Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Некоторые методы выделения элементов

    IV. 14. НЕКОТОРЫЕ МЕТОДЫ ВЫДЕЛЕНИЯ ЭЛЕМЕНТОВ [c.106]

    Степень разделения зон элементов зависит от нескольких факторов, но в основном определяется выбранной смесью растворителей и предварительной обработкой бумаги. Считается, что в отсутствие образования хвостов , сильного расширения зон или других осложняющих явлений пятна полностью отделяются друг от друга, если ARf элементов > 0,1—0,2 для сравнительно коротких хроматограмм (20—25 см), но при удлинении пути подвижного фронта до 30- 0 см и более разделяться могут и пятна элементов с ARf = = 0,03—0,05. Это достигается обычно при помощи нисходящего или восходяще-нисходящего способа развития хроматограмм. Многие растворители удовлетворяют этим требованиям, так что разделение полной суммы, за исключением некоторых сочетаний (Ей—Gd, Dy — Y — Но), не вызывает затруднений. Далее хроматограммы идентифицируют, зоны отдельных элементов вырезают, затем сжигают или экстрагируют кислотами. Точность определения отдельных элементов при помощи колориметрического метода обычно 5—10% [279,369,9181 при комбинировании же с методами выделения рзэ из образцов точность определения уменьшается с понижением содержания элементов в сумме рзэ и при содержаниях 10% метод может стать уже полуколичественным [113]. В некоторых случаях можно учесть возможные потери рзэ при их выделении и очистке и ввести определенную поправку в конечный результат [86]. [c.116]


    Другие методы выделения аналитического сигнала. Для выделения заданного интервала энергий мо-г>т применяться фильтры. Действие рентгеновских фильтров основано на характерной зависимости поглощения рентгеновского излучения химическими элементами от энергии или длины волны (рис. 14.78). Поглощение монотонно падает с увеличением энергии излучения, причем плавный ход этой функции нарушается скачками поглощения, соответствующими потенциалам ионизации К-, Ь- и других оболочек атома. Подобрав подходящий материал и толщину фильтра, можно достаточно полно отделить регистрируемую линию от более жесткого излучения. Такие фильтры, использующие скачки поглощения, получили название краевых или селективных. Они представляют собой тонкие слои из различных химических элементов. На рис. 14.84 приведены кривые пропускания некоторых фильтров. Как видно из рисунка, молибденовый фильтр позволяет разделить К -линии 8 и С1, серебряный — излучение К и Са, титановый — отделить излучение Т1 и V от рассеянного излучения Мп, обусловленного К-источником Ре, никелевый — обеспечить раздельное определение Си и 2п, обычно совместно присутствующих в полиметаллических рудах. [c.19]

    При некоторых химических реакциях продукты легко выделить в чистом виде, но выход оказывается невысоким. Если перед проведением химических операций добавить к пробе известное количество того же вещества, содержащего радиоактивный изотоп, выделенная доля радиоактивного изотопа будет являться мерой степени выделения элемента из пробы. На этом принципе основан метод, известный под названием изотопного разбавления. . [c.115]

    В том случае, когда напряжение источника превышает потенциал осаждения нескольких компонентов, возникает проблема соосаждения. Если вторым компонентом является водород, то соосаждения не происходит выделение газа может влиять только на физические свойства осадка. Более того, выделение водорода может способствовать разделению. Например, при определении меди в латуни медь полностью отделяется от цинка при pH <5. Из рис. 13.7 следует, что медь осаждается из 0,1 М раствора, когда Ек имеет более положительное значение, чем -f0,31 В. Если концентрация кислоты также равна 0,1 М, то выделение водорода начинается при к=—0,66, т. е. при более положительном значении, чем для цинка. Однако между линиями, соответствующими выделению меди и водорода на меди (см. рис. 13.7), расположены линии многих элементов, например В1, РЬ и 5п, а ниже линии меди — линии Ад, Аи и т. д. Все эти элементы могут мешать определению меди. Некоторые из мешающих элементов можно отделить при помощи химических методов, другие — электрохимическим способом. Свинец, например, осаждают на аноде из азотнокислого раствора в виде РЬОг. [c.427]


