Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Печень жировой обмен

    Известно, что главным источником жирных кислот, используемых в качестве топлива , служит резервный жир, содержащийся в жировой ткани. Принято считать, что триглицериды жировых депо выполняют в обмене липидов такую же роль, как гликоген в печени в обмене углеводов, а высшие жирные кислоты по своей энергетической роли напоминают глюкозу, которая образуется в процессе фосфоролиза гликогена. При [c.370]


    Какова роль печени в обмене углеводов, жиров, простых и сложных белков, в обмене минеральных веществ и воды  [c.256]

    При голодании, когда истощаются резервы углеводов в печени, мобилизуется жир из жировых тканей и транспортируется в печень, играющую основную роль в обмене жиров, и в другие ткани, где в нем испытывается нужда. Поступивший в этом случае в печень жир подвергается распаду и затем окислению продуктов распада. При этом длинные цепи жирных кислот превращаются в масляную кислоту, из которой образуются так называемые ацетоновые тела ацетоуксусная кислота, Р-оксимасляная кислота и ацетон. В нормальных условиях, когда распад жира сопровождается достаточным распадом углеводов, конечным продуктом распада является уксусная кислота, окисляющаяся дальше до углекислого газа и воды. [c.408]

    Особое значение для человека имеют полиненасыщенные жирные кислоты. В организме они не синтезируются. При непоступлении их с пищей нарушается обмен жиров, в частности холестерина, наблюдаются патологические изменения в печени, коже, функции тромбоцитов. Поэтому такие ненасыщенные жирные кислоты, как линоленовая и линолевая, — незаменимые факторы питания. Кроме того, они способствуют выходу из печени жиров, которые синтезируются в ней, и предупреждают ее ожирение. Такое действие ненасыщенных жирных кислот называется липотропным эффектом. Ненасыщенные жирные кислоты служат предшественниками синтеза биологически активных веществ — простагландинов. Суточная потребность человека в полиненасыщенных кислотах в норме составляет примерно 15 г. [c.187]

    РОЛЬ ПЕЧЕНИ В ОБМЕНЕ ЖИРОВ [c.314]

    Различные ткани человека обладают набором мембран с различной пропускной способностью, и это отчасти объясняет неравномерное распределение лекарств. Другой причиной избыточного накопления лекарства в одних органах по сравнению с другими являются условия кровоснабжения. Например, кость и печень, жир и почка, И печень и почка —органы с интенсивным обменом веществ, снабжаются кровью гораздо обильнее, нежели жировая и костная ткани. [c.30]

    ЖЕЛЧНЫЕ КИСЛОТЫ — группа кислот сложного строения, содержащихся в желчной жидкости. Примером Ж. к. может быть холевая кислота. Ж. к. образуются в печени считают, что этот процесс связан с обменом холестерина. Комплексы Ж к. с жирами и жирными кислотами играют большую роль в усваивании жиров. Ж- к. применяют для синтеза стероидных гормонов. [c.96]


    Биологическими исследованиями на лабораторных животных установлено, что препараты рябины (паста и порошок) приводят к снижению количества жира в печени и холестерина в крови не оказывают существенного влияния на углеводный и белковый обмен [67а]. [c.393]

    В обмене жиров важную роль играет печень, где идет расщепление и биосинтез жиров. Если нарушается баланс между этими процессами, то наступает жировое перерождение клеток печени - цирроз, причиной которого могут быть отравление алкоголем, галоидными веществами, недостаток белка в пище, инфекционные заболевания, рак печени, сахарный диабет. [c.115]

    Некоторым тритерпеновым сапонинам свойствен еще один важный тип физиологического действия — способность регулировать обмен липидов. У млекопитающих биосинтез и распад жиров, холестерина и других неполярных веществ имеет важное значение и осуществляется, главным образом, в печени. Нарушения липидного метаболизма проявляются в развитии таких заболеваний, как атеросклероз, гепатит и цирроз печени, желчные камни [c.253]

    Нарушения жирового обмена. В жировом обмене велика роль печени. В печени вырабатывается желчь, а, как указывалось выше, желчные кислоты активируют липазу, способствуют эмульгированию жиров, всасыванию жирных кислот и холестерина. Следовательно, заболевания печени, связанные с нарушением секреции желчи, закупорка желчного протока и воспаление желчного пузыря приводят к нарушению обмена липидов. [c.165]

