Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия характеристические частоты

    В этой главе рассматривается не столько сам метод, сколько его применение к решению проблем химии нефти. Это относится к применению инфракрасной спектроскопии и спектров комбинационного рассеяния для изучения химического строения углеводородов и углеводородных смесей. Несмотря на то значение, которое имеет качественный и количественный анализы индивидуальных соединений, основное внимание уделяется характеристическим частотам, наблюдаемым в спектрах веществ с определенной молекулярной структурой. Оценивается возможность количественного определения содержания углеводородов данного типа или данных структурных групп. В главе обсуждаются лишь основные вопросы спектроскопии комбинационного рассеяния света и инфракрасной спектроскопии, а вопросы, относящиеся к рассмотрению природы колебательных спектров или интерпретации колебательных частот, рассматриваются лишь частично. [c.313]


    Можно ли применить подобные рассуждения к молекулам Да, можно, причем двояко. Во-первых, из спектроскопии известно, что характеристические частоты электронов в молекулярных системах лежат в видимой и ультрафиолетовой областях спектра, тогда как частоты колебаний ядер — в инфракрасной области, так что (oj / u ) 100 и критерий адиабатичности для молекул выполняется (правда, как мы увидим далее, — не всегда). Во-вторых, слоистое строение электронных оболочек атомов и молекул позволяет разделить электроны на группы в зависимости от скорости их движения, так как периоды движения оптических (валентных) электронов и электронов остова существенно различаются. В настоящее время адиабатическое разделение быстрых и медленных электронов применяется главным образом в теории атомов, и мы о нем в дальнейшем говорить не будем, сосредоточив внимание на адиабатическом разделении электронных и ядерных движений. [c.109]

    Предлагаемый в данной работе подход относится к феноменологическим, т.к. система, поглощающая излучение, рассматривается как единое целое, а переходы электронов с одного уровня на другой во внимание не принимаются. Такое необычное направление в электронной спектроскопии определено нами, как электронная феноменологическая спектроскопия (ЭФС). Вещество изучается как единое целое, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных групп или компонентов системы. Известно, что электронное строение веществ определяет его физико-химические свойства [5]. В свою очередь, электронные спектры также определяются конфигурацией электронных оболочек. Отсюда следует, что электронные спектры поглощения могут быть применены для определения физико-химических свойств. [c.84]

    Применение метода ИК-спектроскопии для изучения строения частиц базируется или на теоретическом анализе спектра, или на полуэмпирическом методе характеристических частот . В самом простом случае этот метод используется для идентификации частиц сравнением спектра с литературными данными. Например, известно, что координация нитрит-иона через атом кислорода приводит к появлению в ИК-спектре полос при 1460 и 1065 см а через атом азота — при 1430, 1315 и 825 см . Простое сопоставление ИК-спектра исследуемого комплекса с этими данными позволяет установить характер координации в нем N02". [c.27]

    МОЖНО Сравнить с характеристическими частотами в спектроскопии в инфракрасной и ультрафиолетовой областях спектра. [c.257]


    Общие принципы качественного анализа методом ИК-спектроскопии детально изложены в специальных монографиях, в которых приведены данные о характеристических частотах (см. список литературы). [c.185]

    По существу, эта гипотеза предвосхитила концепцию характеристических частот, развитую несколькими десятилетиями позже и лежащую в основе применения колебательной спектроскопии для открытия сдельных функциональных групп, ионов или молекул неорганических и органических соединений. [c.44]

    При применении ИК-спектроскопии в качественном анализе часто используют концепцию характеристических частот. В соответствии с уравнением (20.6) единственная основная колебательная частота двухатомной молекулы есть функция силовой постоянной к и масс обоих [c.535]

    Главным условием квалифицированного применения методов колебательной спектроскопии является надежное отнесение наблюдаемых в эксперименте полос поглощения (ИК) или испускания (КР) к тому или иному типу колебания связей, выявление характеристических частот колебаний. Ниже рассмотрены лишь отдельные представители пероксидов различных классов. Соединения отобраны исходя из их практической значимости, а также надежности экспериментальных данных. [c.144]

    При работе с инфракрасными спектрами и спектрами протонного магнитного резонанса используются таблицы характеристических частот и химических сдвигов. Для приобретения навыков в работе с таблицами в настоящем разделе особо выделены задачи но инфракрасной спектроскопии и спектроскопии протонного магнитного резонанса. В них предлагается провести как простое сопоставление спектров со строением органического соединения, так и определение структурных элементов молекулы по приведенному ПК- или ПМР-спектру. [c.111]

    Показана эффективность ИК-спектроскопии для изучения кинетики накопления различных функциональных фупп (С—О, С=0, СООН, О—Н) и уменьшения непредельности реакционной массы в процессе окисления высших а-олефинов по характеристическим частотам 1070,1185, 1280, 3400, 3440, 1705, 1715, 1725, 912, 995, 1643, 1830, 3084 см-.  [c.57]

    Введение понятия характеристичности колебаний дало возможность во многих случаях установить простую логическую связь между наблюдаемым спектром и теми функциональными группами, которые присутствуют в исследуемом соединении. Экспериментальные исследования большого числа самых разнообразных веществ и представление о характеристичности колебаний некоторых группировок по частоте легли в основу многочисленных таблиц характеристических частот [14, 88, 108, 109]. На первом этапе развития спектроскопии использование таких таблиц было практически единственным способом изучения структуры вещества. Однако применение таблиц, основанное на использовании усредненных значений частот близких по своей структуре группировок, весьма ограниченно. [c.27]

