Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хемосорбция в процессах адсорбции

    Хемосорбция — процесс адсорбции, при котором адсорбируемое вещество и адсорбент вступают в химическое взаимодействие. [c.29]

    В отличие от хемосорбции физическая адсорбция основана главным образом на вандерваальсовом взаимодействии между поверхностью твердого вещества и ее окружением. Поэтому теплота адсорбции нередко составляет не более 40 кДж на моль адсорбированного вещества и вследствие этого адсорбированный слой легко отделяется от поверхности. Удаление молекул адсорбированного вещества с поверхности адсорбента называется десорбцией. Для осуществления процесса десорбции [c.87]


    Четкое различие между физической адсорбцией и хемосорбцией отсутствует. Можно лишь сказать, что при хемосорбции теплота адсорбции значительно больше. К тому же, если молекула в процессе адсорбции диссоциирует в силовом поле металла, то этот критерий вообще теряет свое значение [207]. Не дает полного представления о характере адсорбции и энергия активации, хотя в большинстве случаев процесс хемосорбции активирован, а физическая адсорбция протекает практически без активации [208]. [c.183]

    В отличие от полярности, поляризуемость молекул определяется динамическими эффектами которые возникают, когда на атомы, соединенные в молекуле а-связью, воздействуют другие полярные молекулы, ионы или электрические поля, / -эффект играет важную роль в процессах адсорбции и хемосорбции ПАВ на металлических поверхностях, несущих значительные заряды. Имеет особое значение тот факт, что 1а- и / -эффекты меняются в противоположных направлениях. Чем более полярна связь атомов, тем менее она поляризуема, т. е. чем выше разность электроотрицательностей атомов в молекуле, тем больше / -эффект и тем меньше / -эффект. Например, энергия связи С—Р выше, чем у связи С—I, но последняя легче поляризуется. [c.200]

    Первичной стадией элементарного каталитического акта в гетерогенном катализе является адсорбция реагирующих молекул из газовой фазы или из раствора на поверхности катализатора. Адсорбцией называется процесс самопроизвольного изменения концентрации вещества на границе раздела фаз. Различают два вида адсорбции физическую адсорбцию и хемосорбцию (химическую адсорбцию). Физическая адсорбция обусловливается силами межмолекулярного взаимодействия, возникающими между молекулами (атомами) твердой фазы, находящимися на поверхности, и молеку- [c.637]

    В процессе адсорбции молекулы газа осаждаются на поверхности твердого тела точно так же, как и при конденсации, а затем удерживаются на ней физическими силами притяжения (силы Лондона— Ван-дер-Ваальса) либо химическими силами (хемосорбция) — в зависимости от химической природы молекулы и поверхности. В некоторых системах могут существовать оба вида адсорбции или промежуточные состояния. [c.156]

Рис. 17. Эндотермическая хемосорбция при небольшой величине энергии активации процессов адсорбции и десорбции. Рис. 17. <a href="/info/642308">Эндотермическая хемосорбция</a> при небольшой <a href="/info/503878">величине энергии активации</a> <a href="/info/28406">процессов адсорбции</a> и десорбции.

    Тем не менее в большинстве случаев природу явления можно тан ить, исследовав величину теплового эффекта процесса. При уменьшении свободной поверхностной энергии в процессе адсорбции выделяется теплота адсорбции . Очевидно, что в процессе хемосорбции выделяется значительно большее количество тепла, чем в процессе физической адсорбции. В первом случае теплота адсорбции по порядку величины близка к теплоте химических реакций, во втором — к теплоте конденсации. Существуют и другие, менее общие признаки различия, например характер изотерм, кинетика процесса, его обратимость и др. [c.106]

    Вещество, на поверхности которого идет процесс адсорбции, называют адсорбентом. Адсорбирующееся вещество называют ад-сорбтивом. В гетерогенном катализе адсорбентом является катализатор, а адсорбтивом — молекула реагирующего вещества (субстрата). Адсорбция субстрата на катализаторе может осуществляться за счет сил межмолекулярного взаимодействия, возникающих между молекулами (атомами) катализатора, находящимися на поверхности, и молекулами субстрата (физическая адсорбция). Между молекулами (атомами) катализатора и молекулами реагирующего вещества может протекать химическое взаимодействие (химическая адсорбция или хемосорбция). [c.298]

