Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись углерода при синтезе метанола

    Так как индивидуальные катализаторы требуют совершенно различных режимов восстановления, то невозможно дать единой прописи проведения этого процесса. Медные катализаторы восстанавливают при 180—200°, никелевые при 250—300°, кобальтовые при 400° и т. д. Однако в отдельных случаях, например для синтеза бензина из водяного газа, КЧ-контакты восстанавливают при 4.у0—500°. Восстановление проводят чаще всего чистым водородом, но иногда применяют для этой цели водяной газ, азото-во-дородную смесь, чистую окись углерода, пары метанола или этанола, смесь водорода с аммиаком и др. [c.52]


    Таким образом, диффузионное торможение обусловливается недостаточно быстрым отводом образовавшегося метанола. Скорость диффузии характеризуется эффективным коэффициентом диффузии метанола через катализатор. В связи с тем, что при работе со смесями окись углерода—водород—метанол требуется поддерживать температуру в установке выше температуры конденсации метанола в смеси, а также обеспечивать проведение точного анализа для определения содержания метанола в смеси, для получения сравнительной характеристики катализаторов синтеза метанола, приготовленных таблетированием при различном удельном давлении, сочли возможным определить эффективный коэффициент диффузии аммиака через эти катализаторы. Это сильно упростило методику, не внося значительных изменений в сравнительную диффузионную характеристику катализаторов. [c.58]

    Окись углерода, водород и другие непоглощенные газы отводятся через верхнюю часть абсорбера и используются в производстве аммиака или метанола как синтез-газ (см. табл. 2, стр. 11). [c.14]

    I — метанол + катализатор 1 — окись углерода III — продукты синтеза IV — отработанный газ V — раствор катализатора V/ — метанол VII — кислота-сырец VIП — товарная уксусная кислота X — кубовый остаток на сжигание. [c.270]

    В связи с увеличением производства метанола и высших спиртов намечен также рост производства синтез-газа, компонентами которого являются водород и окись углерода. Основным способом производства синтез-газа является каталитическая конверсия легкого углеродного сырья (главным образом природного и нефтезаводских газов), а за рубежом-парокислородная газификация тяжелых нефтяных остатков [5]. [c.3]

    Если требуется чистая окись углерода, ее можно выделить из водяного газа или из других содержащих ее газов обычными методами, в первую очередь сжижением с последующей ректификацией или селективной абсорбцией под высоким давлением растворами солей одновалентной меди, например аммиачным раствором формиата и карбоната меди [1]. Реакции получения смесей окиси углерода и водорода различного состава используют в промышленности для осуществления ряда важнейших процессов (синтез аммиака, производство синтетического метанола, гидрогенизация угля). [c.46]


    Синтез метанола можно комбинировать с синтезом аммиака для удаления из азото-водородной смеси окиси углерода, являющейся ядом. По одному из методов азото-водородная смесь с 4—5% СО подвергается сжатию до 1000 ат рабочего давления и при 300—400° проходит через 2—3 реактора с метанольными контактами, где 80 — 85% СО превращается в метанол. Остаточная окись углерода (около 1%) в другом реакторе количественно превращается за счет водорода азото-водородной смеси в метан, а вода вымораживается. В результате совершенно чистая азото-водородная смесь поступает на синтез аммиака. [c.715]

    Окись углерода является первоклассным сырьем для синтеза многих органических продуктов метанола, муравьиной кислоты, синтетического топлива, фосгена и т. п. В настоящее время окись углерода в виде генераторного, водяного и смешанного газов используется главным образом в качестве топлива, а также для получения водорода для азото-водородной смеси, применяемой при синтезе аммиака. Водород образуется при пропускании указанных газов в смеси с водяным паром над нагретым катализатором  [c.480]

    Как видно из приведенного состава газов, одновременно с ацетиленом получаются большие количества водорода и окиси углерода. Так, на каждую 1 т ацетилена образуется водорода в количестве, достаточном для производства 3—4 т аммиака. При электрокрекинге выделяется еще 50—100 кг сажи. Важно подчеркнуть, что газы термоокислительного крекинга содержат окись углерода и водород в соотношении, требуемом для синтеза углеводородов или метанола (1 т метана по этому методу дает примерно 230 кг ацетилена и 1160 /сг синтез-газа). [c.515]

