Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионная активность сред влияние на коррозию металло

    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    Ориентировочно можно утверждать, что более высокое содержание солей, а следовательно, и более высокое значение электропроводности среды, соответствуют более высокой ее агрессивности. Исходя из этого положения, в практике выявления коррозионного поведения подземных сооружений применяют метод определения удельного сопротивления среды для оценки ее коррозионной активности. Почвы при удельном электросопротивлении менее 10 ом -м относятся к высокоагрессивным, при удельном сопротивлении 10—20 ом-м считаются среднеагрессивными, а при 20 ом-м и более — малоагрессивными. Структура почвы оказывает существенное влияние на скорость коррозии, так как она определяет условия поступления кислорода. Поэтому общая потеря массы металла больше в песчаных грунтах, а проницаемость его больше в глине (рис. 8). [c.25]

    Коррозионная активность сред и влияние ее на коррозию металлов [c.17]

    Глава начинается с достаточно элементарного анализа проблемы ползучести и разрушения конструкционных сплавов под напряжением при высоких температурах и описания различных эффектов, наблюдаемых при воздействии внешней среды. Затем следует краткий обзор высокотемпературной коррозии и обсуждение многочисленных путей ее влияния на механические свойства сплавов, после чего уже непосредственно рассмотрены коррозионная ползучесть и разрушение материалов вследствие коррозии под напряжением. Следует отметить, что в данной главе рассматриваются процессы, протекающие при высоких температурах, как правило выше 0,5 Тт, где Тт — абсолютная температура плавления рассматриваемого сплава. Поэтому в круг обсуждаемых вопросов не входят такие сложные явления, как коррозионное растрескивание под напряжением, охрупчивание при контакте с жидким металлом или понижение сопротивления излому, вызванное поверхностно-активными веществами. По этим вопросам имеются авторитетные обзоры [8, 9]. [c.9]

    В среде фосфорных кислот коррозии и разрушению подвергаются многие металлы и сплавы, керамика, резина, пластмассы. Коррозионная активность фосфорных кислот с повышением температуры резко возрастает. Влияние увеличения концентрации неоднозначно. В области полифосфорных кислот агрессивное воздействие на ряд металлов существенно снижается органические компоненты замазок в этих условиях могут дегидратироваться и терять связующие свойства. Примеси, содержащиеся в фосфорной кисло- [c.191]

    Большое влияние на коррозионную активность атмосферы имеет продолжительность нахождения влажной пленки на поверхности металла. Поэтому на скорость атмосферной коррозии влияет ориентация поверхности стали, так как от нее зависят количества влаги и загрязнений, попадающих на поверхность металла. Опыт показьшает, что поверхность, расположенная под углом 45°, корродирует на 10-20% быстрее, чем вертикальная. Часто более интенсивно развивается коррозионный процесс на поверхности металла, обращенной к земле, чем на верхней поверхности. Скорость атмосферной коррозии зависит от массы металла и влияет на продолжительность выравнивания температуры поверхности металла в зависимости от температуры окружающей среды. Это в свою очередь определяет количество конденсирующейся влаги и время, в течение которого поверхность металла остается влажной после дождя или росы. [c.10]


    Технологические среды химических производств отличаются большим многообразием, различным сочетанием коррозионно-активных компонентов, и в каждом конкретном случае требуют своего решения. Поэтому в этой части книги будут рассмотрены общие вопросы — влияние конструктивных факторов на развитие коррозионных разрушений машин и аппаратов и некоторые виды газовой коррозии, которые приводят к специфическим деструктивным изменениям металлов и сплавов. [c.150]

    Растворы поваренной соли коррозионно-активны, причем активность растворов хлористого калия выше хлористого натрия. Корродирующее действие рассолов возрастает с понижением pH и проявляется в большей степени на границе раздела.фаз или при перемешивании растворов воздухом [74]. В щелочных средах в присутствии 0,05—0,1 г/л NaOH скорость разрушения металлов в рассолах резко снижается [75]. Особенно агрессивны рассолы, содержащие активный хлор. Коррозия трубопройодов и аппаратуры возрастает под влиянием токов утечки [76]. Для предотвращения коррозионного разрушения под влиянием рассола в сочетании с токами утечки принимают меры по антикоррозионной защите трубопроводов и аппаратуры. Применяют гуммированные трубопроводы и арматуру и стальные защищенные гуммировкой или футерованные плиткой емкости. [c.228]