    Другая не менее характерная область применения экстракционных методов выделения примесей — анализ неметаллов и элементов, суи ествующих в (щелочных) растворах в виде анионов Аз [442], 5е [1201], Те [906], Р [414, 440], XV [782] и некоторых других элементов. [c.277]

    Концентрированные растворы солей многих элементов не могут быть доведены до нейтральной реакции из-за гидролиза катиона и выделения осадков, что затрудняет применение некоторых методов разделения. При обработке растворов следует избегать введения реактивов, создающих нежелательный солевой фон. В частности, удалять избыток кислоты-растворителя нужно упариванием, экстракцией [1477], восстановлением (окислением) [867, 1273], а не нейтрализацией. [c.338]

    Применение новых методов в некоторых случаях позволило разработать быстрые методики выделения элементов. На выделение элемента с помощью таких методик требуется всего несколько минут. В результате оказалось возможным при радиохимическом варианте использовать для определения радиоактивные изотопы с периодом полураспада, начиная примерно с 2 мин. [c.11]

    Многие инструментальные методы могут быть усовершенствованы путем разумного использования химических методик. Так, например, выделение определяемого элемента или группы таких элементов из всей массы образца может часто повысить аналитическую чувствительность и точность. Особенно широко используется в атомной абсорбции метод экстракции элемента из водного раствора в органический растворитель. Этот процесс может иногда применяться благодаря большей растворимости некоторых неорганических солей в органических растворителях. В других [c.65]

    Состав и свойства нефтяных смол в сильной степени зависят от химической природы нефти, из которой они выделены, характера ее обработки и методов выделения их из нефти и нефтепродуктов. Так как разные исследователи имели дело с различными нефтями и нефтепродуктами и применяли для выделения из них смол весьма разнообразные методы, то вполне понятно и то различие в характеристике состава и свойств нефтяных смол, с которым мы встречаемся в работах,, опубликованных разными авторами. Смолы относятся к классу гетероорганических высокомолекулярных соединений, в состав которых входят, кроме углерода и водорода, кислород, сера, азот и большое число других элементов, в том числе металлов (Ре, №, V, Сг, Mg, Со и многие другие). Кислород и сера присутствуют в значительных количествах (от 1—2 до 7—10%) в смолах почти всех нефтей, тогда как азот является непостоянной составной частью нефтяных смол, хотя содержание его в смолах некоторых нефтей достигает 2% и больше. Смолы составляют от 70 до 90% всех гетероорганических соединений нефти, содержание которых в наиболее тяжелых высокосмолистых нефтях достигает 30—50%- По содержанию углерода (79—87 7о) нефтяные смолы почти не отличаются от асфальтенов, но они богаче водородом (на 1—2%), чем эти последние. В смолах сконцентрирована основная масса всех сернистых, кислородных, а в большинстве случаев и азотистых соединений нефти. В этом кроется причина высокой полярности и поверхностной активности нефтяных смол [191—195]. [c.362]

    При некоторых типах ядерных реакций (например, при облучении ядер элементов частицами высоких энергий и процессах деления тяжелых ядер) могут образоваться очень сложные смеси радиоактивны изотопов ряда элементов. Далее требуется их разделение и выделение в чистом виде как для изучения происходящих при этом процессов, так и для изучения свойств самих радиоактивных изотопов или использования их в качестве радиоактивных индикаторов. Приемы аналитической химии, используемые с учетом специфических условий (обычно приходится иметь дело с микроколичествами образующихся радиоактивных элементов), позволяют в ряде случаев проводить такие разделения с применением изотопных носителей или без них. Однако некоторые группы очень близких по свойствам элементов (редкоземельных, трансурановых и др.) обычными химическими методами разделяются весьма трудно. За последнее время эти задачи были успешно решены с помощью ионообменной хроматографии. Кроме того, оказалось, что часто ионообменными методами можно быстрее, проще и чище выделять и другие элементы, для которых обычно используются химические методы выделения. Поэтому в настоящее время разрабатываются хроматографические методы выделения многих элементов периодической системы. Преимущество этих методов состоит также в том, что в них отсутствуют явления соосаждений, захватов и т. д., причем чистые препараты можно получать в одном цикле. [c.384]