    Соотношение содержания жира и гликогена в печени является одним из важных показателей функции этого органа в жиро-угле-водном обмене. [c.177]

    Желчные кислоты образуются в печени и имеют важное значение в обмене веществ животного организма. Особенно важна роль желчных кислот в усвоении жиров организмом. Всасывание жиров стенками [c.243]

    Промежуточный обмен липидов интенсивно протекает в печени и жировой ткани, где постоянно происходит синтез резервных и других липидов, а также их распад. Синтез резервных жиров, которые являются триглицеридами, приводит к накоплению их в тканях депонированию). Постоянно протекает и процесс распада резервных жиров до глицерина и жирных кислот, которые затем утилизируются тканями мобилизация жиров). Процесс распада нейтральных жиров в тканях осуществляется с участием тканевых липаз и называется липолизом. [c.196]

    Основные функции печени 1) синтез и секреция желчи 2) участие в обмене углеводов, жиров и белков (дез аминирование, синтез аминокислот, мочевины, мочевой и гиппуровой кислот) 3) образование фибриногена 4) образование протромбина 5) образование гепарина  [c.230]

    Инсулин синтезируется бета-клетками, регулирует обмен углеводов, жиров и белков. Действие на углеводный обмен связано с тем, что инсулин усиливает транспорт глюкозы из крови в скелетные мышцы, сердечную мышцу и жировую ткань за счет повышения проницаемости клеточных мембран этих тканей и стимулирует синтез гликогена в печени и мышцах. Таким образом инсулин снижает уровень глюкозы в крови, т. е. проявляет гипогликемический эффект. Инсулин стимулирует также синтез и депонирование жира в жировой ткани, проникновение аминокислот в клетки и синтез из них белка. Следовательно, инсулин способствует запасанию питательных веществ, т. е. проявляет анаболическое действие. [c.143]

    Печень - важнейший орган, в котором питательные вещества, всосавшиеся из кишечника, преобразуются для использования другими тканями организма. Большую часть крови печень получает прямо из кишечного тракта (через портальную вену). Гепатоциты ответственны за синтез, расщепление и хранение множества различных веществ. Они играют центральную роль в углеводном и жировом обмене всего организма и они же вырабатывают большую часть белков, содержащихся в плазме крови. В то же время гепатоциты сохраняют связь с просветом кишечника через систему мельчайших канальцев и более крупных протоков (рис. 17-10, Б). Через эти протоки гепатоциты выделяют в кишечник и отходы метаболизма, и эмульгирующее вещество - желчь, которая облегчает всасывание жиров. Внутри популяции гепатоцитов (в отличие от остальных частей пищеварительного тракта), по-видимому, нет заметного разделения труда все гепатоциты способны выполнять один и тот же широкий круг метаболических и секреторных функций. [c.162]

    Решение этой проблемы было найдено после открытия независимых механизмов выброса в митохондриях печени (Puskin et al., 1976) и сердца ( rompton, arafoli, 1976). В случае митохондрий сердца, мозга и бурого жира ионы Са + выбрасываются в обмен на Na+, а в случае печени они обмени- [c.168]


    Витамин Bi2 является наиболее активным противоанемическим средством. Механизм действия его недостаточно выяснен, однако доказано, что он участвует в синтезе лабильных метильных групп и в образовании холина, метионина, креатина, нуклеиновых кислот. Он оказывает активное влияние на накопление в эритроцитах соединений, содержащих сульфгидрильные группы участвует в обмене жиров и углеводов. Оказывает благоприятное влияние на функцию печени и нервной системы. Благодаря исследованиям Кастля (1929) стало известно, что для излечения пернициозной анемии, которая ранее протекала со смертельным исходом, необходимы два фактора. Первый получил название внутреннего фактора и содержится в желудочном соке, второй — внешнего фактора, содержится в пищевых продуктах. В 1948 г. Фолкерсу (США) и Смиту (Англия) удалось выделить из печени внешний фактор, оказавшийся витамином и названный витамином или цианокобаламином. [c.680]