    Синтез метанола из смеси, образованной 15,3% окиси углерода, 2,8% метана, 30,6% водорода, 51,3% азота Окись железа НОТ [c.54]

    Синтез метанола из окиси углерода и водорода температура 400°, давление ат Окись меди с окисью магния на 1 г-экв этих соединений добавляют 0,05 г-экв закиси кобальта в качестве добавок можно применять фосфат кобальта, борат кобальта, сульфид кобальта и селенид кобальта сульфид кобальта дает наиболее высокую конверсию окиси углерода в этиловый спирт сульфиды железа и молибдена менее активны, никель не активен 3301 [c.55]

    Синтез метанола из окиси углерода и водорода катализатор кратковременно нагревают (температура 1050—1150°), одновременно восстанавливая окись меди в медь (приготовленный таким образом катализатор устойчив в отношении механических воздействий) [c.56]

    Выходы. Суммарный выход ацетилена составляет 23% вес. на введенный природный газ. Отходящий газ содержит водород и окись углерода в соотношении примерно 2 1. Его можно использовать либо как топливо для реактора частичного окисления, либо как сырье для синтеза аммиака или метанола. [c.41]

    Хороший цинк-хромовый катализатор для синтеза метанола в то же время хороший для конверсии окиси углерода. Совершенно очевидно, что общим компонентом реакции здесь является окись углерода, реакционная способность которой управляется данным составом катализатора. [c.62]

    В процессах с суммарной рециркуляцией составы массы, возвращаемой в реактор, и массы, идущей на переработку, одинаковы. В процессе же с фракционной рециркуляцией перед возвращением реакционной смеси в реактор ее разделяют на фракции, и в реактор направляется одна из фракций смеси, другая идет на переработку. Например, при синтезе метанола по реакции СО + 2Н2 —> -> СНзОН смесь, выходящая из реактора, содержит три основных компонента метанол, окись углерода и водород. Эту смесь направляют в холодильники-конденсаторы, где метанол сжижается, а окись углерода и водород возвращаются обратно в реактор. [c.11]

    Многие нефтехимические заводы США используют в качестве исходного сырья природные газы, перерабатываемые в метанол, формальдегид, метил- и метиленхлорид и др. Кроме того, резко возросло, особенно за последние 7—10 лет, промышленное значение конверсии метана природных газов в окись углерода и водород для последуюш,его синтеза на их основе кислородсодержащих соединений спиртов, альдегидов, кетонов и других продуктов. [c.9]

    Для определения оптимальных условий синтеза метанола окись углерода смешали с водородом в отношении 1 2,5 при давлении 740 мм рт. ст. и температуре 30°С и полученную смесь пропустили через контактный аппарат. После реакции объем газов при температуре 300°С и давлении 1200 мм рт. ст. оказался равным объему газов до реакции. [c.131]

    Поэтому представляется целесообразным при осуществлении двухстадийного синтеза метанола смесь водорода и окиси углерода, получаемую конверсией метана и находящуюся под давлением 10—15 ат (при этом давлении проводится конверсия метана), подавать сначала на стадию гидрирования метилформиата без дополнительного сжатия. На этой стадии имеющийся в газе водород следует возможно полнее использовать, а отходящий газ, содержащий в качестве основного компонента окись углерода, сжимать до 50 ат и направлять на стадию образования метилформиата. При таком осуществлении процесса сжатию (до 50 ат) будет подвергаться всего около Vз газа, расходуемого на синтез метанола. [c.156]


    Синтез метанола может протекать также в нейтральных и кислых растворах ацетатов, если в них вводятся добавки сульфатов, хлоратов или перхлоратов [6, 7]. Кроме указанных продуктов в весьма незначительных количествах могут получаться этилен, метилацетат, окись углерода и другие вещества. [c.171]

