Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры аппараты

    В заключение отметим, что выше были кратко рассмотрены наиболее интересные (по нашему мнению) конструкции адсорберов и десорберов, созданные в последние годы. Полный обзор всего спектра аппаратов, применяемых в промышленности, выходит за рамки данной книги здесь следует обратиться к специальной литературе. [c.543]

    Многочисленные исследования показали, что роторные аппараты являются широкополосными излучателями, но в их частотном спектре всегда присутствует частота с максимальной амплитудой звукового давления. В этой работе считается, что эта частота есть следствие перекрытия элементов перфорации ротора и статора, вблизи которых расположен тензометрический датчик. Эта частота определяется как  [c.86]


    На рис. 7.5 приведены спектры потока в рабочей камере модели аппарата круглого сечения (/ / о = 9,6) ири центральном входе потока вверх и различных решеток. [c.163]

    Воздействие лучистого потока энергии на технологические объекты определяется как свойствами излучателей, так и оптическими свойствами среды, отделяющей излучатель от объекта, свойствами окружающих элементов аппарата и самого обрабатываемого вещества. Длинноволновое излучение вызывает в основном нагрев обрабатываемых веществ, а коротковолновая часть спектра может вызвать фотохимические реакции. [c.95]

    Методы экспериментального определения кривых (спектров) распределения делятся на две группы методы нахождения временных распределений и методы нахождения пространственных распределений. Временный спектр отражает сортировку частиц по характерным отрезкам времени в какой-либо одной точке системы. Пространственный спектр распределения есть результат мгновенного анализа концентрации индикатора в разных точках по объему аппарата. Симметричный по длине аппарата пространственный спектр распределения приводит к асимметричному временному спектру на выходе из аппарата. [c.184]

    Влияние концевых эффектов. Существенной причиной отклонения экспериментальной функции распределения от истинной могут быть концевые эффекты [15]. Искажение спектра распределения в данном случае является следствием искажения гидродинамической картины течения жидкости (газа) в местах входа и выхода потока из аппарата. [c.341]

    В результате широких исследований вихревого эффекта, выполненных на основе качественной теории процесса, данной в разделе 1, создан комплекс вихревых аппаратов широкого спектра применения [1-9]. [c.75]

    Амплитуды и спектр частот пульсаций давления зависят от частоты вращения вала насоса и числа лопаток колеса и направляющего аппарата. При кавитации наблюдаются более высокие частоты пульсаций. [c.493]

    Газораспределительные решетки в аппаратах кипящего слоя должны в значительной степени определять режим псевдоожижения, поскольку они в первую очередь являются источниками возмущений, на которые резонируют гравитационные колебания слоя. От частотного спектра и абсолютных значений амплитуд о этих возмущений зависят амплитуды резонансных колебаний слоя и его визуальная структура — однородное или неоднородное псевдоожижение. Эта структура слоя, в свою очередь, может воздействовать на работу газораспределителя, а через него и на весь воздушный тракт вплоть до самого тягодутьевого механизма. К сожалению, исследования газораспределителей под этим углом зрения практически не проводились и оптимальные конструкции подбирают главным образом на основе различных технологических соображений, специфичных для данного конкретного процесса. [c.227]


    Однако, как и в большинстве случаев, математический аппарат работы [34] охватывает достаточно узкий спектр реальных технологических ситуаций и применим лишь для расчетов термолиза тяжелых фракций с высоким содержанием парамагнитных соединений. [c.58]

    Анализ спектров не первого порядка, если они не сводятся к первому, требует специального математического аппарата и моделей для расчетов положения и интенсивности линий, а также моделирующих и итерационных программ для использоваиия ЭВМ. Когда в спиновой системе много взаимодействующих ядер, учитывают свойства симметрии с целью факторизации гамильтониана и сведения задачи к решению нескольких более простых. Так или иначе, в результате проводимого анализа сложных спектров не первого порядка получают значения химических сдвигов и констант спин-спинового взаимодействия, а иногда и важную дополнительную информацию, например, относительные знаки констант. [c.31]

