Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы статистическая теория

    Слабым местом теории Ван-Лаара является допущение о равенстве размеров молекул растворителя и растворенного вещества. Мелвин-Хьюз разработал статистическую теорию бинарных растворов, которая с учетом различия в размерах молекул дает следующее уравнение для осмотического давления  [c.34]


    В развитии современных представлений о свойствах растворов электролитов и явлении электропроводности большую роль сыграли работы Д. Даниэля, И. Гитторфа, А. Фика, Ф. Кольрауша, С. Аррениуса, В. Оствальда, Я. Вант-Гоффа, В. Нернста, С, Серенсена, П. Вальдена, Я. Бренстеда, П. Дебая, Э. Гюккеля и Л. Онзагера. С. Аррениус (1887) сформулировал теорию электролитической диссоциации, которая предоставила возможность легко объяснить явления, связанные с ионными равновесиями в растворах электролитов. Теория Дебая и Гюккеля (1923—1925) позволила количественно описать свойства разбавленных растворов и явилась своеобразным триумфом статистической физики. [c.9]

    Как расчет термодинамических величин, отнесенных к молю раствора или компонента, так и развитие статистической теории требуют знания состава раствора, выраженного через мольные (л ,) или мольно-объемные (ср,) доли компонентов. Для расчета этих величин необходимо знать молекулярные веса компонентов, особенно полимера. Эта задача не проста. Для определения молекулярного веса Ма необходимо, как мы знаем, измерить кол-лигативное свойство предельно разбавленного раствора. Вследствие того что в растворах высокомолекулярных веществ имеют место большие отрицательные отклонения от закона Рауля, свойства предельно разбавленных растворов проявляются лишь при малых концентрациях растворенного вещества. Прн этих условиях такие коллигативные свойства, как понижение давления пара или понижение точки затвердевания, используемые для определения молекулярного веса, становятся настолько малыми, что их крайне трудно измерить. Только осмотическое давление таких растворов имеет достаточно точно измеримую величину (например, осмотическое давление 5%-ного раствора каучука в бензоле ( 2=4-19 ) равно 10 мм рт. ст.]. В связи с этим измерение осмотического давления растворов полимеров получило широкое распространение как метод определения молекулярного веса высокомолекулярных веществ в растворе. Точное измерение малых осмотических давлений проводится с помощью специальных, тщательно разработанных методик. [c.258]

    Поскольку теплота образования растворов высокомолекулярных веществ имеет второстепенное значение для определения термодинамических свойств этих растворов, статистическая теория их разрабатывается в основном для крайнего случая атермальных растворов (в которых ДЯр=0) с введением поправок, учитывающих небольшие тепловые эффекты и использующих теорию регулярных растворов. [c.255]


    Таким образом, классическая гидродинамическая теория электропроводности позволяет сделать )яд выводов, которые согласуются с опытными данными, предлагая их вероятное истолкование. В то же время вследствие упрощающих допущений, положенных в ее основу, эта теория не способна дать картину молекулярного механизма миграции ионов и выяснить природу его элементарного акта. Она не объясняет результаты многих наблюдений, иногда даже противоречит им, не позволяет провести количественные расчеты основных величин, определяющих перенос электричества через растворы электролитов. В этом отношении заметным шагом вперед была статистическая теория, сохранившая предположение о растворе как о континууме с неизменными свойствами, но принявшая в расчет существование межионного взаимодействия. [c.120]

    В настоящем курсе основное внимание будет уделено термодинамике растворов, которая в своей общей форме не зависит от сведений о молекулярной структуре растворов и о молекулярных взаимодействиях. В конце раздела даны очень краткие сведения о молекулярных моделях некоторых простейших классов растворов и некоторые результаты статистической теории этих растворов. [c.168]

    Лишь для неполярных веществ (главным образом—органических), растворы которых обнаруживают небольшие положительные отклонения от закона Рауля—Генри, удается построить полуколичественную статистическую теорию растворимости, согласно которой основным фактором, определяющим растворимость твердого тела в различных жидких растворителях, является разность квадратных корней внутренних давлений жидких компонентов. С ростом этой разности растворимость уменьшается (см. стр. 252). [c.232]