    СТГ обладает широким спектром биологического действия. Он влияет на все клетки организма, определяя интенсивность обмена углеводов, белков, липидов и минеральных веществ. Он усиливает биосинтез белка, ДНК, РНК и гликогена и в то же время способствует мобилизации жиров из депо и распаду высших жирных кислот и глюкозы в тканях. Помимо активации процессов ассимиляции, сопровождающихся увеличением размеров тела, ростом скелета, СТГ координирует и регулирует скорость протекания обменных процессов. Кроме того, СТГ человека и приматов (но не других животных) обладает измеримой лактогенной активностью. Предполагают, что многие биологические эффекты этого гормона осуществляются через особый белковый фактор, образующийся в печени под влиянием гормона. Этот фактор был назван сульфирующим или тимидиловым, поскольку он стимулирует включение сульфата в хрящи, тимидина—в ДНК, уридина—в РНК и пролина—в коллаген. По своей природе этот фактор оказался пептидом с мол. массой 8000. Учитывая его биологическую роль, ему дали наименование соматомедин , т.е. медиатор действия СТГ в организме. [c.259]

    Дианокобаламин связан с обменом жиров, поддерживая в восстановленном состоянии сульфгидрильную группу коэнзима А, осуществляющего в обмене веществ реакции ацетилирования [50, 189]. Биокаталитическое действие цианокобаламин проявляет в качестве кофермента или комплекса с белком, в виде которого он находится в печени [193]. [c.605]

    Витамин В объединяет группу соединений, обладающих антирахитическим действием. В наибольщих количествах витамин В содержится в жире печени некоторых морских рыб. У человека он образуется в верхних слоях кожи под действием ультрафиолетовых лучей. Витамин О влияет на фосфорный, кальциевый, водный обмен, способствует усиленному соле- и потовыделению, нормализует водный обмен в коже, усиливает действие витамина А. [c.159]

    Иной путь окислительного распада наблюдается для таких аминокислот как лейцин, изолейцин, фенилаланин, тирозин и триптофан. При окислении в печени лейцина и изолейцина, начинающемся также с окислительного дезаминирования, образуется ацетоуксусная кислота. Фенилаланин окислйется вначале в тирозин, который далее подвергается своеобразному окислительному распаду также с образованием ацетоуксусной кислоты или аланина и ацетоуксусной кислоты. Приводим путь окислительного распада некоторых аминокислот. Обмен этих аминокислот может "быть связан как с реакциями цикла трикарбоновых кислот, так и с обменом жиров ( через ацетоуксусную кислоту). Схемы приведены на стр. 193, 196, 197. [c.194]

    Образование Ж. к. происходит в печени и, по-видимому, связано с обменом хо.гестерина, г. к. при введении животным дейтерохолестерина удается выделить холевую к-ту, содержащую дейтерий. Большое физиологич. значение имеют комплексные соединения Ж. к. с разнообразными органическими веществами, в частности растворимые в воде комплексы дезокси-холевой к-ты (так называемые холеиновые кислоты). Комплексы Ж. к. с жирами и жирными к-тами играют большую роль в жировом обмене (см. Обмен веществ). [c.25]

    Обмен веществ при участии желчных кислот является основным путем выведения лекарств из организма. Желчные кислоты, по-видимому, участвуют не только в связывании липидов, но их роль в транспорте, поглощении и метаболизме лекарственных веществ не Так хорошо изучена, как в поглощении жиров. Вонк и сотр. [48] рассмотрели, важно ли связывание веществ с мицеллами при транспорте в печени, д также при выделении органических анионов под действием желчных кислот. Больщинство авторов согласно, что между стимуляцией потока желчных киспот и выделением органических анионов не существует простой связи, но известно, что таурохсшат (ТХ), который способствует образованию желчных мицелл, стимулирует также и выделение с желчью некоторых соединений более эффективно, чем агенты типа теофиллина, дегидрохолата и гидрокортизона, которые вызывают выделение желчи без мицеллообразова-ния. Было выдвинуто несколько предположений о механизме участия мицелл [49], в том числе стимуляция транспорта от печени желчи путем непосредственного влияния на клеточные мембраны стимуляция мицеллообразования внутри клеток печени связывание анионов лекарственных веществ и последующий экзоцитоз этих агрегатов в желчные протоки связывание анионов в мицеллах в желчных протез [c.52]