    Вследствие того, что часто неизвестны методы выделения этих групп элементов из общей сложной смеси, а также неизвестно поведение в этих условиях других элементов, эти методы имеют ограниченное значение для радиохимии, однако в некоторых случаях могут быть использованы для очистки радиоактивных элементов. [c.430]


    Способ концентрирования элементов переменной валентности в виде малорастворимых соединений на индифферентном электроде, очевидно, может использоваться как метод выделения ряда ионов из растворов выделение некоторых элементов в виде гидроокисей используется в аналитической химии. Представляет интерес также возможность электросинтеза соединений, содержащих органические группы. [c.162]

    Мы начнем наше рассмотрение с химии а-аминокислот, т. е. тех структурных элементов, из которых построены белки после этого мы обсудим проблему сборки аминокислот в полимерные соединения, рассмотрим некоторые свойства белков и в заключение кратко опишем методы выделения белков из природных объектов и методы их очистки. Более подробно структура белков рассматривается в гл. IV. [c.40]

    Такие радиоактивные элементы, как Ро, Кп, Ка, Ас, Мр, Ра, Ри и некоторые другие трансурановые элементы, имеющие более долгоживущие изотопы, впоследствии были выделены в весовых количествах, и исследование их химических свойств было продолжено и уточнено обычными химическими методами. Однако выделение, очистка и концентрирование этих элементов требуют применения специфических методов радиохимии. Точно так же радиохимические методы необходимы при работе с искусственными радиоактивными изотопами обычных элементов, а также с короткоживущими изотопами урана и тория. Поэтому изучение методов выделения, концентрирования и очистки радиоактив- [c.7]

    Кроме гидролиза, для выделения отдельных радиоактивных изотопов могут быть использованы и другие реакции в прикатодном пространстве, в результате которых получаются нерастворимые продукты. Некоторые элементы можно, например,, выделить на катоде в виде карбонатов, нерастворимых в среде прикатодного слоя, имеющей достаточно высокое значение pH. Таким образом, можно выделить в виде карбоната из водного раствора радий, если брать достаточно слабокислые растворы и пропускать через раствор СО . Однако результаты, полученные для случая водного раствора, плохо воспроизводимы, поэтому лучше работать с органическими растворителями. Хевеши пред-лоя ил метод выделения радия-f барий электролизом раствора их йодидов в пиридине с употреблением платинового катода [ ]. [c.446]

    Описаны методы выделения и определения редких элементов висмута, молибдена, вольфрама, селена, теллура, таллия, индия, галлия, германия, рения в различных технических материалах анализ полиметаллических руд, концентратов и некоторых других материалов. [c.29]

    В методе меченых атомов пользуются добавлением к Исследуемому стабильному веществу некоторого количества радиоактивного изотопа (естественного или искусственного) с известной удельной активностью, либо в виде простого радиоактивного соединения, либо синтезированного сложного соединения, содержащего радиоактивный изотоп. Так, например, чтобы узнать степень чистоты выделяемого из смеси элемента, в раствор добавляют радиоактивный изотоп, от которого проводят очистку. После разделения смеси проверяют, содержит ли выделенный элемент радиоактивную примесь. Измерив активность выделенного компонента и сравнив ее с массой введенного радиоактивного изотопа, можно определить степень его загрязнения. [c.279]

    Успешно также развивается амальгамная полярография с накоплением. Она позволяет определить содержание некоторых ионов порядка 10" —10 г/л. Этот метод основан на накоплении определяемого вещества на стационарной ртутной капле при катодной поляризации. Затем выделенный элемент анодно растворяют. Получают анодную полярограмму, при этом ток автоматически за- [c.425]

