Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

стабильных ассоциаций фиг

    При образовании ГМЦ и отложении их в клеточной оболочке до появления там лигнина стабильная ассоциация или кристаллы не образуются. Это свидетельствует о том, что не только лигнин мешает образованию организованных структурных агрегатов ГМЦ, но что в данной среде сильно разветвленные нецеллюлозные иолисахариды, в том числе ГМЦ, не обладают способностью к образованию кристаллов или других межмолекулярных ассоциатов. Появление же лигнина в клеточной оболочке еще в большей мере изолирует молекулы ГМЦ друг от друга. [c.152]


    Данные по рекомбинации радикалов и атомов, являющейся реакцией третьего порядка, позволяют вычислить скорость обратного процесса, а именно скорость активации молекул при соударениях. Рассмотрим соединение двух активных компонентов А и В в стабильный продукт АВ. Если реакция достаточно экзотермична или продукт АВ имеет мало внутренних степеней свободы, механизм ассоциации сложный и должен включать действие третьего тела М. Реакция может протекать по следующим путям  [c.276]

    Ассоциация молекул мыла в растворе приводит к образованию коллоидных частиц — мицелл. Образование их обусловлено молекулярным сцеплением неполярных углеводородных радикалов молекул мыла, сродство которых друг к другу больше их сродства к воде (рис. 33, I). В ядрах мицелл образуется углеводородная фаза, в которой коллоидно растворяется часть полимеризуемого мономера (рис. 33, И). Эмульсионную полимеризацию обычно проводят в присутствии водорастворимых инициаторов, например перекиси водорода НаО,- В связи с тем, что на стабильность эмульсии и кинетику полимеризации в значительной мере влияет pH среды, в систему вводят буферные вещества (бикарбонаты, фосфаты, ацетаты), поддерживающие pH на определенном уровне. [c.456]

    Теория агрегации и модели в неводных средах строятся по аналогии с водным раствором и основываются на представлении о равновесии мономер — мицелла и величине ККМ. Однако анализ экспериментальных результатов, накопленный в последнее время, показал, что процесс ассоциации молекул ПАВ в неполярных средах имеет ряд особенностей, отличающих его от ассоциации в водной среде. Это — присутствие агрегатов при низкой концентрации ПАВ в растворе (10 —10 Л1) и непрерывность процесса агрегирования (стабильность агрегатов с малым числом мономерных единиц). Поэтому существование единственной концентрации, при которой образуются мицеллы, ставится под сомнение, что лишает смысла определение ККМ [c.358]

    Характерной особенностью асфальтенов является их склонность к ассоциации. По этой причине определения молекулярной массы асфальтенов разными традиционными способами дают сильно отличающиеся результаты [11]. Разные способы определения размеров ассоциатов асфальтенов дают тоже сильно отличающиеся результаты. Способность к ассоциации у асфальтенов обусловливают аномальные явления при течении нефти. Частицы асфальтенов в нефти окружены сольватным слоем из смол, ароматических и циклических углеводородов. В сольватном слое по мере удаления от частицы становится все больше алифатических углеводородов, так как имеет место постепенный переход к алифатическим компонентам, преобладающим в составе нефти. Сольватный слой является стабилизирующим фактором асфальтеновой частицы. Поэтому асфальтены, выделенные из нефти, способны самопроизвольно диспергироваться в ароматических и нафтеновых углеводородах. При большом избытке алифатических углеводородов происходит десорбция смол и ароматических углеводородов с асфальтеновых частиц и диффузия их в окружающую смесь углеводородов. Стабильность частиц уменьшается, они слипаются и выпадают в осадок. [c.83]


    Важно отметить, что степень ассоциации алкиллитиевых соединений в растворах остается постоянной в большом интервале концентраций и даже очень разбавленные растворы содержат ассоциа-ты. Олигомеры, таким образом, оказываются достаточно стабильными, Рентгеноструктурный анализ метиллития и этиллития [c.221]

    Золото(I), как известно, является сильным окислителем. В связи с этим синтез приведенных выше устойчивых к самопроизвольному редокс-распаду смешанно лигандных соединений золота (I) представляет особый интерес. В соответствии с одной из гипотез стабильность комплексонатов золота(I) предопределяется их строением [284, 699, 700] В случае однородных комплексов золота(I) с монодентатными лигандами окислительно-восстановительный распад проходит через стадию их ассоциации с последующей димеризацией лигандов- [c.372]