    Если, рассматривая молекулу, можно считать, что основные электронные уровни образующих ее атомов сохраняются и смещаются мало, то валентные электронные оболочки меняются при образовании химических связей весьма существенно. Иными словами, если электроны внутренних оболочек относятся в сущности к атомам молекулы и могут быть описаны с помощью аппарата АО, то валентные электроны должны рассматриваться в терминах МО, которые строятся обычно в приближении ЛКАО. Об этом приближении уже неоднократно говорилось выше, а все, что касается важнейших свойств МО, таких, как симметрия, локализация на атомах, связях или фрагментах и локальная симметрия и т. д., одинаково важно при рассмотрении электронных УФ спектров (см. учеб- [c.141]

    Электроника-505 , кассетные Электроника ЛС-08 и Спектр-203 (цветные). Ширина ленты этих аппаратов 12,7 мм, время записи (воспроизведения) 35—45 мин. Пока в основном школы работают с централизованными телепередачами. [c.76]

    Основную задачу структурного анализа можно сформулировать весьма просто [21. Дан вещественный объект (кристалл, аморфное тело, жидкость, газ) с неизвестной функцией микрораспределения плотности р (г). Нужно определить эту функцию. Для этой цели используется рассеяние коротковолнового излучения объектом. Картина рассеяния содержит информацию, необходимую для определения атомной, а в магнетиках — и магнитной структуры вещества. Действительно, как мы покажем несколько ниже, явление рассеяния производит фурье-анализ и позволяет получить спектр плотности Ф (Н) объекта. С помощью фурье-синтеза по спектру Ф (Н) можно вычислить функцию плотности р (г). По этой причине теория структурного анализа явно или неявно использует математический аппарат представления функций с помощью рядов и интегралов Фурье. [c.9]

    Испускаемый источником свет имеет сложный спектральный состав, так как происходит от атомов различных элементов, находящихся притом в различных энергетических состояниях. Поэтому для обнаружения световых лучей, характерных для каждого элемента, необходимо суммарное излучение разложить по длинам волн в спектр, что осуществляется с помощью диспергирующего устройства в спектральных аппаратах (спектроскопах, стилометрах, спектрографах). [c.182]

    Излучение источника света складывается из излучения атомов всех элементов, присутствующих в пробе. Для анализа необходимо выделить излучение каждого элемента. Это осуществляют с помощью оптических приборов — спектральных аппаратов, в которых световые лучи с разными длинами волн отделяются в пространстве друг от друга. Излучение источника света, разложенное по длинам волн, называется спектром. [c.7]

    Свет, разложенный в спектральном аппарате в спектр, можно рассматривать визуально или зарегистрировать с помощью фотографии или фотоэлектрических приборов. Конструкция спектрального аппарата зависит от метода регистрации спектра. Для визуального наблюдения спектра служат спектроскопы — стилоскопы и стилометры. Фотографирование спектров осуществляют с помощью спектрографов. Спектральные аппараты — монохроматоры — позволяют выделять свет одной длины волны и его интенсивность может быть зарегистрирована с помощью фотоэлемента или другого электрического приемника света. [c.8]

    Интенсивность спектральных линий растет с увеличением концентрации элемента в пробе. Поэтому для проведения количественного анализа нужно найти интенсивность одной спектральной линии определяемого элемента. Интенсивность линии измеряют или по ее почернению на фотографии спектра (спектрограмме) или сразу по величине светового потока, выходящего из спектрального аппарата. Величину почернения линий на спектрограмме определяют на микрофотометрах. [c.8]


    Схема проведения абсорбционного спектрального анализа (см. рис. 1, б) отличается от уже рассмотренной схемы только в своей начальной части. Источником света служит нагретое твердое тело или другой источник сплошного излучения. Анализируемую пробу помещают между источником света и спектральным аппаратом. Спектр, характеризующий вещество, составляют те длины волн, интенсивность которых уменьшилась (рис. 3). Спектр поглощения веществ удобно изображать графически, откладывая по оси абсцисс длину волны, а по оси ординат — интенсивность прошедшего (рис. 3, б) или поглощенного (рис. 3, в) веществом света. [c.8]