    Создание статистической теории электролитов является шагом вперед по сравнению с первоначальной теорией электролитической диссоциации Аррениуса. Она учитывает электростатическое взаимодействие ионов и позволяет количественно охарактеризовать зависимость коэффициентов активности ионных веществ в растворе и электропроводности этих растворов от концентрации при больших разбавлениях, [c.415]

    Расчет на основе статистических теорий растворов электролитов. Высказано предположение [21], что при любых концентрациях в растворе электролита происходит значительное экранирование взаимодействия заряженных частиц, которое приводит к быстрому убыванию потенциала с расстоянием, причем это убывание происходит тем быстрее, чем выше концентрация электролита. Рассматривая ограниченное число частиц, авторы пытались распространить полученные данные на всю систему в целом. [c.24]

    Физическая теория коагуляции электролитами Б. В. Депягина бази-руется на общих принципах статистической физики, теории растворов и теории действия молекулярных сил. Устойчивость или неустойчивость дисперсной системы в этой теории выводится из рассмотрения молекулярных сил и сил электрического отталкивания, действующих между частичками. При рассмотрении коагуляции коллоидных систем следует различать нейтрализационную коагуляцию, при которой потеря устойчивости происходит в результате разряжения коллоидных частичек и уменьшения их -потенциала. и концентрационную коагуляцию, при которой потеря устойчивости связана не с палением -потенциала, а вызвана сжатием диффузного двойного слоя. Большое количество электролита будет достаточно для понижения энергетического барьера, что обеспечит начало коагуляции. В этом случае начальная скорость коагуляции тем больше, чем больше было добавлено в золь электролита, а следовательно, чем больше был снижен энергетический барьер. Это область астабилизованного золя. Коагуляция, при которой не все столкновения частичек кончаются их сцеплением, условно названа медленной коагуляцией. Коагуляция, при которой все стол, но-вения кончаются слипанием, называется быстрой коагуляцией. [c.90]

    Термодинамические свойства смесей неэлектролитов являются предметом изучения теории жидких растворов. Основы статистической теории растворов были заложены в трудах академика [c.29]

    Статистические теории полиэлектролитов можно рассматривать как попытки применения подхода Дебая и Гюккеля к описанию поведения многовалентных ионов. Они включают расчет потенциала электростатического поля макроиона, имеющего заранее заданную конформацию. Обычно используют сферические или цепные модели макроионов, что означает применимость соответствующих теорий к определенным группам полиэлектролитов. При расчете потенциала в сферических моделях предполагают равномерное непрерывное распределение заряда или по поверхности, или в объеме сферы. В моделях жесткого стержня макроион рассматривают в виде цилиндра с зарядами, размазанными по поверхности или в объеме, или с дискретными равноудаленными зарядами. Предложены теории, в основе которых лежит модель случайно свернутой цепи с нанесенными на нее дискретными зарядами. Вокруг каждого фиксированного заряда создается ионная атмосфера, подобная существующей в растворе низкомолекулярного электролита с ионной силой, соответствующей кон- [c.51]


    Возможность образования ионной атмосферы вытекает из статистической теории электролитов. Распределение ионов в растворе следует рассматривать как промежуточное между беспорядочным распределением молекул в жидкости и упорядоченным распределением частиц в кристаллической решетке. Ионы в растворе в каждый данный момент времени распределены не хаотически, а в некоторой степени упорядоченно благодаря кулоновскому притяжению зарядов противоположного знака. В каждый момент времени вокруг любого из ионов формируется оболочка из ионов противоположного заряда — ионная атмосфера (рис. 6.1,а). [c.286]