    Молекулярный ес молекулы инсулина равен 5732 [261, 270], но мономер "инсулина удается получить в растворе только в особых условиях, например в водном растворе хлоргидрата гуанидина [184], в органических растворителях [134, 251 и при низких концентрациях инсулина в растворах с малой ионной силой, когда белок имеет высокий суммарный заряд [116, 135]. По мере увеличения ионной силы раствора и уменьшения суммарного заряда постепенно происходит ассоциация мономера, приводящая в конечном итоге к образованию нерастворимого изоэлектрического осадка (pH 5,3— 6,1). Кроме того, при нагревании инсулина в кислом растворе образуется осадок, состоящий из ассоциации инсулиновых фибрилл, которые появляются также в 6 Ai растворе мочевины [335]. По-видимому, взаимодействие неполярных остатков — основной фактор, обусловливающий стабильность фибрилл, из которых, однако, удается регенерировать крл-сталлический инсулин путем обработки щелочью [334]. [c.176]

    Существенное значение имеет распределение звеньев ВА в цепи ПВС. Растворы сополимеров ВС и ВА с блочным расположением звеньев менее прозрачны и стабильны, так как блоки звеньев ВС способны образовывать прочные межмолекулярные водородные связи. В растворах статистических сополимеров эти процессы несколько заторможены вследствие того, что одиночные звенья ВА препятствуют образованию упорядоченной структуры, и требуется определенное время на перестройку конформации макромолекул. Распределение блоков и одиночных звеньев в сополимерах ВС и ВА, полученных омылением ПВА в этаноле, в наибольшей степени препятствует ассоциации макромолекул, что делает водные растворы этих сополимеров весьма устойчивыми при хранении [6, с. 80]. [c.112]

    Интересные данные получены при ФГ гемицеллюлоз, сорбированных на хлопковой целлюлозе [5]. Сорбирование проводили при нагревании хлопковой целлюлозы со щелоками от сульфатной варки березовой древесины. Образец содержал (%) пентозанов — 7, глюкоманнана — 0,5, лигнина — 0,5. В продуктах полного кислотного гидролиза образца обнаружено 7,4% ксилозы. При гидролизе ГМЦ ферментами растворяется только 0,5% глю-куропоксилана, сорбированного на хлопковой целлюлозе, что составляет 7,9% от общего количества ГМЦ в образце [5]. Можно предположить, что кроме включения иереосажденных ГМЦ в микропоры целлюлозы имеет место также стабильная ассоциация макромолекул целлюлозы и глюкуроноксилана. По-видимому, ФГ подвергается только незначительная часть сорбированного глюкуроноксилана, находящаяся на поверхности волокна и не входящая в ассоциаты. [c.232]

Фиг. 669. Схематические диаграммы стабильных ассоциаций при прогрессивном метаморфизме известняка загрязненного глиной, в гидротермальных и магматических условиях (Yoder в основном согласно Боуэну). Фиг. 669. <a href="/info/96413">Схематические диаграммы</a> стабильных ассоциаций при прогрессивном метаморфизме известняка загрязненного глиной, в гидротермальных и магматических условиях (Yoder в основном согласно Боуэну).
    О том, как очистка бензина от полярных соединений влияет на его химическую стабильность и такие физические свойства, как поверхностное натяжение, склонность к ассоциации, растворимость, упругость паров и гигроскопичность, см. статью Аллена [c.561]

    Обычные неорганические соли натрия и калия не растворимы в неполярных органических растворителях. Это верно и для солей неорганических анионов с небольщими органическими катионами, например для тетраметиламмония. Подобные аммонийные соли часто способны, однако, растворяться в ди-хлорметане и хлороформе. Более того, использование относительно больщих органических анионов может обеспечивать растворимость солей щелочных металлов в таких растворителях, как бензол. Например, диэтил-н-бутилмалонат натрия дает 0,14 М раствор в бензоле, для которого понижение точки замерзания неизмеримо мало, что говорит о высокой степени ассоциации. Подобным образом большие ониевые катионы (например, тетра-м-гексиламмония) делают растворимыми соли даже небольших органофобных анионов (например, гидроксид-ионов) в углеводородах. Ионофоры, т. е. молекулы, состоящие из ионов в кристаллической решетке, диссоциируют (полностью или частично) на сольватированные катионы и анионы в растворителях с высокими диэлектрическими проницаемостями. Подобные растворы в воде являются хорошими проводниками. В менее полярных растворителях даже сильные электролиты могут растворяться с образованием растворов с низкой электропроводностью это означает, что только часть растворенной соли диссоциирована на свободные ионы. Чтобы объяснить такое поведение растворов, Бьеррум выдвинул в 1926 г. гипотезу ионных пар. Впоследствии его гипотеза была усовершенствована Фуоссом [38] и рядом других исследователей. Ионные пары представляют собой ассоциаты противоположно заряженных ионов и являются нейтральными частицами. Стабильность ионных пар обеспечивается в основном кулоновскими силами, но иногда этому способствует и сильное взаимодействие с ок- [c.16]