    Представлены результаты изучения влияния сероводородсодержащей среды, поверхностно-активных веществ (ингибиторов коррозии) и напряженного состояния на коррозионное поведение основного металла и отдельных участков зоны термического влияния (ЗТВ) сварных соединений конструкционных сталей. [c.40]

    Коррозионно-активными составляющими золы твердых топлив являются соединения серы, щелочных металлов и хлора. Хотя их содержание в золе невелико, присутствие этих соединений в отложениях приводит к значительному увеличению скорости коррозии металлов по сравнению со скоростью коррозии в газовых средах, содержащих кислород. Поэтому, например, максимальную температуру поверхностей нагрева угольных котлов, изготовленных из перлитных сталей, ограничивают обычно значением 540—580 °С. Коррозионные повреждения при сгорании углей вызываются в основном сульфатами щелочных металлов, а при сгорании сланцев — хлоридами щелочных металлов. Обычно указывается на определяющее влияние двойных сульфатов ЫазРе(504)э и КзРе(504)з в процессах коррозии сталей в золовых отложениях, образующихся при сгорании углей. Двойные сульфаты образуются из сульфатов щелочных металлов (возникающих в процессе горения), а также из ЗОз и Р аОз. На стальных поверхностях происходит восстановление двойных сульфатов  [c.223]

    На практике часто имеют место случаи, когда детали работают в условиях одновременного воздействия циклических механических напряжений, повышенных температур и периодического контакта с коррозионной средой. Периодическая подача среды на нагретую деталь приводит к возникновению градиента механических напряжений, которые могут быть самостоятельной причиной усталостного разрушения металлов или, суммируясь с напряжениями от внешней нагрузки, — интенсифицировать процесс разрушения. Отрицательное влияние периодической подачи коррозионной среды связывают не только с возникновением термических напряжений, но и, по всей вероятности, с облегчением разрушения пассива-ционных пленок или продуктов коррозии на поверхности детали, что способствует более активному взаимодействию ее со средой. [c.107]

    Помимо наличия исходной неоднородности поверхности стали, для развития точечной коррозии необходимы условия, обеспечивающие устойчивую работу коррозионной пары активный участок поверхности (анод) —пассивная поверхность (катод). Устойчивая работа такой пары возможна в том случае, когда возникший точечный анод в данных условиях не пассивируется под влиянием анодного тока (что привело бы к полной пассивации всей поверхности и общему прекращению коррозии). Кроме того, пассивная поверхность, работающая катодом, не должна активироваться под действием установившегося катодного тока (что привело бы к полной ликвидации пассивности на всей поверхности стали и к развитию равномерной коррозии). Подобные условия обеспечиваются наличием, с одной стороны, активных ионов (С1 , Вг ) в растворе и, с Другой стороны, одновременным наличием в коррозионной среде кислорода или другого окислителя при не очень низких значениях pH раствора. Б этих условиях возникшая активная анодная точка станет развиваться преимущественно не в ширину (по поверхности), а в глубину металла. Это связано с тем, что остальная поверхность находится в стойком пассивном состоянии (за счет хорошего доступа кислорода или другого окислителя) и в глубине питтинга происходит некоторое местное подкисление среды (в результате протекания на дне питтинга анодной реакции и выпадения внутри образовавшейся полости вторичных гидроокисных коррозионных продуктов). [c.513]