    Переработка природного газа в ацетилен и синтез-газ, используемый для получения водорода. За последнее время промышленностью освоено получение ацетилена методом термоокислительного пиролиза метана. После отделения ацетилена смесь газов, содержащая в основном водород и окись углерода, используется в качестве сырья для производства аммиака, метанола и высших спиртов. [c.11]

    Окись углерода, применяемая в синтезе метанола, образует со многими металлами легко летучие жидкости — карбонилы  [c.77]

    Для получения синтез-газа, содержащего водород и окись углерода в объемном соотношении 2 1 (используют его для синтеза метанола), производят конверсию метана с водяным паром или с кислородом затем из с.меси удаляют двуокись углерода. Попутный нефтяной газ и газы нефтепереработки, состоящие из метана и этана с примесью пропана, можно также подвергать конверсии гомологи метана конвертируются легче, чем метан. [c.251]

    Равновесие синтеза метанола было также изучено Уэттбергом и Доджем [9] динамическим методом под давлением 170 ат при температурах от 259 до 329° С в присутствии цинк-хромового и цинк-медного катализаторов. Эта работа выполнена более обстоятельно по сравнению с цитированными выше. Равновесие было изучено как со стороны синтеза, так и со стороны распада. В газовой смеси, получавшейся в результате реакции, исследователи определяли не только водород, окись углерода и метанол, но и другие составные части смеси. [c.349]

    На рис. 8.11 приведена технологическая схема синтеза уксусной кислоты из метанола, освоенная в промышленном масштабе фирмой BASF в Людвигс-хафене. Процесс проводят с применением каталитической системы кобальт + + иод. Раствор катализатора в метаноле поступает в верх колонны синтеза 1, а снизу подается окись углерода. Синтез осуществляется при 250 С и 70— 75 МПа. Реакционная смесь из колонны синтеза поступает вначале в сепаратор высокого давления 2, а затем — в сепаратор низкого давления 3. Непрореагировавшая окись углерода из сепаратора 3 сиова возвращается в процесс. Жидкие продукты далее отделяются на колонне 4 от катализатора и подаются на ректификационную колонну 5. Раствор катализатора возвращается в колонну синтеза. С верха колонны 5 отбирается непрореагировавший метанол, а кислота-сырец подается в колонну 5, где выделяется товарная уксусная кислота. Кубовый остаток колонны 6 периодически отводится на сжигание. [c.271]

    Смис и Брантинг [6] исследовали равновесие реакции синтеза метанола при температуре 303,8° С и атмосферном давлении динамическим методом. В качестве катализатора эти авторы применяли окись цинка или смесь окиси цинка с окисью хрома. Равновесие исследовано с двух сторон, т. е. со стороны синтеза метанола из окиси углерода и водорода и со стороны метанола в последнем случае в реакционную камеру подавали газовую смесь, насыщенную парами метанола при 38° С, содержащую паров спирта больше, чем должно быть в равновесной смеси. Содержание спирта в равновесной смесп при атмосферном давлении и указанной выше температуре (303,8° С) было незначительным найденные численные значения констант сильно колебались средняя величина, полученная этими авторами, приведена в табл. 1. [c.348]

    При помош,и процессов конверсии кислородом или водяным паром из метана получают синтез-газ (СО На) — прекрасное сырье для дальнейшего органического синтеза, а также чистую окись углерода, водород и синтез-газ (2На а) для производства аммиака, являюш,егося исходным сырьем для выработки удобрений. Неполным окислением метана при низких температурах могут быть получены формальдегид, метанол, ацетальде-гид. При хлорировании лгетана в промышленных условиях образуются хлористый метил, хлористый ыетплен, хлороформ и четыреххлористый углерод. Нитрованием метана получают нитрометан. [c.15]

    В настоящее время из природного газа получакрт азотоводородную смесь для синтеза аммиака и так называемый синтез-газ (водород и окись углерода), используемый для синтеза метанола, а также различных альдегидов и кетонов методом оксосинтеза. [c.330]