    Методы выделения плутония и нептуния из облученного урана основаны главным образом на явлениях соосаждения, экстракции и ионного обмена, где важное значение имеют процессы комплексообразования данных элементов в водных растворах. В этой главе кратко рассмотрены те методы выделения и разделения трансурановых элементов, в основе которых лежит применение комплексных соединений этих элементов. Некоторые из этих методов были испытаны только в лабораторных условиях, другие же нашли применение в пропессах разделения, проводимых в заводских масштабах. [c.198]

    В книгу включены методы определения лития, рубидия, цезия, бериллия, скандия, лантанидов, иттрия, ванадия, ниобия, тантала, молибдена, титана, циркония, гафния, урана, тория, вольфрама, рения, технеция, галлия, индия, таллия, германия, висмута, селена и теллура. Приведены важнейшие органические реагенты для редких элементов, маскирующие вещества, произведения растворимости некоторых малорастворимых соединений. Указаны методы выделения редких элементов экстракцией. [c.2]

    Принцип метода. Сущность метода состоит в том, что определяемое вещество в концентрации 10" —моль л некоторое время подвергается электролизу на стационарной ртуттюй капле при контролируемом потенциале, несколько более отрицательном (на 0,2—0,3 в), чем потенциал полуволны онределямого иона. Определяемый элемент при этом концентрируется в ртутно11 капле в виде амальгамы. Затем выделенный элемент анодно растворяют при потенциале, непрерывно изменяющемся от значения, при котором проводилось катодное выделение элемента на ртутн, до более положительных потенциалов (обычно до нуля). [c.164]

    Известны следующие методы, основанные на равновесии этих типов выделение определяемых элементов Б виде летучи соединений с кислородом, например воды, диоксида углерода, серы в виде 802 или 50з) выделение элементов в виде летучих соединений с галогенами, например отгон]<а АзС1з, СгСЬ, ОеСи, 8ЬС1з и др. выделение элементов в виде летучих соединений с водородом, например АзНз и др. метод газовой хроматографии, в котором некоторые неорганические вещества переводят в газообразное состояние, например кремний, германий, мышьяк, олово, бериллий определяют в виде летучих гидридов после их отделения от многих элементов, не образующих летучих соединений с водородом. [c.27]

    Лериоды полураспада и энергии излучения образовавшихся радиоактивных изотопов различны для отдельных элементов, в связи с чем можно достигнуть значительной специфичности определения. В одной навеске анализируемого материала можно определить большое число примесных элементов. Наконец, достоинством метода является то, что-нет необходимости в количественном выделении следов элементов—применение эталонов позволяет получить правильный результат даже в случае потери некоторой части определяемого элемента. [c.786]

    Существует и другой способ анализа, когда из анализируемого раствора облученной пробы выделяют только некоторую часть данного элемента М посредством введения такого количества реагента, которое недостаточно для полного связывания М в комплекс. Это так называемый субстехиометрический активационный анализ. При этом Лробу и эталон после их облучения переводят в растворы и прибавляют к каждому из них одинаковые количества носителей — нерадиоактивных солей определяемых элементов. Количество носителей должно значительно превышать количество определяемых радиоактивных изотопов. Далее вводят реагент (в недостатке), образующий соединение MR, которое можно отделить от всего анализируемого раствора каким-либо методом, например экстракцией. Затем измеряют активности выделенных экстрактов. [c.792]

    Изучено [338] отделение цинка от ряда элементов при помощи анионного обмена. 5—50 мг цинка в 2 н. НС1 полностью адсорбируются на 15-сантиметровой колонке, содержащей 3 з сильноосиовного анионита амберлит IPiA-400 (в С1-форме). При последующем пропускании 50 мл 2 н. НС1 практически весь алюминий, магний, медь, кобальт, никель, марганец, хром, трехвалентное железо, торий, цирконий, четырехвалентный титан,шестивалентный уран, бериллий и кальций находятся в элюате. Кадмий, четырехвалентное олово, трехвалентная сурьма и висмут ведут себя подобно цинку. Удерживается некоторое количество свинца и индия. Цинк, кадмий и индий элюируются водой и 0,25 н. азотной кислотой, которая также удаляет 20% олова и некоторое количество сурьмы, висмута и свинца. Если применять только воду, то на колонке упорно удерживается небольшое количество цинка. Описаны методы выделения цинка из растворов, свободных от индия и кадмия. [c.86]