    Результаты длительных и краткосрочных коррозионных испытаний конструкционной углеродистой стали в естественных водных средах свидетельствуют о существенном влиянии морских организмов на скорости коррозии сплавов на основе железа в морской воде. В начальный период экспозиции, пока обрастание макроорганизмами не привело к образованию сплошного покрытия, наблюдались очень высокие скорости коррозии (до 400 мкм/год). Продолжительность этого начального периода, тип и интенсивность обрастания, а также коррозионные потери в течение первого года экспозиции в разных местах могут значительно отличаться. К концу первых 1—1,5 лег экспозиции большинство исследованных образцов было покрыто толстым слоем морских организмов, участвующих в обрастании. Хотя состав этих естественных покрытий сильно изменялся в зависимости от географического положения места испытаний, все они оказывали существенное защитное влияние на стальные пластины. Защитные свойства естественных покрытий, образующихся при обрастании, значительно уменьшаются, когда они становятся достаточно толстыми (биологически активными) и препятствуют проникновению кислорода к поверхности металла. В этих условиях процесс коррозии контролируется сульфатвосстанавливающими бактериями, активными в анаэробной среде на поверхности металла, сохраняющейся благодаря самозалечивающемуся покрытию, возникшему при обрастании. Скорость коррозии стали приобретает стационарное значение, причем для различных мест эти значения очень близки. [c.453]

    О наличии межкристаллитной коррозии можно было судить только на основании металлографического анализа. Быстрый и простой метод определения межкристаллитной коррозии по появлению треищн при загибе образца на 90°. применяемый для хромоникелевых сталей, в случае высокохромистых сталей оказался не пригодным, так как даже без испытания в коррозионно активных средах пониженная пластичность и ударная вязкость основного металла стали Х25Т и особенно зоны термического влияния в сварных соединениях (табл. 3) часто приводят к появлению трещин механического происхождения. [c.77]

    Вторая часть справочника содержит данные о влиянии химически активных сред на некоторые физические, главным образом механические свойства материалов. По сравнению с имеющимся рбъемом информации о скорости коррозии количество публикаций по коррозионно-механическим свойствам материалов невелико. Предлагаемая сводка, суммирующая в какой-то мере опыт химической промышленности, является первой в справочной литературе попыткой объединения сведений о склонности сталей и сплавов к коррозионному растрескиванию и о влиянии различных сред на прочность и пластичность металлов, пластмасс и резин. Число сред, представленных в разделе, далеко не исчерпывает номенклатуры важнейших соединений, но все же позволяет получить сведения о таких промышленно важных явлениях, как сульфидное и хлоридное растрескивание сталей, щелочная хрупкость, водородная коррозия и охрупчивание, аммиачное растрескивание медных сплавов, изменение механических свойств неметаллических материалов под действием галогенпроизводных, аммиака, киС лот и т. д. [c.4]

    Стоимость защиты стали от коррозии в морских условиях очень высока, однако нередко эти затраты бывают отчасти излищними. Можно назвать две причины подобной перезащиты . Во-первых, объемный и непривлекательный вид продуктов коррозии, создающий впечатление значительного разрушения металла, хотя действительные скорости коррозии материала при продолжительной эксплуатации известны сравнительно плохо. Скорости коррозии, приводимые в литературе, получены, как правило, в краткосрочных испытаниях и представляют средние значения за весь период экспозиции. Известно, однако, что коррозия углеродистой стали в морских условиях обычно протекает очень быстро в начальный период, а затем выходит на стационарный режим, характеризуемый линейной зависимостью. Этот линейный участок зависимости коррозионных потерь от времени и определяет стационарную скорость коррозии — наиболее важный параметр для оценки срока службы стальной конструкции в морской воде. Во-вторых, чрезмерные защитные меры связаны с плохо изученным влиянием биологической активности среды на скорости коррозии металла. Сплавы на основе железа, по-видимому, в наибольшей степени подверл<ены воздействию морских организмов среди всех металлов, однако эти биологические факторы практически игнорируются коррозионистами. В классических курсах коррозии влияние биологической активности на коррозионные процессы либо не упоминается совсем, либо считается несущественным и изолированным явлением. [c.441]