    Из этого неполного перечня видно, как важны исследования химии поверхности неорганических и органических твердых тел и их межмолекулярного взаимодействия с компонентами различных сред. Эти исследования требуют объединения методов неорганического и органического синтеза с самыми современными физическими методами изучения структуры поверхности твердого тела и строения молекул. В кратком курсе лекций невозможно осветить все научные и прикладные аспекты химии поверхности твердых тел, ее модифицирования и влияния на межмолекулярные и химические взаимодействия с различными средами. В пособии рассмотрена хими/ поверхности адсорбентов, применяемых в газовой и молекулярной жидкостной хроматографии, и, соответственно, адсорбция из газовой фазы и жидких растворов при малых концентрациях, лежащая в основе селективности этих видов хроматографии. Эти проблемы исследованы как на макроскопическом уровне с использованием термодинамических характеристик адсорбции, так и на микроскопическом (молекулярном) уровне с привлечением молекулярно-статистической теории адсорбции и теории межмолекулярных взаимодействий. [c.7]

    Развитие количественной молекулярно-статистической теории селективности жидкостной хроматографии в различных полуэмпирических приближениях облегчается при использовании такого рода корреляционных зависимостей между определенными из хроматограмм константами Генри для адсорбции из растворо в и параметрами структуры молекул компонентов для данного адсорбента и данного элюента, а затем и при изменении химии поверхности адсорбента и состава элюента. [c.283]

    Молекулярно-статистические теории растворов, как и теории жидкостей, можно разделить на строгие и модельные. Цель первых и вторых — определение структурных и термодинамических свойств системы, но строгие теории исходят только из потенциальной функции межмолекулярного взаимодействия, [c.247]

    Расскажите о статистических теориях идеальных и неидеальных растворов неэлектролитов. Какие затруднения встречаются при определении регулярного раствора Каковы условия существования регулярных растворов  [c.298]

    Во второе издание, по сравнению с первым, внесены некоторые исправления и добавления. Последние оказались необходимыми для хотя бы очень сжатой характеристики существующих направлений в статистических теориях реальных систем. Так, в разделы, посвященные жидкостям и растворам, включено краткое изложение теории возмущений, без ссылки на которую невозможно говорить об успехах в исследовании жидкостей и растворов за последние годы. [c.4]

    Статистические теории растворов неэлектролитов интенсивно развиваются, и, несмотря на то, что объект очень сложный, в последние десятилетия в этой области достигнуты значительные успехи. Развитие теории происходит по нескольким направлениям  [c.398]

    В свете статистической теории Дебая и Гюккеля отмеченные выше трудности классической теории становятся преодолимыми. Так, в случае растворов электролитов при установлении равновесия между ионами и недиссоциированными молекулами в законе действующих масс должны фигурировать не концентрации, а активности  [c.293]

    Статистическая теория растворов [c.176]

    Существуют два пути построения теории сильных электролитов. Первый состоит в создании статистической теории, учитывающей электростатическое взаимодействие между ионами. Изложение такой теории приведено в гл. Х1П. Второй путь, как и в теории растворов неэлектролитов,основан на введении функции активности, эмпирически описывающей термодинамическое поведение реальных растворов. [c.215]

    Получили дальнейшее развитие исследования в области молекуляр-но-статистической теории других типов флюидных систем. Разработана модель для описания свойств водно-органических растворов солей, изучена растворимость кислых газов (НгЗ, СО2) в сложных растворителях (солевых растворах аминов), изучались системы полимер - мономер - растворитель. Для названных типов систем получены экспериментальные данные, подтверждающие теоретические выводы. Продолжались исследования нефтегазовых систем, разработана модель агрегации асфальтенов, определены некоторые факторы, влияющие на их осаждение. [c.110]

    Для статистической теории электролитов исходным является следующее положение ионы распределены в объеме раствора (в каждый данный момент) не хаотически, а в соответствии сзаконом кулоновского взаимодействия их. Из этого положения методом статистической физики найдено распределение ионов различных знаков вокруг каждого отдельного иона. Таким образом, открыто существование ионной атмосферы ионного облака), имеющейся вокруг каждого иона и состоящей из ионов противоположного центральному иону знака. Это статистически неравномерное распределение в пространстве электрических зарядов разных [c.403]

