Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Относительное время жизни

    Как способ отождествления различных изомеров колебательная спектроскопия очень широко применяется в органической химии. Она позволяет установить для данного вещества существование не только мономеров, но и отдельных конформеров. Так как время жизни данного конформера (Ш с) в сотни и тысячи раз больше периода колебаний (10 —10 с), он успевает проявить себя в колебательном спектре. Измерение зависимости интенсивности полос двух конформеров от температуры позволяет определить теплоту превращения одного из них в другой, т. е. относительную их устойчивость. Однако далеко не всегда одни только колебательные спектры достаточны для однозначного определения равновесной конфигурации молекулы. Обычно должна использоваться совокупность данных нескольких взаимозаменяющих методов исследования, например вращательной и колебательной спектроскопии, электронографии, измерения дипольных моментов и др. [c.176]


    Таким образом, мгновенные нейтроны, относительное число которых составляет (1 — р), имеют время жизни, /т в то время как запаздывающие нейтроны каждой группы имеют время жизни, равное плюс среднее время запаздывания до своего ноявления в системе, т. е. 1А. Конечно, условие (9.99) выполняется только для малых реактивностей, причем в общем случае величина 1/а1 имеет более сложную зависимость от включенных в нее параметров. Коэффициент при / в показателе первой экспоненты обычно называют установившимся обратным периодом реактор а, т. е. [c.421]

    Таким образом, в рамках принятой модели за время жизни возбужденной молекулы начальная кинетическая энергия колебательных степеней свободы, включая и координату реакции, в среднем сосредоточивается на молекуле N2. в то время как энергия вращения в среднем переходит в кинетическую энергию относительного движения продуктов (рис. 4.33). [c.119]

    Опыты с микроскопическими пленками показали следующее. При низких концентрациях детергента, которым соответствует малая устойчивость пен (время жизни примерно 10 с), микроскопические пленки относительно быстро утончаются и при некоторой критической толщине h r, составляющей около 200— [c.236]

    Характеристическое поглощение или излучение атомов, соответствующее переходам атомов из одного состояния в другое, по ряду причин не является строго монохроматическим, а характеризуется некоторым распределением коэффициента поглощения или интенсивности излучения относительно центральной частоты этого перехода (рис. 3.33). Основными параметрами такого распределения служат или I в центре линии и ширина линии на половине ее высоты Ау. Основными факторами уши-рения спектральных линий являются конечное время жизни возбужденных состояний атомов (естественное уширение), тепловое движение атомов относительно оси наблюдения (э ф -фект Допплера), столкновения атомов между собой и с посторонними частицами (эффект Лорентца) и ряд других эффектов. [c.139]

    Нужно ЛИШЬ помнить при этом об ограничениях, накладываемых критерием Флори /о в некристаллизующихся полимерах, в принципе, при /о<0,63 может возникнуть даже термодинамически устойчивая нематическая мезофаза, зародышем которой могут быть пачки [22], но при /о>0,63 все метаморфозы могут происходить лишь с клубками. Конденсация клубков может привести к образованию глобулярных структур, которые действительно наблюдались (в отличие от пачек) существование клубка уже само по себе предрасполагает к складыванию, так что могут возникать и зародыши складчатых структур, но время жизни их будет всегда относительно небольшим. [c.45]


    Ассоциаты— относительно неустойчивые группы молекул или атомов, возникающие за счет дальнодействующих химических связей. Образуются в жидком или газообразном состоянии вещества. Так, в разреженных парах (р = 1 Па) аргон образует димеры Агг, время жизни которых при 77 К составляет 1 10 с. Равновесное расстояние между атомами аргона в ассоциате составляет 381 пм. С увеличением давления аргона появляются более сложные его ассоциаты, состоящие из большего числа атомов. Из природы сил межмолекулярного взаимодействия (раздел 4.9.2) следует, что число таких ассоциатов при данной температуре будет тем больше, чем больше размеры молекул и их поляризуемость, полярность и возможность образования специфических межмолекулярных связей. В этом случае такие вещества будут переходить нз газообразного состояния в жидкое при более высоких температурах. [c.165]

