), а водород может образовываться при вторичных реакциях, а не только при рассматриваемых. В ретьих, наличие метана и ацетальдегида или окиси углерода указывает на расщепление до метана и альдегида. Количества альдегида не определялись, но 0,12 моля метана и 0,03 моля окиси углерода указывают на возможность образования при первичных реакциях метана и ацетальдегида по 0,09 моля и при последующем пиролизе ацетальдегида с образованием метана и окиси углерода по 0,03 моля. Однако, возможно, что часть метана получается и из другого источника, а именно при пиролизе ацетона, и кроме того, альдегид может быть получен при восстановлении кетена. Если 0,18 моля изопропилового спирта разлагалось по первой схеме, 0,24 — по второй, и 0,09 — по третьей, то все же остается разница в 0,15 моля от исходных 0,66. Возможно что это и есть то количество непрореагировавшего спирта, которое указывает Неф. Другие работы (не каталитические) с простыми вторичными спиртами, повидимому, не проводились. [c.148]

    Основное отличие схемы пиролиза жидких фракций от схемы пиролиза этана и других видов газообразного сырья — замена водной промывки газов пиролиза масляной промывкой и первичнш" ректификацией. Для очистки сконденсировавшейся из наро-газо-вой смеси воды (перед направлением ее па биологическую стаи цию) вместо отстаивания и флотации используют систему отпарки углеводородов в фильтрах, заполненных кольцами Рашига. )ти мероприятия позволяют осуществить тонкую очистку газов пиролиза и выделить ниро Конде ." ат. [c.24]

    Сырьем для получения нафталина служат высоко-ароматизированные фракции, выделенные из дистиллятов каталитического риформинга, крекинга, пиролиза и других продуктов и содержащие в основном бицикли-ческие ароматические углеводороды. В связи с тем что нафталин с парафиновыми и нафтеновыми углеводородами образует азеотропные смеси [12], температуру начала кипения исходного сырья обычно выбирают около 200° С. В сырье не должно содержаться трициклических ароматических углеводородов, в противном случае в продуктах реакции будет накапливаться высококипя-щий остаток. Поэтому конец кипения сырья для производства нафталина не должен быть выше 300° С. Другое требование, предъявляемое к сырью, — максимальное содержание производных нафталина при минимальном среднем молекулярном весе углеводородов во фракции. Однако получение высокоароматизированных фракций из нефтяных продуктов с малым содержанием парафиновых углеводородов не всегда возможно поэтому при проведении процесса гидродеалкилирования применяют специальные методы, позволяющие уменьшить деструкцию парафиновых углеводородов в газообразные продукты. Содержание сернистых соединений в исходном сырье также оказывает влияние на схему производства нафталина и на выбор метода гидродеалкилирования. [c.295]

    В связи с внедрением в промышленность процесса гидрокрекинга последний может быть введен в поточную схему завода для переработки газойлей прямой перегонки нефти, каталитического крекинга и коксования или же остатков. Один из возможных вариантов такой схемы применительно к высокосериистой иефти представлен на рис. 117. По этой схеме гидрокрекингу подвергается вакуумный газойль сырьем каталитического крекинга служит смесь тяжелого дистиллята гидрокрекинга, гидроочищенного газойля коксования и тяжелого рафината с установки экстракции. Поточная схема, изображенная на рис. 117, отличается от предыдущей большим разнообразием процессов для повышения октанового числа бензина использована установка изомеризации легкой головки бензина, предусмотрено разделение ароматических углеводородов на индивидуальные компоненты, в том числе на изомеры ксилола. С целью увеличения ресурсов ароматических углеводородов в схему введены установки каталитического гидродеалкилирования —для производства бензола из меиее ценного толуола и для производства нафталина из легкого газойля каталитического крекинга. На установке карбамидной депарафинизации вырабатывают зимние сорта дизельного топлива с этой же установки получают жидкий парафин —сырье для производства Луирыых кислот и других химических продуктов. Для увеличения ресурсов газообразных олефинов имеется установка пиролиза этана и бутана. В схеме широко используются процессы гидроочистки и экстракции. Большая часть гудрона идет иа получение кокса. Остальной гудрон идет иа п )оизводство битума, а часть [c.357]

    За последние 10—15 лет арсенал синтетической органической химии пополнился новыми методами, позволяющими получать разнообразные непредельные циклические углеводороды на основе газообразных и жидких продуктов пиролиза нефтяного сырья (см. схему). При этом, в частности, используются эффективные каталитические (гомо- и гетерофазные) процессы олигомеризации, изомеризации, диспропорциоиирования, селективного гидрирования. [c.9]


Смотреть страницы где упоминается термин Пиролиз газообразных углеводородо схема: [c.29]    [c.167]    [c.113]    [c.148]   
Химия технология и расчет процессов синтеза моторных топлив (1955) -- [ c.264 ]




ПОИСК





Смотрите так же термины и статьи:

Пиролиз газообразных углеводородо



© 2024 chem21.info Реклама на сайте