    Процесс адсорбции субстрата на катализаторе сопровождается убылью энергии Гиббса. В результате адсорбции возрастает упорядоченность системы и энергия уменьшается, что связано с выделением энергии и уменьшением энергии активации. Если имеет место хемосорбция, то специфичность катализа увеличивается. В результате хемосорбции молекулы переходят в активированное возбужденное состояние и иногда распадаются на атомы или радикалы, сорбированные поверхностью. [c.298]

    Хемосорбция — это процесс адсорбции, который протекает под действием сил основных валентностей, поэтому ее относят к химической адсорбции. [c.328]

    При адсорбции свободная поверхностная энергия уменьшается и АР отрицательна. Так как до адсорбции молекулы газа могут двигаться в трех направлениях, а после адсорбции либо прочно удерживаться на твердой поверхности, либо двигаться только в двух направлениях, процесс адсорбции сопровождается понижением энтропии и А5 имеет отрицательное значение. Тогда из уравнения (а) следует, что АН также отрицательно. Это означает, что процессы адсорбции являются экзотермичными. Выделяющаяся при адсорбции теплота носит название теплоты адсорбции. При физической адсорбции теплоты адсорбции имеют значения такого же порядка, как и теплоты конденсации газов (2—3 ккал/моль), при хемосорбции теплоты адсорбции гораздо больше и имеют порядок теплот образования химических соединений (десятки ккал/моль). В соответствии с правилом Ле-Шателье ( 53), с повышением температуры количест- [c.284]

    Физическая адсорбция — название столь же условное, как и хемосорбция. Если энергии межмолекулярных связей соизмеримы, процесс адсорбции газа может непрерывно перейти в его конден- [c.172]

    Хемосорбция должна протекать практически мгновенно. Однако хемосорбция на окисных и металлических катализаторах (к ним относится большая часть реальных катализаторов) является процессом, идущим во времени с измеримой скоростью. Иногда состояние насыщения поверхности при данных температуре и давлении достигается в течение многих часов и даже дней. Замедленность реальных процессов адсорбции объясняется представлением об активированной адсорбции, требующей, как и химические реакции, некоторой энергии активации. Поэтому хемосорбция с измеримой скоростью может осуществляться в определенном температурном интервале. Гипотеза об активированной адсорбции позволила дать удовлетворительное объяснение многим аномалиям, установленным при изучении процессов адсорбции. Так, например, теплоты адсорбции часто малы при низких температурах и большие при высоких. Это обусловлено тем, что при низких температурах преобладает физическая адсорбция. [c.35]

    Теоретическое и экспериментальное исследование хемосорбции — процесса чрезвычайно сложного и весьма важного в практическом отношении, составляет в настоящее время большой и самостоятельный раздел физической и коллоидной химии, излагаемый в специальных монографиях и выходящий за рамки настоящего учебника. Отметим лишь, что для теории почти несущественным является центральный для физической адсорбции вопрос — двух- или трехмерен поверхностный слой, поскольку хемосорбционные силы локализованы, в основном, в пределах, одной молекулы. Поэтому рассмотренные выше теории адсорбции, основанные на концепции монослоя, применимы, в принципе,, к хемосорбции, однако расшифровка констант, характеризующих химическое взаимодействие, требует квантово-химической трактовки. Для установления кинетических закономерностей используется теория переходного состояния. Рассмотрение сил базируется на теориях электрического изображения (металлы) и на полупроводниковых теориях (окислы, сульфиды и др.). В общем можно сказать, что трактовка хемосорбции как процесса образования двухмерных химических соединений основывается на современной теории твердого состояния. [c.170]


    Хемосорбцией называют адсорбцию, происходящую под действием специфических, главным образом валентных, химических сил. Хемосорбцию можно определить как процесс образования двумерного химического соединения, не идущий, в отличие от обычной химической реакции, в глубину объемной фазы. Рассмотрим в качестве примера соединения, образующиеся при хемосорбции на угле и графите. В результате окисления поверхностных атомов С образуются, в зависимости от условий, те или иные поверхностные оксиды, изображенные следующими формулами  [c.127]