    Результаты оценки противоусталостной эффективности масел на установке ЦКУ показывают, что масла гидрокрекинга и синтетические масла примерно вдвое уступают минеральным маслам, среди которых предпочтительнее нафтеновое масло. Как видно из табл. 2, химически и поверхностно-инертные минеральные масла повышают усталостную долговечность металла по отношению к воздуху за счет снижения механических напряжений в поверхностных слоях металла, лучшего отвода тепла, изоляции от коррозионно-агрессивных компонентов и влаги воздуха, тогда как большинство синтетических и гидрированные масла в сравнении с воздухом снижает усталостную долговечность стали за счет проявления поверхностной или химической активности на границе с металлом, стимулирования процессов зарождения и развития усталостных трещин. Критерием проявления поверхностной активности является полярность, диэлектрическая проницаемость жидкой среды, отражающая степень влияния эффекта Ребиндера. Вероятно, именно этот эффект определяет низкую противоусталостную эффективность полярных эфирных масел. Среди испытанных на установке ЦКУ присадок высокий противоусталостный эффект был отмечен для триксиленилфосфата, диэтаноламида, ионола, ингибиторов коррозии КСК, КП, АКОР-1. Отрицательное влияние на усталостную долговечность, как и в условиях фреттинга, показали химически активные противозадирные присадки. 5 целом результаты оценки эффективности масел и присадок в условиях фреттинг-коррозии и циклической коррозионной усталости во многом совпадают, что, как указывалось вьше, отражает близкий характер процессов, определяющих механизм действия смазочных материалов в условиях различных видов коррозионно-механического износа. В основе всех этих видов износа лежит процесс зарождения и развития трещин в металле, сопровождаемый образованием кислого электролита в вершине [c.49]

    Электрохимическая коррозия возникает при действии на контактирующие разнородные металлы электролитов, т. е. жидкостей, проводящих электрический ток, например растворов, солей, кислот и щелочей. Электрохимическая коррозия протекает не только при погружении в электролит металла, но и при хранении его в атмосферных условиях. На поверхности металлических изделий часто имеется тонкая и незаметная вооруженным глазом пленка воды (влаги). В пленке воды растворяются газы (хлористый водород, оксиды серы, азота и др.), находящиеся в атмосфере. Газы образуют с влагой на поверхности изделий соответствующие кислоты (серную или сернистую, соляную, азотную или азотистую и др.). Таким образом создаются условия для возникновения электрохимической коррозии. Коррозионная активность атмосферы зависит от степени загрязнения ее различными веществами. Так, в сельской местности алюминий коррозиирует в 100 раз медленнее, чем в промышленных районах, где загрязненность атмосферы пылью, особенно оксидом углерода, соединениями серы, оксидом азота, частицами угля, золы и другими веществами, значительно выше. Эти вещества образуют с влагой воздуха агрессивные среды, в которых металлические изделия из стали, изделия из дерева, кожи, ткани и других материалов разрушаются быстрее. Значительное влияние на коррозионную активность атмосферы оказывает также температура с повышением ее коррозия металлов усиливается. [c.6]

    Коррозионный износ можно снизить до минимума за счет использования специальных сталей и сплавов цветных металлов, коррозионноустойчивых в среде топлив. Качество топлив контролируется на коррозионную активность. Ограничивается в их составе содержание агрессивных соединений. Топлива относятся к неэлектролитам, следовательно, в отсутствии воды коррозия металлов электрохимического характера также незначительна. Особенно коррозионнопассивным является глубокоочищенное топливо, свободное от нестабильных углеводородов и примесей сернистых, кислородных и азотистых соединений. Как уже указывалось, окисление этих гетероорганических соединений, особенно при повышенно температуре и под влиянием меди и ее сплавов, приводит к образованию кислых продуктов, легко вступающих в химическое взаимодействие с металлами, главным образом, с цветными, содержащими медь. [c.185]

    Материаловедческий подход к решению проблемы повьппе-ния ресурса работы анодов электродуговых плазмотронов. Поскольку полностью подавить эрозию электродов электродуговых плазмотронов невозможно в принципе, а перечисленные выше инженернотехнологические решения достигают более или менее приемлемого ресурса работы только для катода, то, по нашему мнению, наиболее радикальным решением проблемы ресурса работы анодов электродуговых плазмотронов является материаловедческий подход — улучшение сопротивляемости анодного материала термическому действию электрической дуги и коррозионно-активному влиянию плазменной среды, особенно при наличие даже следовых количеств кислородсодержащих газов. Хорошо известен чисто металлургический прием при решении проблемы улучшения свойств материалов — легирование основного материала различными добавками. Этот прием развит и в данном случае разработана технология легирования меди некоторыми металлами, существенно улучшающими ее свойства [13. Например, легирование цирконием и хромом повышает прочность материала анода и его устойчивость к окислительной коррозии при высоких температурах. Легирование меди серебром также резко повышает стойкость материала анода к окислительной коррозии даже в том случае, когда плазмотрон работает на чистом кислороде. Перспективы данного направления пока далеко пе исчерпаны, имеются лишь отрывочные сведения, показывающие большие возможности метода легирования. Так, известно [13], что трубчатый медный электрод дугового плазмотрона, легированный 2 % циркония и имеющий диаметр 2,5 см, работал на токе 4500 А в воздушной среде в течение 200 часов и не разрушился. Для обычного анода, выполненного из меди, это было бы непосильной задачей. [c.90]