    Преимуществом метода изотопного разбавления по сравнению с другими методами аналитической химии является возможность количественного определения содержания элементов при неполном выделении их из раствора или регистрации только некоторой доли содержания элементов в растворе [40, 447]. Для определения хрома очень выгодно использовать эту особенность методов изотопного разбавления из-за его неполной атомизации в пламени или при других способах атомизации, неполного перехода в плазму и медленной кинетики образования комплексных соединений Сг(И1). Наибольшее применение находит использование субсте-хиометрического принципа. [1016] в методе изотопного разбавления. Принцип субстехиометрии состоит в том, что выделение определяемого элемента из анализируемого и эталонного растворов производится добавлением равных, но меньших по сравнению со стехиометрией количеств реагента, что позволяет выделить рав- [c.63]

    Микроколичества серебра отделяют от ряда элементов и концентрируют их нередко другими методами. Известны методы выделения серебра соосаждением с металлическими никелем, свинцом, алюминием, палладием, элементным теллуром. В качестве коллекторов служат осадки карбоната кальция или фосфата кальция, иодид таллия и др. Для концентрирования серебра и его отделения от мешающих элементов рекомендуется применять многие органические соосадители. Описаны методы соосаждения серебра с применением в качестве коллектора дитизона, диэтилдитиокарбамината меди, га-диметиламинобензилиденроданина, ок-сихинолина, тионалида и некоторых других органических соединений. [c.138]

    Осаждение аммиакрм одна из самых обычных операций, применя- емых в анализе. Она проводится либо для определения осажденного соединения, весовым nj OM, либо для совместного отделения двух или -нескольких металлов от других металлов. Если эта операция выпол-ш ется для количественного весовОго определения, то ей должно предшествовать выделение кремнекислоты и отделение элементов группы сероводорода некоторые из, этих элементов также более или менее полно осаждаются аммиаком. Вследствие того, что предварительно удалить всю, кремнекислоту обыч ным методом невозможно, оставшееся небольшое, количество ее увлекается осадком гидроокисей, и эту кремнекислоту следует выделить и определить, как указано в разделе Кремний (стр. 955). Число металлов, осаждаемых аммиаком, очень велико. Ск>да входят алюминий, железо (III), хром, таллий, галлий, индий, редкозе- [c.102]

    Химические методы выделения металлов вызывают особый интерес. Весовое содержание кислорода в земной коре составляет 50%, и поэтому неудивительно, что многие металлы находятся в природе в виде соединений с этим высокоэлектроотрицательным элементом. Если металлы встречаются в природе в виде сульфидов, последние легко можно превратить в соответствующие окислы путем прокаливания на воздухе. Поэтому основной проблемой получения металлов является восстановление их окислов. В разд. 8.1. было отмечено, что движущей силой химической реакции является уменьщение ее свободной энергии. Эта величина, определяемая уравнением (8.6), зависит от температуры, если энтропия изменяется существенно. Наиболее удобным способом представления таких данных о свободной энергии является графический метод (Эллингем, 1944), в котором изменение в зависимости от температуры для ряда реакций (на 1 моль общего реагента) изображают на одной диаграмме. Все реакции в данном случае представляют собой восстановление окислов металлов, и поэтому общим реагентом является кислород. На рис. 9.1 приведена такая зависимость для некоторых наиболее важных металлов. [c.335]

    Осадитель добавляется до полного выделения из раствора неодима (контролируют спектральными методами). После отделения осадка при нагревании выделяют из раствора среднюю фракцию лантаноидов РЗЭ иттриевой подгруппы остаются в растворе. Следует иметь в виду, что сульфаты цериевых РЗЭ содержат всегда некоторое количество иттриевых элементов, т. е. фактически происходит только концентрирование и далеко не полное разделение. [c.303]