    Химическая адсорбция (хемосорбция) происходит вследствие химической реакции между молекулами адсорбента и адсорбата. Эта реакция обратима и идет с выделением тепла. С ростом температуры роль хемосорбции в общем процессе адсорбции возрастает. [c.20]

    Полученные результаты (рис. 19) показывают, что во время так называемого индукционного периода протекает процесс обезуглероживания стали. Можно полагать, что выходящие на поверхность металла пластинки цементита разлагаются уже в процессе хемосорбции водорода сталью, т.е. продолжительность истинного индукционного периода обезуглероживания соизмерима со временем адсорбции и хемосорбции. Процесс дальнейшего обезуглероживания должен определяться скоростью проникновения водорода в глубь металла. Интенсивное обезуглероживание будет идти до тех пор, пока концентрация углерода не уменьшится до 0,02%. [c.143]

    Рассмотрены главные этапы развития термодинамической теории электрокапиллярности. Представлены основные уравнения электрокапиллярности для идеально поляризуемого и обратимого электродов, а также соотношения, вытекающие из этих уравнений. Обсужден физический смысл величин, входящих в уравнения электрокапиллярности идеально поляризуемого и обратимого электродов. На примере электродов из металлов группы платины и амальгам таллия продемонстрированы пути и результаты проверки термодинамической теории электрокапиллярности для обратимых систем. Показано, что термодинамический подход к явлениям хемосорбции с переносом части заряда адсорбированных частиц на поверхность металла позволяет определить формальный коэффициент переноса заряда, который отражает как долю заряда, перешедшего с адсорбирующейся частицы на электрод, так и вызванное процессом адсорбции изменение параметров двойного электрического слоя на границе электрод—раствор. Обсуждены экспериментальные данные, иллюстрирующие различие между поверхностным натяжением и обратимой поверхностной работой для твердых металлов. [c.215]

    Другой канал стока кислотных компонентов образуют сухое осаждение и сухое поглощение подстилающей поверхностью. Первый из этих процессов реализуется в случае достаточно крупных частиц с диаметром более 10 мкм. Однако, если говорить об аэрозолях, то основная масса кислот и сульфатов атмосферы содержится в частицах значительно меньших размеров, как правило, с диаметром менее 1 мкм. Для них, как и для газов, гравитационное осаждение не играет роли в качестве стока на подстилающую поверхность. В то же время и молекулы газов, и частицы при контакте с элементами подстилающей поверхности могут быть захвачены и необратимо выведены из атмосферы благодаря различного рода сорбционным процессам адсорбции, абсорбции или хемосорбции. Интенсивность такого стока кислотных компонентов зависит от конкретных свойств подстилающей поверхности. [c.215]

    Физические процессы — адсорбция, абсорбция и капиллярная конденсация — обратимы, хемосорбция и химическая адсорбция необратимы. [c.170]

    На поверхности твердых тел могут проходить специфические процессы адсорбции и хемосорбции. При хемосорбции на поверхности в определенных условиях образуются продукты реакций с особыми свойствами. Еще в 1915 г. И. Лэнгмюр исследовал адсорбцию газов на раскаленных металлических нитках. Он обнаружил, что при давлении кислорода в сосуде 1 МПа поверхность вольфрамовой нити при 3000 °С покрывается наполовину моно-атомным слоем кислорода. [c.52]

    В самых тонких капиллярах вода посредством Н-связей либо ориентированно закрепляется между макромолекулами целлюлозы (рис. 10.2, а), либо образует на поверхности капилляров мономолекулярные слои (см. рис. 10.2, 6), взаимодействуя с цепями целлюлозы и гемицеллюлоз. Поглощаемая вода разрывает межмолекулярные и внутримолекулярные Н-связи в полисахаридах и образует с их гидроксильными фуппами новые водородные связи. При десорбции наблюдается обратный процесс. Первая часть изотермы сорбции более или менее подчиняется уравнению Ленгмюра для мо-номолекулярной адсорбции. Процесс адсорбции воды с образованием Н-связей и выделением теплоты занимает промежуточное положение между физической адсорбцией и хемосорбцией. [c.266]