    Спектры поглощения получают с помощью спектральных аппаратов — спектрофотометров, в состав которых входят источник сплошного света, монохроматор н регистрирующее устройство. [c.9]

    Переходя к более коротким волнам, попадаем в оптические области спектра инфракрасную, видимую и ультрафиолетовую. Разложение излучения в спектр осуществляется с помощью оптических спектральных аппаратов. Излучение и поглощение света в оптических областях спектра тесно связано со строением отдельных атомов и молекул и широко используется в спектральном анализе. [c.26]

    По любому направлению от источника света распространяются лучи разных длин волн. Это излучение надо разложить в спектр, т. е. отделить в пространстве лучи разных длин волн друг от друга. После этого легко зарегистрировать и измерить интенсивность линий или полос. Спектральные аппараты и предназначены для разложения электромагнитного излучения в спектр. [c.83]

    В настоящее время часто конструктивно оформляют вместе, в виде одного прибора, спектральный аппарат и устройство для регистрации и фотометрии спектров. В этой главе рассмотрены только сами спектральные аппараты, а описание устройств, регистрирующих спектр, отложено до следующей главы. [c.83]

    Материалы для изготовления призм. Для изготовления призм и других оптических деталей спектральных аппаратов применяют самые разнообразные материалы. Выбор материала зависит от его свойств прозрачности и дисперсии в рабочей области спектра, однородности, прочности, устойчивости к влажности воздуха и т. д. [c.86]

    Ход лучей в призменном спектральном аппарате показан на рис. 65. Рассмотрим оптическую схему этого прибора более детально. Начнем со щели и первого объектива, которые составляют коллиматор. Щель является объектом, изображение которого строит спектральный аппарат. Качество спектра зависит от качества изготовления щели. [c.94]

    В зависимости от назначения спектрального аппарата в его фокальной поверхности располагают различные устройства. В спектрографах спектр регистрируют с помощью фотографической пластинки, светочувствительную эмульсию которой совмещают СО спектром. Фотографическую пластинку помещают в кассету, которая вместе с объективом составляет камеру, вполне аналогичную камерам фотографических аппаратов. [c.96]

    При боковом выходе потока из аппарата выходное отверстие получается ограниченным двумя взаимно перпендикулярными плоскостями (боковой стенкой, в которой сделано выходное отверстие, и крыщкой). В результате подтекание жидкости происходит только из четверти сферы, и скорость движения жидкости при этом увеличивается по сравнению со случаем подтекания ее из полусферы. Спектр потока для бокового выхода может быть рассмотрен как половина спектра отверстия с удвоенной шириной (рис. 6.3, б). Это значит, что в формуле (6.4) вместо величины x/Dlг следует подставить х/(201г), а в формуле (6.6) вместо хЮ .г — отношение х/(20к.г)-Таким образом, [c.142]

    Опыты на моделях заключа ись в измерении скоростей потока и давлений в различных сечениях рабочей камеры как перед решеткой, так (глав ым образом) и за ней, а также в определении сопротивления участка сети от входа в аппарат до сечения за решеткой. Во многих случаях производились визуальные наблюдения спектра потока с И0М0ЩЬ 0 шелковинок, подвешенных 1 а нитяной сетке в проволочной раме. [c.160]

Рис. 7.15. Спектры потока (по шелковинкам) в рабочей камере модели аппарата круглого сечения (Рк1Ра = 9,6) при боковом входе потока (НрЮн > 0,2) и различных решетках а — без спрямляющей решетки. 0,35 б,— со спрямляющей реи1ет-кой. И/0 = 0.5 I — р= = 0 2 — Ер = 4,9 3 — = 6. 4 - = 30 . 5 - Рис. 7.15. <a href="/info/1415468">Спектры потока</a> (по шелковинкам) в <a href="/info/616193">рабочей камере</a> <a href="/info/25783">модели аппарата</a> <a href="/info/1158675">круглого сечения</a> (Рк1Ра = 9,6) при боковом <a href="/info/27045">входе потока</a> (НрЮн > 0,2) и <a href="/info/1497988">различных решетках</a> а — без спрямляющей решетки. 0,35 б,— со спрямляющей реи1ет-кой. И/0 = 0.5 I — р= = 0 2 — Ер = 4,9 3 — = 6. 4 - = 30 . 5 -
    Prie. 8.8. Спектр потока при кольцевом входе а аппарат (щели, расположенные напротив [c.214]