    Обмен кораля после обрызгивания им крупного рогатого скота был в дальнейшем изучен Роббинсом и др. [156 ]. Они использовали дозы, близкие к тем, которые применяли Крюгер и др. Наибольшее количество остаточных продуктов обнаружено на шкуре животных через 2 недели после аппликации. В моче открывалось, как правило, лишь 2—6% нанесенной дозы (Крюгер и др. в моче коз обнаруживали 15%). Роббинс и др. показали также, что значительная часть Р включается в фосфолипиды и фосфопротеиды печени и почек, вероятно, за счет ортофосфата, образующегося при разрушении кораля. Наибольшее количество неизмененного вещества через 2 недели после обработки содержится в подкожном жире и составляет 1 часть на миллион. [c.259]

    АКТГ принимает участие в общем метаболизме посредством выделения стероидов корой надпочечников с его помощью можно интенсифицировать обмен белков (увеличение количества усвоенного и выделенного азота), стимулировать глюко-неогенез (особенно из белков), а также ускорять метаболизм жиров и накопление гликогена в печени. Продолжительное введение значительных доз АКТГ влияет на обмен углеводов, усиливая глюконеогенез и в конце концов приводя к диабету. При этом задержка солей и воды в организме повыщается в такой степени, что появляются симптомы болезни Кущинга. [c.263]

    Одним из важнейших результатов применения меченых атомов к изучению живых организмов было, как уже указывалось, открытие высокой динамичности процессов распада и ресинтеза жиров, углеводов и белков, ведуш,их к быстрому их обновлению в тканях и органах. В работах Шенгеймера [1061 и других биохимиков это было наглядно показано для жиров и углеводов путем применения дейтерия и изотопов углерода, а для белков, главным образом, путем применения тяжелого азота, радиоактивных изотопов фосфора и серы. При введении в пищу жирных кислот, меченных дейтерием в радикале, этот дейтерий быстро появляется в жирах всех органов и, прежде всего, в жировых запасах, откуда он переходит в другие места. Средняя продолжительность пребывания каждого атома меченого водорода в теле позвоночных близка к двум неделям. При кормлении крыс гидролизатом казеина, содержавшим дейтерий, было установлено, что за три дня обновляется 10% протеинов печени и 25% протеинов мускулов. При кормлении казеином с цитратом аммония, меченным тяжелым азотом, последний через несколько дней был обнаружен почти во всех аминокислотах тела (но не в несинтезирующемся в нем лизине), в креатине мышц, гиппуровой кислоте мочи и проч. Если животное имело бедную белками пищу, то оно усваивало около половины вводимого азота. При нормальной диете, когда животное находилось в состоянии азотного равновесия, усвоение азота уменьшалось, но качественная картина оставалась той же. Столь же быстрое усвоение и распределение азота в организме наблюдается при кормлении глицином, лейцином, тирозином и другими аминокислотами, меченными тяжелым азотом. Азот из пищи особенно быстро усваивается в виде синтезируемых глютаминовой и аспарагиновой кислот. Это, очевидно, связано с быстрым течением открытых А. Е. Браунштейном и М. Г. Крицман реакций энзиматического переаминирования этих кислот с а-кетокислотами, а также с их исключительной ролью в общем обмене аминокислот и протеинов [11]. [c.496]

    Значение холина как метилирующего средства рассмотрено при обмене белков Специфическое влияние его на обмен жиров в печени рассмотрено при обмене липидов Как известно, холин ускоряет синтез фосфолипидов в печени, влияя, таким образом на обмен в ней жирных кислот. [c.420]

    Из конденсированных бигетероциклов следует назвать а и -био-тины, относящиеся к витаминам (витамин Н). р-Биотин содержится в малых количествах в растениях, в печени животных, в молоке и в желтке яйца. Его отсутствие в пище нарушает обмен белков и жиров в организме замедляется рост, поражается дерматитом кожа. [c.288]

    На обмен углеводов соматотропин действует противоположно (антагонист) инсулину вызывает гипергликемию (снижение периферической утилизации глюкозы и повыщение продукции глюкозы печенью в глюконеогенезе) повыщает содержание гликогена в печени, возможно, за счет глюконеогенеза из аминокислот тормозит гликолиз в мыщцах из-за ингибирующего действия жирных кислот, освобождающихся при липолизе жира в липоцитах при длительном введении вызывает сахарный диабет. [c.404]