    Различают физическую и химическую адсорбцию (хемосорбцию). При физической адсорбции молекулы адсорбента и поглощенного вещества (адсорбата) не вступают в химическое взаимодействие и их связь обусловливается силами межмолекулярного взаимодействия, при котором связь менее прочна, чем при хемосорбции. Физическая адсорбция — экзотермический процесс, для газов и паров теплота адсорбции примерно равна теплоте конденсации. [c.21]

    Различают два основных вида адсорбции физическую и химическую (или- хемосорбцию). Физическая адсорбция, характеризующаяся сохранением свойств адсорбента и адсорбата, вызывается силами взаимодействия их молекул (дисперсионными или вандерваальсовскими). Дело в том, что внутри каждой фазы, молекулы испытывают по всем направлениям одинаковые силы взаимного притяжения, а на границе раздела фаз эти силы различны. Если результирующая сила направлена внутрь одной из фаз, то поверхность последней будет притягивать (поглощать, адсорбировать) молекулы другой фазы. Сорбируясь, молекулы адсорбата частично насыщают поверхность адсорбента, уменьшая ее свободную энергию, поэтому процесс адсорбции протекает самопроизвольно. [c.612]

    Сочетание методов ДМЭ и ОЭС позволило изучить некоторые процессы адсорбции, например в работе [3.31] изучались хемосорбция кислорода и начальная стадия окисления. монокристаллов никеля. Наблюдались кинетика адсорбции (по одному из Оже-пиков кислорода и сдвиг линии Оже-спектра никеля. Метод ДМЭ позволил проследить возникновение адсорбированных структур на поверхности, а также прокалибровать Оже-пик кислорода. [c.153]

    При протекании гетерогенно-каталитических реакций на поверхности переходных металлов и их оксидах происходит активация молекул реагентов, сопровождаемая процессом адсорбции (хемосорбция). [c.695]

    Процесс адсорбции сопровождается выделением тепла. В случае чисто физической адсорбции выделяемое тепло равно теплоте конденсации. При химической адсорбции количество выделяющегося тепла больше. Удаление молекул с поверхности требует подвода тепла к поверхности для выбивания (испарения) молекул. В случае хемосорбции это может означать, что вместе с десорбирующимися молекулами могут быть удалены некоторые атомы твердого тела, что ведет к изменению природы поверхности. Это может привести к уменьшению или увеличению адсорбционной способности. [c.158]

    Процессы адсорбции классифицируют в соответствии с типом взаимодействия адсорбата с адсорбентом. Физико-химическая классификация основывается на том положении, что перераспределение компонентов между объемной фазой и поверхностным слоем может произойти под действием физических сил или в результате химической реакции между адсорбатом и адсорбентом. Химическую реакцию в этом случае можно представить либо как химическое ирисоедииеиие атомов (молекул), либо как ионообменное взаимодействие. Таким образом, согласно физико-химической классификации различают физическую (молекулярную) ад-сорб[иио, хемосорбцию (химическое присоединение атома, молекулы) и ионный обмен. В данном разделе рассматривается, главным образом, физическая адсорбция газов и паров. [c.108]

    Силы, действующие на поверхности твердого тела, ненасыщены. Поэтому всякий раз, когда свежая поверхность подвергается действию газа, на ней создается более высокая концентрация молекул газа, чем в объеме собственно газовой фазы. Такое преимущественное концентрирование молекул на поверхности называется адсорбцией. Прочность связи молекул адсорбата с поверхностью адсорбента, а также величина адсорбции могут сильно меняться от системы к системе. Процессы адсорбции можно разделить на два основных типа физическую адсорбцию и хемосорбцию. Физическая адсорбция вызывается силами молекулярного взаимодействия, к которым относятся силы взаимодействия постоянных и индуцированных диполей, а также силы квадрупольного притяжения. Хемосорбция обусловлена перераспределением электронов взаимодействующих между собой газа и твердого тела с последующим образованием химических связей. Физическая адсорбция подобна конденсации паров с образованием жидкости или процессу сжижения газов, а хемосорбция может рассматриваться как химическая реакция, протекание которой ограничено поверхностным слоем адсорбента, Типы адсорбции различают по нескольким критериям 1) по теплотам адсорбции. Количество выделившейся в процессе физической адсорбции теплоты, отнесенное к одному молю адсорбированного вещества, обычно изменяется в пределах 8—40 кДж. Как правило, теплота хемосорбции превышает 80 кДж/моль 2) по скорости протекания процесса. Поскольку физическая адсорбция подобна процессу сжижения газа, то она не требует активации и протекает очень быстро. Хемосорбция же, аналогично большинству хи- [c.425]