    Основы статистической теории поверхностного натяжения растворов были даны А. А, Жуховнцким. [c.363]

    Наиболее достоверные данные о дипольных моментах можно получить, если проводить исследование вещества в газообразной фазе при очень низких давлениях, когда расстояния между молекулами настолько значительны, что электростатическое взаимодействие между ними почти отсутствует. Из всех известных методов наиболее широкое распространение получили методы определения дипольных моментов, основанные на измерении диэлектрической проницаемости паров и разбавленных растворов полярных веществ в бездипольных растворителях. Большинство экспериментальных значений дипольных моментов получены при помощи этих методов, в основе которых лежит статистическая теория полярных молекул, разработанная Дебаем. [c.54]

    Авторами предлагались различные теории коагуляции электролитами. Сюда относятся химическая теория коагуляции (Дюкло), адсорбционная теория (Фрейндлих), электростатическая теория (Мюллер, А. И. Рабинович, В. А. Каргин). Однако все они по тем или иным причинам утратили свое значение и представляют сейчас только исторический интерес. В настоящее время общепризнанной является физич Ская.-теория коагуляции электролитами, базирующаяся на о5щих принципах статистической физики, теории растворов и теории действия молекулярных сил. Физическая теория [c.289]

    Как известно из статистической теории, коэффициенты активности компонентов бинарных растворов зависят от состава растворов, размеров молекул и от изменения свободной энергии AG, связанного с межмолекуля1рным взаимодей- [c.24]

    Расхождение современных статистических теорий наблюдается в основном в ходе функций распределения на малых расстояниях. Теоретический расчет потенциала взаимодействия частиц на малых расстояниях чрезвычайно сложен и не может быть пока проведен однозначно, так как на таких расстояниях наряду с чисто отталкива-тельными и кулоновскими силами существенную роль играют квантово-механические дисперсионные и другие силы. Кроме того, при уточнении поведения бинарной функции распределения на малых расстояниях между ионами (концентрированные растворы) необходим учет микроскопической структуры растворителя. [c.48]

    В связи с этим особый интерес вызывает построение статистической теории ионных растворов с использованием потенциала короткодействия произвольного вида. Согласно этой теории расчетное уравнение для коэффициентов активности представим в виде [c.56]

    Рассмотренный материал дает возможность поставить и обратную задачу по удерживаемым объемам охарактеризовать проявляющиеся межмолекулярные взаимодействия, причем не только с адсорбентом и с элюентом на поверхности адсорбента, но и в объеме элюента. Особое значение имеет установление неизвестных параметров структуры сложных молекул на основании измерений удерживаемых объемов для нулевой пробы (констант Генри для адсорбции из растворов, см. лекцию 14), т. е. использование жидкостной хроматографии для суждения о структуре молекул дозируемых веществ. Хроматоскопические задачи на основе констант Генри для адсорбции из растворов, определенных методом жидкостной адсорбционной хроматографии, встречают, конечно, значительно большие затруднения, чем при использовании констант Генри в газоадсорбционной хроматографии (см. лекцию 10). Эти затруднения связаны с тем, что молекулярно-статистическая теория адсорбции даже из разбавленных растворов еще не разработана. Однако из приведенных в лекциях 16 и 17 экспериментальных данных видно, что существуют определенные эмпирические связи между структурой разделяемых методом жидкостной хроматографии молекул и характеристиками их удерживания. Здесь необходимо прежде всего накопить надежные экспериментальные данные для молекул разной структуры в определенных системах элюент — адсорбент. В конце лекции 10 было отмечено, что даже качественный хроматоскопический анализ может представлять большой интерес. В случае же жидкостной хроматографии представляется возможность распространить его на большое количество сложных по структуре и поэтому мало изученных молекул. [c.332]

    Рассмотрены основы статистической термодинамики, приложения ее методов к различным физико-химическим проблемам, методы расчета термодинамических функций идеального газа по молекулярным данным и констант равновесия газовых реакций. Нзлагаются статистические теории реальных систем реальных газов, твердых тел, жидкостей, растворов. Рассмотрены только свойства макросистем в состоянии р.1Вновесия. [c.2]