    Известно, что главным фактором, определяющим растворимость различных соединений в паре, является их взаимодействие с молекулами среды. Степень взаимодействия зависит от электролитической характеристики растворяемых соединений. Степень диссоциации растворенного вещества сильно влияет на его ассоциацию с молекулами воды. К тому же диссоциация молекул воды на ионы Н+ и 0Н в надкритическом паре, начиная с плотностей около 0,2— 0,3 г/см , значительно выше, чем у жидкой воды. Имеются спектроскопические доказательства ассоциации воды с растворенными ионами и комплексами при высоких температурах и давлениях, которые достаточно стабильны и поэтому существуют также в надкритическом паре [Fran k Е. U., 1970]. [c.61]

    Основной причиной этих противоречий является способность асфальтенов, как и смол, образовывать молекулярные соединения — ассоциаты. Поэтому молекулярная масса смолисто-асфаль-теновых веществ в очень большой степени зависит от принятого метода анализа и условий эксперимента. Большое значение имеют также тип растворителя, его полярность, концентрация асфальтенов в растворе, температура и т. п. Надежные и хорошо воспроизводимые значения молекулярной массы асфальтенов получаются, например, при использовании криоскопнческого метода в растворе нафталина при температуре 80 °С (температуре плавления нафталина) и выше при концентрации асфальтенов в растворе от 1 до 16%. При этом молекулы асфальтенов практически не ассоциируют, и молекулярная масса стабильно равна от 2000 до 2500. Это значение подтверждено многими исследованиями последнего времени [42]. Определение молекулярной массы тех же асфальтенов методом мономолекулярной пленки бензольного раствора асфальтенов на воде приводит к значениям 50 000— 100 000 и более [19, с. 501 и сл.]. Вероятно, истинно мономолеку-лярного слоя асфальтенов при этом не получается и основную роль здесь играют крупные ассоциаты молекул. Таким образом, такие высокие значения характеризуют не молекулярную массу асфальтенов, а степень ассоциации их молекул в принятых условиях. [c.33]

    Хотя стабильность свободных радикалов в асфальтенах, безусловно, зависит от их ассоциации с дел окал изованными системами я-электронов, однако вряд ли правомерно считать, что такими структурами могут являться только конденсированные ароматические системы, так как при сильном замещении ароматических [c.283]

    Термины трехцентровое связывание и четырехцентровое связывание используются для обозначения конфигурации взаимного расположения донора и акцептора. Названия не совсем правильны и недостаточно полно отражают суть дела, но удобны и поэтому широко используются [136]. В то же время они устанавливают наиболее стабильный диастереомер и указывают на возможную главную структурную особенность, обусловливающую различия в стабильности двух диастереомеров. Приведенные проекции Ньюмена показывают, что в обеих моделях донорная молекула связывается с (5,5)-акцептором тремя водородными связями между NH-гpyппaми и эфирными кислородами макроцикла. Три заместителя (малый, средний и большой) у асимметрического атома углерода распределены в пространстве таким образом, чтобы свести к минимуму влияния стерических факторов. Модель четырехцентрового связывания включает дополнительное диполь-дипольное взаимодействие с эфирной группой в результате стэкинга ароматических колец донора и акцептора. Тем не менее модель трехцентрового связывания стерически более устойчива. Причина заключается в том, что введение заместителей в 3- и З -положения делает комплекс более громоздким, а систему более селективной, благоприятствуя реализации модели трехцентрового связывания. Другими словами, когда комплекс становится более тесным из-за увеличения стерической затрудненности донора или акцептора, комплексообразование становится более стереоселективным. Вследствие этого (5,5)-акцептор склонен к выбору в качестве донорной молекулы 5-изомера. Отношение констант ассоциации диастереомеров может доходить до 18. [c.271]

    Эти высоковязкие полярные компоненты остаточных топлив склонны к ассоциации, мицеллообразованию и коагуляции с выпадением осадков на стенки цистерн, трубопроводов, рабочие поверхности фильтров. Образование и накопление осзлкоп связано с составом, химической и термоокислительной стабильностью мазутов [c.172]

    Незамещенные лактамы селективнее соответствующих Л/-метиллактамов, что можно объяснить снижением положительного заряда на атомах азота вследствие 4-/-эффекта ме-тильной группы. Кроме то.го, незамещенные лактамы могут образовывать водородные связи типа N—Н. .. я-электро-ны ароматического или непредельного углеводорода, что приводит к увеличению селективности. Однако высокие коэффициенты активности бензола в незамещенных лактамах свидетельствуют об их низкой. растворяющей способности, что объясняется ассоциацией, образованием водородных связей между молекулами растворителей. Поэтому по сочетанию селективности и растворяющей способности, а также с учетом высокой термической стабильности Л/-метиллактамы — более эффективные разделяющие агенты по сравнению с незамещенными лактамами. [c.39]