    В процессах адсорбции при помощи этих представлений необходимо было объяснить природу адсорбционной связи и изменение активности при переходе от одного металла к другому. Прочная хемосорбция, по Даудену, может быть обусловлена частичным заполнением связывающих хр-орбиталей и атомных -орбиталей. Поэтому увеличение -ваканский в металле должно вести к повышению прочности адсорбционных связей. Наличие -вакансий у переходных металлов обеспечивает быструю и прочную хемосорбцию при низких температурах. У металлов, не имеющих -вакансий (5- и р-металлов), адсорбционные связи, за некоторыми исключениями, оказываются слабыми, и их образование требует более высоких температур. [c.151]

    Характерным примером проявления адсорбционного понижения прочности может служить эксплуатация разнообразных адсорбентов и катализаторов адсорбция (хемосорбция) на поверхности твердой фазы, а следовательно понижение поверхностной энергии и прочности, являются неотъемлемым условием их функционирования. Здесь проявляется взаимное влияние поверхности твердого тела и молекул среды , к01нта1кт с твердой фазой облегчает раарыв и перестройку межатомных связей в адсорбируемых молекулах в свою очередь, эти процессы адсорбции и перестройки молекул адсорбата приводят к ослаблению связей в поверхностных слоях катализатора. Внутренних напряжений, возникших на той или иной стадии приготовления гранул (см. [c.344]

    Большая роль в гетерогенном катализе принадлежит процессам адсорбции —физической адсорбции и хемосорбции. Физическая адсорбция является результатом межмолеку-лярного взаимодействия между частицами (атомами, иоиами, молекулами) поверхностного слоя твердой фазы и молекулами газовой фазы или раствором. Хемосорбция (химическая сорбция) завершается химическим взаимодействием адсорбированного вещества с поверхностью твердой фазы. Адсорбирующее твердое вещество называют адсорбентом-, вещество, которое адсорбируется,—адсорбтивом. Адсорбция—экзоэргический процесс, сопровождающийся ростом концентрации упорядоченности адсорбтива на поверхности адсорбента. В табл. 16.2 приведены значения тепловых эффектов хемосорбции. Величину адсорбции(Г), т. е. концентрацию веществ на адсорбирующей поверхности, измеряют в молях на м . [c.185]

    В большинстве аналитических приложений процессы адсорбции и десорбции должны быть обратимыми. Реже используются процессы хемосорбции, хотя даже при физической адсорбции процессы могут быть не полностью обратимыми и х актеризоватъся гистерезисным поведением. Очевидно, что получение материалов-адсорбентов с контролируемыми свойствами является актуальной задачей, на решение которой направлены усилии многих исследователей. [c.227]

    Для глубокой очистки воды от нефтепродуктов, находящихся в тонкоэмульгировапном и растворенном состояниях, наряду с другими применяется сорбционный метод. В широком понимании сорбция представляет собой процесс поглощения веществ-из той или иной среды с по.чощью других веществ, называемых поглотителями или сорбентами. Различают три разновидности сорбции адсорбцию, абсорбцию и хемосорбцию. При адсорбции поглощение осуществляется поверхностью твердого или жидкого сорбента, при абсорбции — всей массой жидкого сорбента. Сорбция (адсорбция, абсорбция), сопровождаемая химическим взаимодействием сорбента с поглощаемым веществом, называется хемосорбцией. Для очистки воды от нефтепродуктов основное практическое значение и.меет адсорбция. [c.178]


Смотреть страницы где упоминается термин Хемосорбция в процессах адсорбции: [c.309]    [c.89]    [c.638]    [c.644]    [c.387]    [c.83]    [c.94]    [c.638]    [c.644]    [c.34]    [c.65]   
Основные процессы и аппараты Изд10 (2004) -- [ c.563 ]




ПОИСК





Смотрите так же термины и статьи:

Процессы адсорбцией

Хемосорбция



© 2025 chem21.info Реклама на сайте