    По полученным распределениям скоростей, а также на основе визуальных наблюдений спектра потока с помощью щелковинок, можно установить следующее. При отсутствии распределительных решеток в рабочей камере аппарата получается очень неравномерное поле скоростей (.Иг( = 14- 15). Почти во всем сечении создается область отрицательных скоростей (обратных токов). Поступательное движение сосредоточено или в очень узкой полосе вблизи нижней стенки аппарата (вариант 1-1, табл. 9.1), или в несколько большей области вблизи верхней стенки аппарата (вариант П-1). Отклонение потока к нижней или верхней стопке рабочей камеры обусловлено тем направлением потока, которое он получает при выходе из колена или отвода газохода перед диффузором. Как было показано, при отсутствии в коленах и отводах направляющих лопаток поток на повороте получает направление от внутренней стенки к внешней. Если за этими фасонными частями нет достаточно длинных прямых участков, то отклонение потока сохраняется и после выхода tro из указанных частей газохода. Отсутствие направляющих лопаток в колене приводит к дополнительному сжатию потока (повышению его скорости) иа выходе из колепг . Поэтому в случае подвода потока к диффузору через колено без направляющих лопаток максимум скоростей в сечении рабочей камеры аппарата получается больше, >ем в случае подвода через плавный отвод. [c.224]

    Из классификации теплообменников (см. главу 1) и видов их расчета (см. главу 2) видно, какое бесконечное множество частных алгоритмов требуется для охвата основными видами )асчета наиболее распространенных промышленных аппаратов. Рассмотренные далее постоянные структуры являются универсальными, распространяются на любые теплообменники, что позволяет перейти от кумуляции частных алгоритмов к синтезу универсальных алгоритмов широкого спектра приложения. Таким образом, закладывается надежная методическая основа синтеза практически любых алгоритмов расчета и оптимизации промышленных геплообменников. [c.55]

    Зная частотную характеристику системы, можно выбрать спектр воздействия, приводящего к максимальному отклику, т.е. интенсифи кации соответствующего процесса в системе [3]. Дальнейшим обобще нием преобразований Фурье являются преобразования Лапласа [33] Последние служат математическим инструментом для анализа слож ных неустановившихся (переходных) процессов часто также в реше НИИ подобных задач используется аппарат обобщенных функций Приняв, что функция единичного скачка (функция Хэвисайда) равна [c.65]

    Температуры, существенно превышающие уровень температур в печах и камерах сгорания, наблюдаются в дугах, в ударно нагретых газах перед движущимися с гиперзвуковон скоростью аппаратами, такими, как планетарные зонды, возвращающиеся космические корабли, и в ядерных взрывах. При столь высоких температурах в спектрах появляются линии одноатомного газа и электронные системы полос многоатомных газов, обязанные переходам между электронными уровнями энергии — связанно-связанным переходам. Фотоионизация, или свя-занно-свободные переходы, возникают в том случае, когда процессы с участием фотонов и термического возбуждения достаточны для ионизации газа. Эти переходы дают непрерывный спектр, являющийся противоположностью линиям или полосам поглощения, поскольку фотон, обладая энергией ниже требующегося для ионизации минимального значения, тем не менее может вэаи- [c.487]

    Ввиду размытости Я1ЛР-спектров в сложных случаях целесообразно восстановление плохо разрешенных спектров редукцией к идеальному прибору. Это достигается решением уравнения Фредгольма первого рода с использованием аппарата регуляризации. [c.22]

    Действенным методом повышения эффективности воздействия акустических полей на процесс диспергирования является совместное действие полей двух частот. На рис. 3.9. представлена амплитудно-частотная характеристика акустического гомогенизатора, используемого в аппарате для смачивания и диспергирования пигментных материалов. На вибрационном спектре, косвенным образом характеризующем диспергирующие свойства гомогенизатора, представлены колебания полей двух частот (800 Гц и 2000 Гц). Один из возможных механизмов взаимодействия полей двух частот строится [43] на предположении, что кавитационная эффективность определяется захлопыванием полостей в поле низкой частоты, а действие высокочастотного поля создает дополнительную осцилляцию полостей. Оценку такого механизма взаимодействия можно провести на основании уравнения движения полости в форме Нолтинга - Неппарайса  [c.65]