    Если возбужденное состояние относительно устойчиво, то электрон, находящийся на возбужденном синглетном уровне может осуществить нерегламентированный правилами отбора интеркомбинационный переход (ИКП) и попасть на триплетный уровень возбужденного состояния Время жизни возбужденного триплетного состояния велико — от Ю до нескольких секунд, вероятность запрещенного триплет-синглетного перехода мала наблюдается явление фосфоресценции. [c.95]

    Время жизни элементов не является простой, монотонно изменяющейся с ростом Z функцией. Так, после висмута наблюдается уменьшение, затем увеличение периода полураспада в интервале торий — уран, далее вновь снижение за ураном и ожидаемый относительный подъем. Еще в 30-х годах XX в. была замечена непонятная тогда закономерность ядра атомов, которые содержали [c.426]

    Возбужденная молекула может распасться на два радикала, что и будет актом деструкции Р - -Р + Н 2- Выделяющийся при радиолизе вторичный электрон с относительно низкой скоростью может не только рекомбинировать с образовавшимся ионом полимера (реакция в клетке ), но и реагировать с другими молекулами (выход из клетки ), образуя новые ионы. Эти изменения происходят очень быстро (10 с). Время жизни полимерных ионов или радикалов зависит от подвижности макромолекул и при низких температурах может быть порядка недель и месяцев. [c.245]

    При переходе от 5г к Ва тип ядра по массе главного, наиболее распространенного стабильного изотопа меняется. Для относительно легкого стронция это изотоп (тип 4и), а для значительно более тяжелого бария — з Ва (тип 4п + 2). Важно отметить, что изотоп стронция с типом ядра по массе 4п-1-2( °8г) является радиоактивным (Р, Т 1/2=25 лет) и присутствует среди продуктов деления урана. 8г очень опасен не только потому, что имеет жесткое излучение и продолжительное время жизни, но и потому, что способен изоморфно замещать кальций в живых организмах, например в костной ткани человека и животных. Инкорпорированный 8г по этой причине долго не выводится из пораженного им организма и вызывает сильное лучевое нарушение костного мозга и других тканей. [c.25]

    Синглет-синглетные переходы могут происходить На относительно больших расстояниях, до 40 А, а для триплетных переходов обычно требуется столкновение молекул [26]. С помош,ью фотосенсибилизации обоих типов можно получить возбужденные состояния в тех случаях, когда их трудно генерировать прямым облучением, что делает фотосенсибилизацию важным методом проведения фотохимических реакций. Особенно это касается триплет-триплетных переходов, поскольку триплетные состояния гораздо труднее, а иногда и невозможно получить прямым облучением и поскольку перенос энергии путем фотосенсибилизации намного вероятнее для триплетных состояний, имеющих большее время жизни, чем синглетные состояния-Фотосенсибилизация возможна лишь в тех случаях, когда энергия донора О превышает энергию возбужденного акцептора А и избыток энергии переходит в кинетическую энергию продуктов О и А. Так что прежде, чем проводить фотосенсибилизацию, следует выяснить энергию этих состояний. В табл. 7.5 приведены значения энергий некоторых триплетных состояний [27]. Выбирая фотосенсибилизатор, следует избегать тех соединений, которые поглощают в той же области, что и акцептор, так как в противном случае последний будет конкурентно поглощать свет [28]. Примеры использования фотосенсибилизации для проведения реакций см. т. 3, реакции 15-38 и 15-48. [c.316]

    Поэтому при образовании связи С—Н происходит обращение конфигурации. В полярных апротонных растворителях, подобных диметилсульфоксиду, наблюдается рацемизация. Карбанион в этих случаях имеет относительно большое время жизни и сольватирован симметрично. [c.414]

    Легко видеть, что в реакциях, включающих образование циклических интермедиатов типа 2, присоединение должно идти как 1 ты-процесс, так как атака на второй стадии может идти только с тыла. Стереохимию реакций, идущих через интермедиат типа 1, предсказать не так легко. Если интермедиат 1 имеет относительно большое время жизни, присоединение должно быть нестереоспецифичным, так как вокруг одинарной связи будет происходить свободное вращение. Однако возможна ситуация, когда некий фактор способствует сохранению конфигурации интермедиата, и тогда, частица Ш в зависимости от обстоятельств может присоединяться либо с той же, либо с противоположной стороны. Например, положительный заряд может стабилизироваться притяжением к V без образования связи  [c.135]