    Результаты обследования показали, что для всех рассмотренных котлов в зоне коррозии экранные трубы, как правило, активно омываются топочной средой. Эта зона характеризуется повышенными температурами металла труб и их внутренней удельной загрязненностью. Общий характер расположения зон активной коррозии говорит о влиянии на него близости факела крайних к экрану горелок топки как за счет возрастания температуры топочной среды в пристенной зоне, так и за счет увеличения подачи к поверхности труб коррозионно-активных компонентов топочных газов. Как правило, зона активной коррозии экранов располагается в топке на уровне ядра факела, на наиболее теплонапряженных участках панелей труб. Измерения падающих тепловых потоков через штатные лючки на боковом экране НРЧ и по ширине верхнего ската экрана котла ТПП-210 свидетельствуют, что как в нредтопке, так и в открытой части экранов имеют место высокие тепловые нагрузки. По данным Ю. Г. Дашкиева в открытой части экранов в сечении пережима уровень тепловых потоков примерно одинаков для бокового и заднего экранов. [c.118]

    Интенсивность коррозии усиливается при наличии в водной среде, кроме сероводорода, хлоридов, оказывающих дополнительное агрессивное воздействие. Авторами [39, 125] получен экстремальный характер зависимости скорости коррозии от концентрации КаС1 с максимумом при 100 г/л. Они объясняют это конкурентным влиянием обусловливающих скорость коррозии факторов (разрушение пленки продуктов коррозии под действием хлоридов блокирование активных участков поверхности металла хлорид-ионами при их высоких концентрациях, затрудняющее протекание электродных процессов уменьшение растворимости коррозионно-активного сероводорода при переходе к концентрированным растворам хлористого натрия). [c.18]

    Статья Бигоса дает солидный обзор по практике защиты в США. Он высказывает некоторые не совсем обычные взгляды. Он утверждает, что если разрушенная окалина оказывает очень вредное влияние в сильно агрессивной среде, то она может быть относительно безвредной в атмосфере средней активности (он указывает, что имеет ввиду прочно держащуюся окалину, не потерявшую сцепления с металлом в результате ржавления). Относительно разных атмосфер он утверждает, что американские промышленные атмосферы очень коррозионно-активны при испытании на открытых стендах, но начальная скорость коррозии (0,125 мм) быстро падает до 0,0125 мм в год в морской атмосфере начальная скорость коррозии ниже, но она уменьшается во вре- [c.532]

    Карпенко экспериментально показал некоторое снижение усталостной кривой в коррозионно-инертной среде, содержащей поверхностно активные вещества, по сравнению с такой же кривой, полученной на воздухе. Отсюда он делает вывод, что начальная стадия разрушения металла при коррозии под напряжением обязана адсорбционно-расклинивающему эффекту поверхностно активных элементов коррозионной среды и проявляется в образовании ультрамикротрещин, которые в дальнейшем развиваются за счет обычного коррозионного процесса, протекающего в них. По мнению Карпенко, одним из важных факторов, по-видимому в пользу его точки зрения, являются эксперименты, в которых не было обнаружено влияние анодной поляризации на усталостную прочность стали. [c.40]

    Для благородных металлов, не склонных к пассивации (Си, Ag), под влиянием движения коррозионной электролитической среды относительно металла наблюдается разблагораживание потенциала и усиление коррозии. Этот эффект вызван удалением собственных ионов из приэлектрод-ного слоя и возникающим в результате этого сдвига потенциала в отрицательную сторону из-за малой коррозионной активности этих металлов (например, меди) равновесная концентрация собственных ионов возобновляется медленно. [c.281]