    Промышленный синтез метанола основан иа том, что окись углерода в присутствии катализатора (окислы цинка и хрома) восстанавливается водородом до метилового спирта (Баденская фабрика Патар). [c.117]

    Актавный катализатор для синтеза метанола из окиси углерода и водо рода при повышенной температуре и давлении 150 ат, с выходом 200 —250 г метанола на 1 см катализатора в час готовят следуюнщм образом безводную окись меди хорошо перемешивают с большим количеством окиси цинка в пропорции 4 части окиси меди на 96 частей окиси цинка. Раствор солей цинка и меди, например нитратов или солей органических кислот, обрабатывают кипящим раствором щелочи, осадок фильтруют, высушивают и восстанавливают при обычном давлении водородом или окисью углерода при наиболее низкой температуре во избежание местных перегревов [408]. Метаноловый катализатор можно получить из углекислого цинка или двууглекислого цинка, применяя хромовую кислоту [216]. Окись цинка, катализирующая органические реакции, получается также путем введения смеси окиси цинка и окиси хрома в раствор азотнокислого аммония и нагревания этой массы [88]. [c.295]

    Синтез метанола под давлением 150 ат С0 + 2Н2== СН3ОН, выход 17,5% побочные реакции 2С0 == С + СОг СО-Ь ЗН, = СН4-1-НгО 2С0 + 2Н2 = СН4 + СО Перекись марганца, выход 5% Двуокись циркония 1 Двуокись церия [ выход 2% Двуокись у )ана ) Окись цинка (металлическое железо, никель или кобальт не пригодны для синтеза метанола, потому что хотя они часто и активны в реакции восстановления окиси углерода до метанола, но значительно ускоряют побочные реакции, ведущие к образованию угля, углекислого газа и воды) 141 [c.53]

    Синтез метанола температура 300— 425 , давление газа 178 ат, газ пропускают со скоростью 25 ООО л на 1 л контаета в час отношение окнси углерода к водороду 1 2 выход метанола 96,0—99,8% Окись цинка с окисью хрома отношение цинка к хрому 1 1 хрома не меньше 25%, цинка 8% катализатор теряет каталитические свойства при быстрой циркуляции газа катализатор лучше осаждать углекислым натрием из трехвалентного соединения хрома, чем из шестивалентного 2415, 3268 [c.55]

    Нет сомнения в том, что в недалеком будущем окись углерода и водород, а затем, видимо, углекислый газ и вода будут важными исходньгми продуктами юинтеза. Отсюда ясно то эначевие, которое приобретает теория каталитического синтеза на основе СО и Нг. Создание этой теории как части более общей теории органического катализа менее сложно, чем разработка теоретических вопросов, например каталитической гидрогенизации фульве-нов или других сложных молекул. Ведь на примерах синтеза метанола или этилена из СО и Нг легче разобраться в механизме реакций, чем на примерах превращения сложных веществ. Кроме того, до определенных пределов синтез из СО и Нг представляет собой процесс постепенного перехода от простого к сложному. Из этого следует, что разработка теоретических вопросов каталитического синтеза на основе СО и Нг явится предпосылкой к созданию более общих теоретических положений катализа. [c.203]

    Недавно был изучен [12, 124] синтез уксусной кпслоты нз метанола и окиси углерода в нрисутствии никеля, кобальта и железа. Полученные результаты показали, что галогениды никеля, кобальта и железа как катализаторы более активны, чем мета тлы нз галогеш Дов йодистые соли как катализаторы синтеза активнее бромистых и хлористых. Кроме того, установлено, что силикагель как носитель катализатора дает лучшие результаты, чем кизельгур, пемза или каолин. Магссимальную каталитическую активность имеет йодистый никель, осажденный на силикагеле. В продуктах реакции содержались только уксусная кислота, ее метиловый эфир, окись углерода, двуокись углерода, водород, метан и непрореагпровавшие снирт и окись углерода. Образования простых эфиров и углеводородных продуктов пе наблюдалось. [c.66]