    Такой подход обусловлен тем, что одновременное столкновение трех частиц маловероятно. Если тдв —среднее время жизни комплекса АВ относительно процесса мономолекулярного распада на исходные частицы соизмеримо с периодом колебаний ( 10- с), то при нормальных условиях большая часть комплексов распадается на исходные частицы прежде, чем произойдет их столкновение с третьей частицей С. [c.752]

    Предположим теперь, что вероятность перехода из состояния 3 в состояние 2 превосходит вероятность перехода из состояния 2 в состояние 1, т, е. время жизни Тд очень мало, а время жизни велико. В этом случае по мере высвечивания некоторые частицы из состояния 3 будут переходить не в состояние /, а в состояние 2 (см. рис. 181, б"). Уменьшение N3 относительно сразу же компенсируется за счет поглощения падающих на систему фотонов с энергией Ясно, что по прошествии некоторого времени [c.436]

    Фенольные соединения легко окисляются до более высокомолекулярных веществ, содержащих фенольные и хиноидные структурные элементы. Первой стадией этого процесса является образование относительно стабильных фенокси-радикалов [6], время жизни которых (составляющее 10 с для незамещенных фенокси-радикалов) увеличивается за счет резонансной стабилизации и стерических факторов до нескольких часов и даже суток для фенокси-радикалов, имеющих объемистые заместители в ароматическом ядре. В мономерной форме такие арилокси-радикалы парамагнитны, а нередко и ярко окрашены (см. разд. 18). В результате реакций [c.104]

    Хотя в случае этанов, претерпевающих быстрые поворотные переходы, химический сдвиг между геминальными ядрами усредняется, его усреднение до нулевого значения необязательно, если только время жизни в каждой из зеркальных конформаций (при геминальном сдвиге, не равном нулю) не будет одинаковым. Например, геминальные атомы фтора в СВгРг—СНВгС не эквивалентны по величине химического сдвига при температурах вплоть до 200° [76, 79], хотя степень неэквивалентности изменяется с температурой, так как относительное время жизни также зависит от температуры. Аналогично этому [79] метиленовая группа 2,3-дибром-2-метилпропионового эфира дает резонансный квадруплет, в то время как спектр более симметричного производного — 1, 2-ди бром-2-метилпропана — содержит одну четкую линию метиленовой группы. Следует подчеркнуть, что даже в тех случаях, когда геминальные протоны эквивалентны в отношении химического сдвига за счет усреднения, из-за вращения эти протоны не всегда характеризуются эквивалентным спин-спиновым взаимодействием с соседними протонами. Спектр высокого разрешения 1,2-хлорбромэтана [66] мо- [c.311]

    Энергия перехода молекулы этилена в первое синглетное С стояние близка к 640 кДж/моль для других олефинов она нескол ко ниже. Следовательно, возбуждение молекулы олефина пёрев дет ее на относительно высокий энергетический уровень. Энерп перехода этилена из основного в первое триплетное состоян составлят 344 кДж/моль для других олефинов эта энергия ниж Следует также отметить, что время жизни синглетных состоят (10 Ч-10 с) значительно ниже времени жизни триплетных с стояний. Малое время жизни синглетов исключает и химичесю изменение молекулы в этом состоянии. [c.66]

    В простейшем случае одноатомных молекул среднее время жизни двойного комплекса по порядку величины должно быть равным времепи пребывания одной частнц1.1 вблизи другой в процессе их свободного движения, т. е. т = А м, где м--средняя относительная скорость частиц. Полагая й = = 3-10 см, и == 5-10 см-сек и М = 30, из формулы (20.3) при Т = = 300 К найдем == 1,2-10 3< см -молекул -сек = 4,4-10 см -мо.1ъ сек ). [c.133]

    Время жизни составляет 0,002—0,2 с. Константа первого порядка к для обмена (1/т) ироиорциональна концентрации ионов HзNH l и обратно ироиорциональна концентрации нонов Н+. Это означает, что необходимо учитывать только механизмы (в) и (г). Относительный вклад реакций (в) и (г) можно определить по изменениям ширины линии Н2О. На долю реакцнн (г) приходится нриме])но 60% общего обмена. Отсюда были получены к = = 4-10 л/(моль-с) и / 4 = 5,3- 10 л/(моль-с). [c.272]