    В резервуаре любого технологического назначения в системе подготовки нефти коррозия протекает в сла-боперемешиваемой среде, представляющей собой двухфазную систему нефть — вода. При этом на развитие коррозионного разрушения металла конструкции значительное влияние оказывают условия избирательного смачивания, которые О пределяются соотношением нефти и воды, содержанием поверхностно-активных веществ и агрессивных компонентов. [c.147]

    Результаты коррозионных испытаний металлов в условиях коксования (при различных температурах, напряженных состояниях образцов, содержания серы и длительности температурного воздействия) показывают, что с увеличением температуры скорость коррозии экспоненциально возрастает [25]. При температуре 300-320 °С характер влияния напряжений в образце изменяется. По нашему мнению, это связано с протеканием на поверхности металла, контактирующей с нефтяным остатком, конкурирующих взаимовлияющих процессов. Образующиеся на поверхности в результате действия напряжений активные центры, с одной стороны, интенсифицируют процессы коррозии в начальный момент времени, а с другой стороны, создают благоприятные условия для образования кокса, что в последующем ведет к их блокированию. В дальнейщем действие этого фактора преобладает. Такой характер коррозионного разрушения под напряжением в средах коксования более четко выражен при повышенных температурах, поскольку интенсивность коксообразования при этом значительно возрастает. [c.21]

    Большинство предшествующих исследований коррозии, вызванной суль-фатвосстанавливающими бактериями, было посвящено почвенной коррозии или влиянию лабораторных культур бактерий. Очень мало внимания уделялось важной роли сульфатвосстанавливающих бактерий в морских средах. Рассмотренные выше результаты натурных коррозионных испытаний, проведенных Научно-исследовательской лабораторией ВМС США, показывают, что эти анаэробные бактерии оказывают определяющее влияние на коррозию конструкционных сплавав на основе железа в океане. Во всех местах, включая полусоленые воды бухты Чисапик, сульфатвосстанавливающие бактерии оказывали воздействие на металл. К концу первого года экспозиции коррозионные продукты, содержащие сульфид железа, были обнаружены на большинстве образцов. Питтинг на всех пластинах был умеренным. Отдельные раковины или участки с толстым слоем отложений не приводили к образованию более глубоких питтингов. В результате деятельности анаэробных бактерий на всех металлических поверхностях под образовавшимся слоем продуктов коррозии и приросших морских организмов возникал мягкий, плохо сцепленный с металлом слой, состоявший в основном из сульфида железа. При наличии такого слоя расположенные над ним продукты коррозии и обрастания легко удаляются большими целыми кусками. Проведенные испытания показали, что при образовании на металле в процессе обрастания достаточно толстого сплошного покрытия создаются анаэробные условия. При этом процесс коррозии определяется бактериальной активностью. [c.450]

    Определенную помощь для уменьшения расходов и времени на коррозионный прогноз может оказать программа для проведения прогноза коррозионной стойкости нержавеющих сталей в водных сульфатсодержащих средах [102]. Программа учитывает влияние шести независимых факторов коррозии температуру, pH среды, скорость движения водного раствора, концентрацию растворенного кислорода и ионов Ре + и С1 . Для определения коррозионного состояния системы используются термодинамические и экспериментальные параметры данной системы, а также эмпирические зависимости. Программа включает прогнозирование потенциала металла системы, силы тока коррозии, хода поляризационных кривых, области иммунности (активную и пассивную), она позволяет находить наиболее неблагоприятные сочетания условий, обеспечивающие развитие коррозии. Авторы наметили пути усовершенствования программы прогнозирования коррозии, что должно повысить точность и достоверность прогноза для величин, характеризующих корродирующую систему. [c.178]