    Ультрацентрифугированне - метод разделения и исследования частиц размером менее 100 нм (макромолекул органелл животных и растит, клеток, вирусов и др.) в поле центробежных сил. Позволяет разделять смеси частиц на фракции или индивидуальные компоненты, находить мол. массу и ММР полимеров, плотность их сольватов. Дает возможность оценивать форму и размеры макромолекул в р-ре (см. Дисперсионный анализ), влияние статич. давления на стабильность частиц, параметры взаимод. типа ассоциация - диссоциация макромолекул друг с другом или с молекулами низкомол. компонентов и ионами, влияние природы р-рителя на конформации макромолекул и др. [c.343]

    Физико-химические свойства смол среднечисловая молекулярная масса смол, определенная криоскопией в нафталине, колеблется от 600 до 800 ед. По данным ЭПР смолы отличаются парамагнетизмом (концентрацией стабильных свободных радикалов) до 10 -10 спин/г и повышенной склонностью к ассоциации, что свидетельствует о наличии в структуре полиаромати-ческих свободнорадикальных фрагментов, отношение С/Н составляет 0,60-0,83. По данным ИК, ПМР и ЯМР С смолы состоят из полициклических нафтеноароматических гетероатомных и карбоциклических структур, включающих цепочки алкильных заместителей и 0-, 8-содержащие функциональные группы. Асфальтены отличаются от смол повышенными молекулярной массой до нескольких тысяч, степенью конденсации нафтеноароматических ядер, содержанием серы и ванадия, парамагнетизмом до 10 спин/г. Существование свободных радикалов и замещенных нафтено-ароматических структур обусловливает высокую реакционную способность АСВ в процессах дегидрополиконденса-ции, сульфирования, галогенирования, хлорметилирования, гидрирования и в процессах их конденсации с формальдегидом, непредельными смолами, малеиновым ангидридом и т. д. Продукты химических превращений АСВ могут быть использованы как модификаторы битумов и сырье для производства эффективных сорбентов, ПАВ и электроизоляционных материалов. Кроме того, возможно применение АСВ для производства пеков, ингибиторов радикальных процессов окислительной деструкции полимеров, ингибиторов коррозии и т. д. В связи с проблемой рационального использования АСВ, определенную перспективу приобретает направление — получение концентратов АСВ путем глубокой деасфальтизации нефтяных остатков бензином (Добен-процесс). Продукты Добен-процесса могут быть использованы как стабилизаторы полимеров, сырье для углеродистых и композиционных материалов и т. д. [c.44]

    Скорость ассоциации макромолекул ПВС в растворе зависит не только От концентрации, но и от факторов, приводящих к снижению кристалличности полимера. Методом двойного лучепреломления в потоке, являющимся весьма чувствительным и структурным изменениям в растворе, исследованы влияние ММ, содержания ацетатных групп и способа получения ПВС на процесс структурообразования в его водных растворах [112]. При хранении молекулярнодисперсные растворы ПВС становятся коллоидными системами, содержащими надмолекулярные частицы, имеющие форму сплюснутого эллипсоида [ИЗ]. Число этих частиц, зародышей кристаллической фазы, увеличивается со временем, однако рост их числа замедляется с увеличением как молекулярной массы ПВС (вследствие меньшей подвижности макромолекул), так и содержания в нем ацетатных групп. В водных рас-тво )ах ПВС, полученных из ПВА с неполной конверсией мономера, процесс структурообразования протекает значительно слабее, чем в растворах ПВС, полученных иа ПВА с-полной конверсией. Стабильность растворов ПВС улучшается также при повышении температуры полимеризаций исходного ВА, что может быть объяснено увеличением содержания 1,2-гликолевых структур и коротких ветвлений. [c.112]

    Oh избирательно удаляется из 50S субчастицы обработкой смесью 1 М NH4 I с этанолом. Соответственно, такое удаление лишает 50S субчастицу ее стержня. В комштексе как белок L10, так и белок L7/L12 обладают сушественно большей стабильностью их глобулярных структур, чем в индивидуальном состоянии. Пентамерный комплекс может быть в лабильной ассоциации с еще одним белком —L11. [c.99]


Смотреть страницы где упоминается термин стабильных ассоциаций фиг: [c.51]    [c.290]    [c.240]    [c.154]    [c.283]    [c.65]    [c.154]    [c.283]    [c.163]    [c.59]    [c.262]    [c.495]    [c.90]    [c.115]    [c.74]    [c.274]    [c.83]    [c.94]    [c.504]    [c.603]    [c.20]    [c.54]    [c.537]    [c.114]    [c.220]   
Физическая химия силикатов (1962) -- [ c.669 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация



© 2025 chem21.info Реклама на сайте