    При аналогичных исследованиях монослоев нормального (нерастянутого) типа Талмуд и Суховольская (1931 г.) также нашли, что максимальное время жизни пузырька наблюдается тогда, когда концентрация детергента ниже концентрации, соответствующей плотной упаковке. Позже подобные результаты были получены Трапезниковым. Адам 17] высказал сомнение в правильности выводов Талмуда и Суховольской. Он утверждает, что концентрации, которые меньше концентрации насыщения, но близки к ней, соответствуют двумерному гетерогенному состоянию с горизонтальным участком на кривой зависимости а = а (с) (что соответствует равенству а/йс = 0), тогда как, согласно его представлениям, максимальная стабилизация должна была бы достигаться при максимальном значении йоШс. Нам кажется, что правильнее было бы сделать обратный вывод, а именно предположение Адама относительно влияния величины с1о/(1с на устойчивость пен неверно. В дальнейшем мы еще остановимся на теории Гиббса, из которой исходил Адам, делая свой вывод. [c.227]

    Умножив отношение объемов двух жидкостей на определенное таким образом время жизни двух возможных эмульсий, мы получим критерий относительной устойчивости двух эмульсий, учитывающий оба фактора, от которых зависит скорость коалесценции вероятность столкновения двух частиц и вероятность их слияния. Если полученный критерий значительно больше единицы, другг.. ми словами, если прямая эмульсия намного более устойчива, чем обратная, то можно однозначно сказать, каки.м будет конечный продукт эмульгирования. [c.242]

    Атомы в комплексе соверщают колебания по различным направлениям, но, как сказано, существенны колебания вдоль линии валентных связей (это направление колебаний называют координатой реакции). Можно рассмотреть относительное смещение атомов, представив, что первый и третий атом неподвижны, а второй приближается то к первому, то к третьему. В конце одного колебания при сближении атомов Вг и Н комплекс распадается. Время жизни комплекса обратно пропорционально частоте колебаний V. В течение этого времени комплекс находится в квазистационарном равновесии с исходными частицами. Рассмотрим такое равновесие в общем виде А + В 5 Х+, где А и В — исходные частицы Х+ — активированный комплекс. [c.239]

    Поскольку в настоящее время имеется ряд хороших монографий, посвященных проблемам реологии и, в частности, вязкости полимеров (см., например, [38, 49]), мы ограничимся лишь кругом вопросов, касающихся механизма вязкого течения в связи со структурными и релаксационными принципами, изложенными выше. В частности, уравнение (V. 2) уже дает определенную почву для раздумий на что конкретно расходуется механическая энергия Из вполне очевидного ответа — на разрушение структуры системы — следует немедленно второй вопрос о влиянии скорости воздействия (мерой которой служит градиент у, имеющий размерность обратную времени) на это разрушение и, соответственно, на диссипацию энергии и величину вязкости. При этом выясняется, что всем полимерным системам в вязкотекучем состоянии присуща так называемая аномалия вязкости [термин неудачный, ибо отклонение от формулы (V. 1), вызванное естественными и физически легко интерпретируемыми причинами, вряд ли следует считать аномалией], проявляющаяся в зависимости эффективной (т. е. измеряемой в стандартных условиях, при фиксированных Я и -у) вязкости от Р или от у. Эта аномалия связана как с разрушением структуры системы, так и с накоплением высокоэластических деформаций в дополнение к пластическим (необратимым). Эти деформации и разрушение претерпевает суперсетка, узлы которой образованы микроблоками или, в меньшей мере, перехлестами единичных цепей. При переходе от расплава к разбавленному раствору относительный вклад последних в структуру сетки возрастает, точнее, выравниваются времена их жизни и времена жизни флуктуационных микроблоков. [c.163]

    Дальнейшие работы физиков-теоретиков всех стран показали, что следующими магическими числами являются 114 для протонов и 184 для нейтронов. Элементы с числом протонов и нейтронов, близкими к 114 и 184, назвали сверхэлементами. Название сверх-элементы отражает тот факт, что подобные ядра практически нестабильны, можно говорить лишь об относительном повышении их устойчивости. Ядро мХ дважды магическое, является более устойчивым по отношению к спонтанному де пению, тогда как время жизни относительно а-распада у всех ядер сильно умень-п ается с увеличением порядковых чисел (2). Теоретики предсказывают, что очереаиой сверхэлемент с дважды магическим ядром будет содержать 164 протона и 308 нейтронов [c.427]