    Первая и вторая главы переведены без изменений. Третья глава дополнена описанием синергетических эффектов при экстракции, влияния температуры и соэкст-ракции. В четвертую главу введен раздел о распределительной хроматографии с обращенными фазами. Наибольшие дополнения сделаны в пятой главе. Некоторые разделы этой главы заново переработаны, и, кроме того, в нее включен ряд новых экстракционных систем. К последним в первую очередь относятся алкилфосфорные кислоты, которые за последнее время получили широкое применение для выделения и разделения редкоземельных и трансурановых элементов. В шестую главу включены избирательные методы выделения европия и цезия, дополнены методы для меди, скандия и церия. В приложении приведены новые данные о диссоциации и распределении органических реагентов. [c.5]

    Амальгамными ядами называют содержащиеся в соли и рассолах микропримеси хрома, ванадия, молибдена и некоторых других металлов, являющиеся катализаторами разложения амальгамы водой с выделением водорода, который попадает в хлоргаз в процессе электролиза по методу с ртутным катодом. Из-за крайне незначительной концентрации этих примесей (доли миллиграмма на 1000 г Na l) определение их обычными аналитическими методами весьма затруднительно. Однако с развитием хроматографии, методов выделения микроколичеств элементов путем соосаждения и экстрагирования, спектрографии, полярографии и других методов анализа улучшилась возможность определения этих примесей. Для анализа солей разработан метод определения некоторых тяжелых металлов после предварительного их выделения в форме дитизонатовЧ На хлорных заводах широко применяется простой газоволюметрический способ . Этот способ основан на измерении количества водорода, выделяющегося при контакте пробы анализируемого рассола или раствора испытуемой соли с амальгамой натрия  [c.194]

    Некоторые авторы выделяют группы ИК-анализаторов по степени монохроматичности излучения и по методу выделения спектрального интервала, в котором измеряется поглощение. Так, в монографии [8] промышленные анализаторы делят на три группы без диспергирующего элемента (недисперсионные), с диспергирую- [c.69]

    Методы, основанные на флуоресценции или на каталитйче-ском действии определяемого элемента также могли быть применены в некоторых случаях после обогащения, так как от часто имеют высокую абсолютную чувствительность. Такие методы, однако, менее ценны, чем спектрографические, так как при них иногда больше мешают посторонние элементы. При наличии хорошего метода отделения, позволяющего работать с большими навесками пробы, для конечного определения выделенного элемента можно применить колориметрические методы. Иллюстрацией к этому является упомянутое определение селена в почвах, при котором перегонкой можно легко выделить селен из очень больших навесок образца. [c.26]

    Следует упомянуть интересные работы Баяр с соавт. [28—30], разработавшими быстрые газотермографнческие методы выделения изотопов некоторых тяжелых и платиновых элементов. Правда, к хроматографически.м их можно отнести лишь условно, так как разделение происходит в пустой трубке, на которую накладывается отрицательный температурный градиент. В эту хроматографическую колонку потоком газа-носителя (который может быть одновременно и реагирующим газом) вводят пары соединений, образую-шиесл при проп скании газа Через облученное золото (в расплаве при )60°С). Выделяющиеся при этом различные соединения (ртуть в виде металла, рений, осмий и иридий — в виде окислов), проходя вдоль трубки, конденсируются в ней в различных температурных зонах. Вольфрам выделяют (газ-носитель—влажный Ог) в форме гидроокиси Ш02(011)2, цирконий и ниобий — в форме пентахлоридов из расплавленного хлорида серебра, а таллий выходит, по-видимому, в форме окисла ТЬО. Рений тоже в виде окисла образуется при разложении перрената аммония. [c.129]


Смотреть страницы где упоминается термин Некоторые методы выделения элементов: [c.47]    [c.637]    [c.47]    [c.302]    [c.342]    [c.233]    [c.12]    [c.167]    [c.199]    [c.2]    [c.73]   
Смотреть главы в:

Таблицы и схемы аналитической химии -> Некоторые методы выделения элементов




ПОИСК





Смотрите так же термины и статьи:

Выделения методы



© 2024 chem21.info Реклама на сайте