    Исследовательские работы Баденской фабрики развивались дальше в направлении синтеза метанола. Заметные сдвиги в области синтеза высших спиртов произошли в 1923—1924 гг., когда Фишер и Тропш разработали процесс сннтол [13—16]. При этом процессе окись углерода взаимодействует с водородом под давлением 100—150 ат при температуре 400—450° в присутствии подщелоченной окиси железа. Продукт реакции представляет смесь спиртов, альдегидов, кетонов, кислот и других соединений. [c.142]

    Предварительная добавка метанола при синтезе высших спиртов приводит к результатам, практически совпадающим с подучаемыми при проведении реакции только с окисью углерода н водородом. Это утверждение справедливо и в тех случаях, когда исходный газ для синтеза высших спиртов содержит только окись углерода и метапол. Изобутапольпая установка И. Г. Фарбениндустри работает с рециркуляцией метапола, который учитывается в материальном балансе процесса как СО + 2Н2 [60]. Такой метод проведепия синтеза высших спиртов позволяет в соответствии с законом действующих масс направить реакцию в сторону увеличенного выхода высших спиртов по отношению к метанолу. Можно подобрать такие условия процесса, чтобы количество образующегося метанола было равно количеству его, превращающемуся в высшие спирты в результате последующих реакций. [c.165]

    Из ЭТИХ реакций первая, которая дает смесь окиси углерода с водородо1М в молекулярном отношении 1 3, может быть доведена почти до- конца при достаточно высоких тем пературах (около 900°). Получающаяся смесь окиси углерода и водорода может быть использована, после доведения соотношений обоих газов до соответствующей нормы, для синтеза метанола. С другой стороньг, там, где требуется получение чистого водорода, выгодно подвергать газовую смесь дальнейшей реакции с водяным паром [при низкой температуре (500°) в присутствии катализатора], чтобы Щревратить ОКИсь углерода в двуокись, согласно хорошО известному равновесию водяного газа  [c.311]

    Помимо использования в целях отопления (в форме светильного, генераторного, водяного или смешанного газа), окись углерода применяют для восстановления руд, рафинирования никеля (см. т. II), получения фосгена и безводных хлоридов металлов, например А1С1з. Однако наиболее существенно то, что в последнее время она является важным исходным продуктом для ряда индустриальных синтезов. Если смесь СО с Нг пропускать над подходящими катализаторами, то в зависимости от условий образуются различные продукты гидрирования. В то время как при обычном давлении гидрирование над никелевым катализатором приводит к синтезу метана, при применении других нодходяпщх катализаторов при обычном давлении могут образоваться смеси жидких углеводородов (синтез бензина), а при повышенном давлении,— либо смеси высших спиртов, альдегидов, кетонов и т. д., которые годятся в качестве моторного топлива ( синтол Ф. Фишера), либо этим путем можно получать метиловый спирт (метанол) (ср. стр. 470). [c.487]

    Кроме синтеза метанола и реакции Фишера — Тропша, окись углерода используют для получения фосгена и муравьиной кислоты. Фосген получают путем взаимодействия избытка окиси углерода с хлором в реакторе, заполненном активированным углем [c.88]

    В нашей стране наибольшие количества метана используются в качестве бытового газа. Применение метана для органического синтеза — одна из труднейших задач, так как метан наиболее пассивен из всех парафиновых углеводородов. Однако эта задача в настоящее время принципиально (а в ряде случаев н практически) разрешена. Метан может быть превращен путе.м термического крекинга или под действием тлеющих разрядов в зысокореакционноспособный углеводоро д — ацетилен. Можно каталитически окислить метан до муравьиного альдегида или муравьиной кислоты хлорированием метана могут быть получены хлористый метил, хлористый метилен, хлороформ, четырех-хлористый углерод, а нитрованием — нитрометан. Метан также используется для промышленного синтеза синильной кислоты. Важный путь использования метана — конверсия его в окись углерода и водород (исходная смесь для синтеза метанола, син-тина и синтола), протекающая при действии на метан паров воды при высокой температуре в присутствии катализаторов. Наконец, большие количества метана используются для получения сажи (термическое разложение метана на углерод и водород), В Советском Союзе этим путем ежегодно получают сотни тысяч тонн сажи, предназначенной в качестве наполнителя для синтетического каучука и для других целей. [c.32]