    Во втором изданнн (первое вышло в 1973 г.) несколько шире освещены вопросы статистической теории реальных систем, в частности излагается теория возмущений для жидкостей и растворов. [c.2]

    Общие результаты в области строгих методов, полученные Майером и Мак-Милланом, Кирквудом и Баффом (40-е, 50-е годы), оказали существенное влияние на развитие теории разбавленных растворов. Большие успехи связаны с применением интегральных уравнений для функций распределения в растворах. В частности, найдено решение уравнения Перкуса—Йевика для смесей твердых сфер, получены численные решения уравнения для смесей леннард-джонсовских жидкостей. Эти результаты, важные сами по себе, оказали, кроме того, сильное влияние на развитие теории возмущений для растворов, поскольку теория получила удобные стандартные системы с известными свойствами. Данное обстоятельство, а также разработка эффективных, быстро сходящихся разложений обусловили очень большие успехи в теории возмущений для растворов (как и для жидкостей) за последнее десятилетие. По-видимому, теория возмущений является в настоящее время наиболее плодотворным методом в статистической [c.398]

    Современная теория электролитов, называемая еще статистической теорией электролитов, связана с именами Дебая и Гюкке-ля. В ней обращено особое внимание на то, что в растворах электролитов имеются заряи<енные частицы и что здесь поэтому действуют не только силы теплового характера, но и силы электростатические, вызванные присутствием заряженных частиц. Одна из основных причин, обусловивших трудности в классической теории, состояла в том, что в ней учитывались только силы теплового характера. Применение выражения pV=RT к растворам электролитов означало, что ионы в растворе обладают кинети- [c.290]

    Вообще говоря, в растворах реакция также должна идти через какое-то промежуточное состояние. Однако благодаря вазимодей-ствию с растворителем понятие активного комплекса усложняется и его можно применять только с осторожностью. Кроме того, основные уравнения активного комплекса выведены на основе статистических законов, которые обоснованы для газов. Статистическая теория жидкостей в настоящее время недостаточно развита, чтобы ее можно было с успехом применить к расчету кинетики химических реакций. Поэтому применение теории активного комплекса к реакциям в растворах носит в основном качественный характер, причем теория применяется главным образом в ее термодинамическом аспекте. [c.298]

    Вместе с тем постепенно обнаружилась условность распространения понятия фаза на микроскопические объекты. В связи с этим главный критерий, послуживший основой для выделеиия ВМС из колл-олдных оистем, — термодя намичесйая равновесность истинных растворов — перестал быть столь существенным, как это казалось ранее. Исследования растворов ВМС показали, что в них часто существуют агрегаты молекул и что идеальные растворы, полностью подчиняющиеся статистической теории растворения цепных молекул, довольно редки, В связи с этим закономер- [c.237]

    Вместе с тем постепенно обнаружилась условность распространения понятия фаза на микроскопические объекты. В связи с этим перестал быть столь с> ществеыным глг.вный критерий, послужиЕ1ший основой дня выделения ВМС из коллоидных систем,— термодинамическая равновесность истинных растворов. Исследования растворов ВМС показали, что в них часто существуют агрегаты молекул и что идеальные растворы, полностью подчиняющиеся статистической теории растворения цепных молекул, довольно редки. В связи с этим закономерности диалектики развития науки (отрицание отрицания) проявились в новых тенденциях сближения между теорией растворов ВМС, твердых полимерных веществ и коллоидных систем. [c.284]


Библиография для Растворы статистическая теория: [c.705]   
Смотреть страницы где упоминается термин Растворы статистическая теория: [c.291]    [c.49]    [c.165]    [c.237]    [c.284]   
Высокомолекулярные соединения (1981) -- [ c.494 ]

Высокомолекулярные соединения Издание 3 (1981) -- [ c.494 ]




ПОИСК





Смотрите так же термины и статьи:

Растворов теория растворов

Растворы теория



© 2025 chem21.info Реклама на сайте