    Если ионные интермедиаты в схемах (а) и (б) имеют достаточно большое время жизни для того, чтобы произошло вращение вокруг простой связи до наступления второй стадии элиминирования, то никаких специальных стерических требований к относительной ориентации связей С—Н и С—X в исходном соединении не выдвигается. Однако при согласованном (Е2) элиминировании (а) реакция протекает наиболее легко в том случае, если связи С—Н и С—X антиперипланарны , т. е. лежат в одной плоскости и направлены в противоположные стороны от общей углерод-углеродной связи. [c.228]

    Мы должны теперь дать некоторые объяснения природы за-преш,енного триплет-синглетного излучения. В разд. 2.6 мы полагали, что электрические дипольные переходы могут иметь место и при Д8 0, если S не дает хорошего описания системы. Оптические переходы между триплетными и синглетными состояниями могут наблюдаться, если триплет не является чистым, а содержит синглетную составляющую, и наоборот. В органических молекулах перемешивание синглетных и триплетных состояний происходит за счет слабого спин-орби-тального взаимодействия. Так как спин-орбитальное взаимодействие между состояниями одной и той же конфигурации запрещено, то, например, состояние (я, я ) может перемешаться с состояниями (п, я ) и .,(о, я ) и не может с состоянием (я, л ). Аналогично состояние (п, л ) перемешивается с состоянием (я, я ). Поскольку радиационный переход из состояния (я, я ) в основное состояние полностью разрешен, тогда как переход из (п, я ) в общем случае частично запрещен, следовательно, переход Т(п, я )->-5о является более разрешенным, чем (я, я )- 5о. Таким образом, относительная вероятность триплет-синглетных переходов из состояний (п, я ) и (я, я ) отличается от той, что наблюдается при синглет-син-глетных переходах. Экспериментальные исследования естественных времен жизни флуоресценции находятся в соответствии с этими предсказаниями в ароматических углеводородах, имеющих нижнее триплетное состояние (я, я ), радиационное время жизни равно приблизительно 1—10 с, в то время как у карбонильных соединений нижним триплетным состоянием является уровень (л, я ), характерное время жизни которого обычно равно 10 2—10- с. [c.100]

    Приводит ли в данном случае обращенный процесс Оже к большей скорости рекомбинации с излучением, чем прямой процесс, зависит от относительных значений вероятностей перехода в нижние устойчивые состояния и от плотности предиссоциирующих или преионизирующих состояний. Для рекомбинации электрона с одноатомным ионом различными авторами [12, 451 было найдено, что при высоких температурах влияние обращенной преионизации велико (скорость увеличивается в 100—1000 раз). Этот факт имеет важное значение для понимания процессов в звездных атмосферах и в солнечной короне. Для рекомбинации радикала с атомом или радикала с радикалом, насколько известно, подобные расчеты не производились, однако весьма вероятно, что обращенная предиссоциация вносит существенный вклад в скорость рекомбинации при низком давлении, в частности,, в многоатомных системах. Обращенные процессы Оже также увеличивают скорость рекомбинации при соударении трех частиц, так как время жизни образующегося комплекса достаточно велико. [c.191]

    О—числом молекул, нрсвративиН1хся или вновь образо вавшихся в в-ве на 100 эВ поглощенной энергии излучения. В газовой фазе при Р.-х. р., как и при фотохимических реакциях, первичные продукты — ионы н возбужденные короткоживущие молекулы (время жизни этих продуктов 10 с). Реагируя с молекулами среды и друг с другом, они приводят к образованию относительно долгоживущих своб. ралчгсалов, ион-радикалов, а также разл. стаб. иродуктов. В результате Р.-х. р. из кислорода, нанр., образуется озон, из газообразных предельных углеводородов — яодород и сложная смесь углеводородов разл. строения. [c.489]


Смотреть страницы где упоминается термин Относительное время жизни: [c.13]    [c.63]    [c.123]    [c.111]    [c.77]    [c.78]    [c.169]    [c.50]    [c.65]    [c.77]    [c.78]    [c.369]    [c.73]    [c.167]    [c.748]    [c.76]    [c.188]   
Неформальная кинетика (1985) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Время жизни



© 2025 chem21.info Реклама на сайте