    В современной химической технологии за сравнительно короткий промежуток времени получил широжое развитие и применение целый ряд процессов, основанных на проведении газовокаталитических реакций. К таким процессам относятся, например, синтез аммиака из азотоводородной смеси, синтез углеводородов, метанола и других спиртов из различных газовых смесей, состоящих из Нг и СО, Н2О и СО, Нг и СО2. Исходным сырьем для промышленных газово-каталитических синтезов в органической и неорганической технологии являются прежде всего водород, окись углерода и азот. [c.9]

    Основными компонентами газовой схмеси, используемой для синтеза спиртов и углеводородов, являются водород и окись углерода, соотношение которых зависит от характера синтеза. Так, для синтеза 1 т метанола требуется около 3000 н.ад газа, не содержащего азота, при соотношении Н2 СО = 3 1. Для производства 1 т безводного изобутанола-сырца 50% изобу-тилового спирта, 7% пропилового спирта, 18% спиртов Се—Сю, 8% амилового спирта) необходимо 6000—6800 нм газа, также не содержащего азота, но при соотношении Нг СО = 2,15 1, На получение 1 г зтаеводородов по методу Фишера — Тропша на кобальтовом катализаторе расходуется 6800—7500 нм смеси Со и Нг. Таким образом, при производстве 300 т1 сутки сырых продуктов синтеза расходуется около 2100 тыс. нм СО и Нг, В процессе гидрогенизации 300 г битуминозного угля (в пересчете на безводное и безвольное вещество) для получения бензина (схМесь пропана с бутаном) требуется 485 тыс, нлг водорода. Эти количества газа очень велики даже по сравнению с производительностью наиболее крупных газовых заводов в. больших городах. [c.12]

    Указанный катализатор очень чувствителен к перегреву и действию ядов, поэтому содержание серы в газе не должно итревышать 2 мг/нлГ . Такая Степень очистки газа от серы яри условии, что органическая сера предварительно превращена в сероводород, достигается довольно легко (например, одновременно с абсорбцией СОг водой под давлением 10 ати). Другим очень сильным ядом для данного катализатора является карбонил железа, образующийся даже при температуре ниже 100° при соприкосновении с железом окиси углерода, находящейся под высоким давлением. Поэтому аппаратура для синтеза метанола, через которую проходит газ, сжатый в цилиндрах компрессора, Д0.ТЖНЗ быть изнутри выложена медью (желательно также применение дополнительного фильтра с активным углем). Вместо меди можно использовать кислотоупорную сталь, на которую окись углерода почти не действует. При хорошей очистке газа катализатор работает около 2 месяцев. [c.246]

    В состав контактных газов формалинового производства входят девять основных компонентов формальдегид (СН2О), метанол (СНзОН), вода (Н2О), двуокись углерода (СО2), окись углерода (СО), метан (СН4), кислород (О2), водород (Н2), азот (N2). Первые три компонента при охлаждении контактных газов образуют прозрачную бесцветную жидкость, это — конденсируемая часть контактных газов. Остальные компоненты газовой смеси в условиях синтеза остаются в газообразном состоянии — это инертные газы. Количество каждого компонента зависит от режима ведения процесса, а также от рецептурного количества [c.71]


Смотреть страницы где упоминается термин Окись углерода при синтезе метанола: [c.67]    [c.233]    [c.35]    [c.365]    [c.523]    [c.85]    [c.122]    [c.17]   
Технология связанного азота Синтетический аммиак (1961) -- [ c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Очистка газа от окиси углерода с одновременным синтезом метанола

Синтез кислородсодержащих соединений из окиси углерода и водорода. Производство метанола

Синтез метанола из окиси углерода и водорода

Технологическая схема синтеза метанола из окиси углерода и водорода

окиси синтез



© 2025 chem21.info Реклама на сайте