    Установление эмпирических зависимостей между структурой молекулы и ее масс-спектром приводит к выяснению общих закономерностей, управляющих процессами диссоциативной ионизации. Несмотря на то, что все еще отсутствует аппарат, который позволил бы количественно рассчитать масс-спектр индивидуального соединения, имеются предпосылки для вычисления количественных признаков, общих для типов соединений, С этих позиций весьма плодотворным оказалось использование кривых распределения интенсивностей пиков ионов по числу углеродных атомов в иоиах. Поскольку положение максимумов на кривых определяется величиной 2 в формуле СиНоп+г, то возможно установить состав гомологических рядов ионов, специфичных для углеводородных групп, спектры которых неизвестны [183]. С другой стороны, кривые отражают особенности молекулярной структуры изомеров, что было положено в основу создания методики раздельного определения циклопептановых и циклогексаиовых углеводородов в сложных смесях и идентификации типов этиленовых углеводородов [113, 115]. [c.80]

    Сравнение уравнений (1.46) и (1.17) показывает, что величина г . равна радиусу первой боровской орбиты, а из сопоставления уравнений (1.47 ) и (1.21) видно, что мин. найденная с помощью соотношения неопределенностей, совпадает с минимальным значением энергии электрона в атоме водорода, указываемым теорией Бора и исследованием водородного спектра. Конечно, рассмотренная задача сформулирована прибли-женно, движение электрона в атоме не- 20 возможно ограничить какой-либо строго определенной сферой. Тем не менее такое рассмотрение объясняет, почему электрон в атоме не падает на ядро, и позволяет правильно оценить минимальное значение энергии электрона. Тот же результат можно вполне строго получить путем решения уравнения Шредингера для атома водорода, но это требует использования очень сложного математического аппарата, [c.29]

    Для регистрации спектральных линий применяются визуальные, фотографические и фотоэлектрические приборы и аппараты. В зависимости от способа регистрации спектра различают визуальный спектральный анализ, в котором спектр наблюдают в видимой области при помощи стилоскопов и стилометров или при помощи флуоресцирующих экранов, преобразующих невидимые ультрафиолетовые лучи в видимые. Визуальный анализ применяют в качественном анализе и иногда в количественном анализе. Если для регистрации спектров используют фотографические пластинки, то метод анализа называется фотографическим спектральным анализом. Особенно широко этот метод применяют в качественном и количественно анализе. В фотоэлектрическом спектральном анализе, который используется исключительно для количественного анализа, спектры регистрируются фотоэлектрическими приборами. [c.225]

    Отклонения, вызываемые не строго монохроматическим излучением. Закон Бугера — Ламберта — Бера точно справедлив только для монохроматического излучения. В спектрофотометрических измерениях применяют монохроматоры, т. е. спектральные аппараты, которые снабжены выходной щелью, вырезающей из спектра узкий участок. Но монохроматор может дать строго монохроматическое излучение только в том случае, если он снабжен бесконечно узкой щелью. В действительности реальные аппараты снабжены щелью какой-то определенной ширины, что вызывает некоторое отклонение от закона Бугера — Ламберта—Бера. Особое значение немонохроматичность излучения приобретает при измерениях в инфракрасной области спектра. [c.246]


Смотреть страницы где упоминается термин Спектры аппараты: [c.31]    [c.32]    [c.145]    [c.165]    [c.213]    [c.124]    [c.125]    [c.6]    [c.8]    [c.9]   
Техника физико-химических исследований при высоких и сверхвысоких давлениях (1976) -- [ c.397 , c.398 , c.399 ]




ПОИСК





Смотрите так же термины и статьи:

Спектральные аппараты для видимой области спектра

Спектральные аппараты спектра

Электронный резонанс аппарат для исследования спектров



© 2025 chem21.info Реклама на сайте