    Влияние состава базовых масел и присадок на различные виды коррозионно-механического износа далеко не однозначно. Среди базовых масел лучшие результаты обеспечивают средневязкие минеральные масла. Нелегированные синтетические базовые масла на основе полиальфаолефинов, эфиров и гидрированные масла сами по себе не обеспечивают защиту металла, а в ряде случаев стимулируют его коррозионно-механическое разрушение. Негативное влияние оказывают химически и поверхностно-активные присадки, содержащие серу, хлор. Эти присадки могут стимулировать локальные виды коррозии и наводороживание металла. Из известных присадок наиболее эффективны в условиях коррозионной усталости, фреттинг-коррозии трикрезилфосфат, триксиленилфосфат, диалкилдитиофосфат цинка. В условиях наводороживания эффективен диэтаноламид. [c.69]

    Влияние присадок на защитную способность смазок зависит от эффективности связывания или вытеснения воды с поверхности металла при контакте со смазочным материалом, а также от образования на металле ингибиторами коррозии и другими дооавками адсорбционных и хемосорбциопиых плсиок.-Возможны следующие механизмы защитного действия ингибиторов коррозии и других поверхностно-активных веществ 1) ингибирование коррозионного процесса за счет торможения анодной или катодной реакции 2) блокирование продуктов, реакции и торможение процесса за счет накапливания их в зоне реакции 3) механическое экранирование или изоляция поверхности металла от коррозионно-агрессивных продуктов среды 4) связывание (химическое или адсорбционное) агрессивных продуктов коррозии в объеме смазки. [c.330]

    Активной внутренней коррозии подвержены и другие сооружения, например нефтегазопроводы. Содержащиеся в транспортируемых продуктах агрессивные составляющие и биологические среды (щелочи, кислоты, ферробактерии и т. д.), взаимодействуя с металлом, приводят к коррозионным повреждениям и изменению внутренней поверхности трубопроводов. Под влиянием блуждающих токов, протекающих по трубопроводам и транспортируемым продуктам или их отложениям, процессы коррозии происходят еще более интенсивно. Все это резко ухудшает гидродинамические характеристики напорных трубопроводов, увеличивает расход энергии на транспортирование продуктов и потери вследствие утечек жидкостей и газов. [c.98]

    Анализ исследований, выполненных в нашей стране и за рубежом, позволяет отметить следующие характерные особенности воздействия сероводорода на металлы. Воздействие сероводорода проявляется тем сильнее, чем выше прочностные характеристики металла - твердость, предел текучести и предел прочности. Механические напряжения играют большую роль в процессе коррозионного растрескивания, стимулируя электрохимическое локальное растворение металла, и, как следствие, зарождение и развитие трещин. Степень коррозионного воздействия з 1висит от отношения приложенного напряжения к пределу текучести. Исследования влияния pH раствора на коррозию малоуглеродистых сталей в системе НгЗ - СО - НгО показали значительное снижение коррозии с переходом от кислых к нейтральным и щелочным растворам. Считается, что при pH > > 10 коррозионное растрескивание не происходит. Необходимым условием для протекания активных процессов коррозии в сероводородсодержащих средах является наличие влаги, в которой сероводород находится в диссоциированном состоянии. При этом коррозионные процессы приобретают электрохимический характер, катодный процесс протекает с водородной деполяризацией, в результате которой появляется водород в атомарной и молекулярной формах. При относительно малой влажности (4-26 %) сероводород оказывает незначительное влияние на углеродистые стали, вызывая за 30 сут только потускнение его поверхности. Наличие капельной влаги увеличивает коррозию сталей примерно в 100 раз по сравнению с сухим газом [138]. С повышением внутренних напряжений возникает [c.18]


Библиография для Коррозионная активность сред влияние на коррозию металло: [c.637]   
Смотреть страницы где упоминается термин Коррозионная активность сред влияние на коррозию металло: [c.190]    [c.223]    [c.80]    [c.41]    [c.109]    [c.12]    [c.125]    [c.14]   
Коррозионная стойкость материалов (1975) -- [ c.17 ]

Коррозионная стойкость материалов Издание 2 (1975) -- [ c.17 ]

Коррозионная стойкость материалов в агрессивных средах химических производств Издание 2 (1975) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Активность среды

Влияние коррозионных пар

Коррозионная pH среды

Коррозия влияние

Коррозия металлов

Коррозия металлов коррозии

Металлы коррозионное металлов

Ряд активности металлов

Ток коррозии коррозионный



© 2025 chem21.info Реклама на сайте