    Витамин Вг широко распространен во всех животных и растительных тканях. Особенно богаты витамином Вг дрожжи, мясные продукты (печень, мышцы, почки, мозг), рыбные продукты, яйца, молоко Авитаминоз Вг легко излечивается путем елчсдневного введения в организм человека 5—I0 мг рибофлавина. В норме потребность организма человека в витамине Вг составляет 2—4 мг в сутки. Потребность сельскохозяйственных животных в витамине Вг зависит прежде всего от состава корма, от количества белков, углеводов и жиров в рационе. Недостаток белка в пище вызывает сниженгхе содержания в организме флавинов. В свою очередь при недостаточности витамина Вг нарушается использование аминокислот в обмене веществ, благодаря чему снижается синтез белка. [c.173]

    Инсулин влияет и на внутриклеточные структуры, например на строение митохондрий, что способствует повышению эффективности переноса энергии в органеллах клетки. Он уменьшает гликогенолиз и отдачу глюкозы из печени в кровь, но не повышает синтез гликогена в печени, как это думали ранее. Кроме того, инсулин влияет на обмен жира в организме, при его недостаточности наступает угнетение синтеза жирных кислот. В обмене аминокислот ннсулпи также играет важную роль, тормозя нревра-ш,ение аминокислот в глюкозу и усиливая синтез белков. [c.201]

    Печень играет важную роль в обмене жиров. Жиры пищи в печени, подвергаясь ряду превращений (удлинению или укорочению углеродных цепей жирных кислот, дегидрированию), образуют жиры, характерные для данного вида животнрмх. Далее, в печепи преимущественно сосредоточен процесс Р-окисления жирных кислот, приводящий к появлению молекул ацетил SKoA и конденсации их в молекулы ацетоуксусной кислоты, поступающей в кровь. Распад жирных кислот начинается в печени и заканчивается в различных органах, где ацетоуксусная кислота распадается с образованием углекислого газа и воды. В печени используется только лишь часть потенциальной энергии высших жирных кислот, другая же часть освобождается в различных органах нри окислительном распаде ацетоуксусной кислоты. Как и в случае превращения углеводов, в печени при превращении жирных кислот образуется продукт (ацетоуксусная кислота), основная масса которого используется за ее пределами, в различных тканях и органах. [c.486]

    Влияние глюкокортикоидов на обменные процессы. Влияние на белковый обмен характеризуется анаболическим эффектом в печени и катаболическим в других тканях. В плазме крови снижается содержание глобулинов (увеличение соотношения альбуминов и глобулинов). Влияние на липидный обмен — усиление синтеза высших жирных кислот и ТГ, перераспределение жира (накопление его преимущественно в области плечевого пояса, лица, живота), гиперхолестеринемия. Влияние на углеводный обмен — увеличение всасывания углеводов в ЖКТ, повышение активности глюкозо-6-фосфатазы (приводящее к повышению поступления глюкозы из печени в кровь), а также фосфоенолпируваткарбоксилазы, активация синтеза аминотрансферазы, что приводит к активации глюконеогенеза. В высоких концентрациях глюкокортикоиды могут вызвать снижение толерантности к глюкозе, гипергликемию. Водно-элек-тролитный обмен — задержка ионов натрия и воды в организме, увеличение выведения калия вследствие минералокортикоидной активности. Большое значение имеет сложное влияние глюкокортикоидов на обмен кальция снижение абсорбции Са " в ЖКТ в основном при чрезмерном всасывании Са " , например при саркоидозе, антагонистическое действие по отношению к витамину D, что проявляется в вымывании Са " из костей и увеличении его почечной экскреции. [c.407]

    Следует отметить, что состояние обмена основных энергоносителей зависит и от многих других гормонов. В частности, соматотропин (гормон роста) стимулирует поступление глюкозы в мышечные и жировые клетки, но в отличие от инсулина не подавляет, а г1ктивирует глюконеогенез в печени. Кроме того, соматотропин стимулирует секрецию инсулина и глюкагона, в то время кг1к другой гормон — соматостатин — ингибирует ее. Андрогены и тироксин увеличивают скорость синтеза белков и скорость окисления глюкозы. По-видимому, основная функция перечисленных гормонов — регуляция анаболических процессов, связанных с ростом и морфогенезом, а их влияние на энергетический обмен углеводов, жиров и аминокислот является вторичным. [c.409]


Смотреть страницы где упоминается термин Печень жировой обмен: [c.183]    [c.319]    [c.413]    [c.473]    [c.320]    [c.330]    [c.15]    [c.245]    [c.224]   
Основы биохимии Т 1,2,3 (1985) -- [ c.332 ]




ПОИСК







© 2024 chem21.info Реклама на сайте