    В заключение следует заметить, что не только постоянно совершенствуются и расширяются рассмотренные методы идентификации органических соединений, но и создаются новые. Например, быстрое развитие лазерной техники привело к тому, что спектроскопия комбинационного рассеяния света, дополняющая ИК-спектроскопию, начинает конкурировать с ней как в простоте и скорости методики, так и в информационных возможностях. Уже сейчас публикуются первые корреляционные таблицы характеристических частот по КР-спектрам. Поэтому близок день, когда в аналогичное учебное пособие будет введена глава по КР-спектроскопии. Не менее перспективна и фотоэлектронная спектроскопия. [c.7]

    ИК-спектроскопия издавна является. мощным. методом идентификации химических соединений. Во-первых, можно использовать полученный спектр как отпечатки пальцев — неповторимое свойство, присущее каждой молекуле. Во-вторых, можно анализировать исследуемое вещество с точки зрения наличия в нем определенных групп атомов, которым свойствены характеристические частоты. [c.435]

    Спектроскопия в инфракрасной области является колебательно-вращательной спектроскопией. Для экспериментальной химии значение ИК-спектроскопии чрезвычайно велико, а до появления спектроскопии ЯМР это был единственный универсальный и эффективный метод исследования строения вещества. Хотя изучаемые колебательные состояния обусловлены свойствами молекулы как единого целого, отдельные функциональные группы обладают характеристическими частотами, часто не слишком зависящими от строения остальной части молекулы. На этом, по существу, основано использование ИК-спектроскопии для исследования состава молекул. Этой области в литературе уделяется огромное внимание. [c.377]

    Очень важное значение для анализа полимеров имеют методы ИК-спектроскопии и УФ-спектроскопии. Однако данные, имеющиеся лишь для некоторых высокомолекулярных соединений, не дают возможности составить какие-либо обобщенные таблицы характерных и характеристических частот, позволяющие идентифицировать то или иное соединение. [c.471]

    Характеристические частоты поглощения различных групп атомов. Сравнение инфракрасной спектроскопии со спектрометрией комбинационного [c.16]


    Аналогичные эффекты наблюдаются в абсорбционной спектроскопии. Диапазон частот или полоса излучения, которые характеристически поглощаются данным образцом, обычно достаточно узкие. Однако из-за общей конструкции щелей и диспергирующего устройства прибора на образец обычно попадает излучение с более широким диапазоном частот, чем те, которые действительно необходимы для селективного поглощения. Это приводит к искажению сигнала, снижению чувствительности прибора и к нелинейности калибровочных кривых. [c.52]

    Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния. Оба эти метода дают возможность установить характеристические частоты колебаний молекулы. Для большинства молекул полная совокупность колебательных частот может быть получена только при совместном использовании и ИК-спектра, и спектра КР. Это связано с различием интенсивности полос в этих спектрах для разных типов колебаний. Такое различие особенно велико у молекул, обладающих высокой симметрией. В этих случаях некоторые полосы в ИК-спектрах могут иметь коэффициент поглощения, близкий к нулю, а другие — сравнительно низкую интенсивность в спектре КР. Говоря более строго, симметрия молекулы может привести к появлению правил отбора. Для переходов в ИК-спектре и спектре КР они различны, так как интенсивность полосы в обоих случаях зависит от различных электрических свойств молекулы. Для ИК-переходов необходимо изменение дипольного момента при колебании, для переходов в спектре КР—изменение поляризуемости. Отсюда следует, что в двух спектрах одновременно могут проявиться лишь немногие частоты, и потому нужны оба спектра. [c.68]

    Благодаря использованию автоматических регистрирующих приборов, появившихся после второй мировой войны, с настоящему времени удалось установить характеристические частоты большинства химических групп. Эти данные содержатся в ряде книг [1], таблицах [2] и перфокартах [3] они необходимы при идентификации различных групп. Такого рода качественная информация является одним из наиболее важных достижений инфракрасной спектроскопии. Кроме того, полосы поглои],ения непосред- [c.14]

    Приводим кратко наиболее важные данные о связи между строением кремнийорганических соединений и характеристическими частотами инфракрасных спектров, соответствующими отдельным группам в молекуле, а также рассмотрим данные, необходимые для проведения анализов с помощью инфракрасной спектроскопии и структурной диагностики этих соединений. Мы стремились при этом критически оценить литературные данные, особенно в тех областях, в которых мы имеем практический опыт. [c.237]

    Следует отметить принципиальное различие между методами оптической спектроскопии (см. раздел 4.3) и спектроскопией ЯМР. В первой величина характеристических частот в спектре зависит от природы вещества и типа используемого спектра. В спектроскопии ЯМР значение /о для данного типа ядер зависит от напряжённости внешнего магнитного поля (см. уравнение (4.7.5)), и, следовательно, при изменении Яо величина /о может изменяться в широких пределах. Для протонов, например, измерения проводились в диапазоне /о от 2 10 до 4 10 Гц. [c.122]

    Рассматривая не данную связь или группу вообще, а с учетом конкретного ближайшего окружения (типа соединений), получают более узкие диапазоны для характеристических частот. В ИК-спектроскопии точность аддитивной схемы также повышается по мере увеличения ассортимента аддитивных единиц. Ясно, однако, что и в этом случае путь детализации аддитивной схемы не может заменить явного учета влияния внутримолекулярных взаимодействий. [c.215]

    В функциональном анализе значительное место занимают физические и физико-химические методы [52, с. 450]. Из этих методов опять-таки стандартным методом является ИК-спектроскопия. Многие атомные группировки (функциональные группы) обладают полосами поглощения в определенной достаточно узкой части ИК-спектра. Это так называемые характеристические частоты , которым в ЯМР-спектре соответствуют химические сдвиги , а в масс-спектре пики, отвечающие определенным ионам. Кроме такой, прямой идентификации функциональных групп, спектроскопические методы дают возможность судить также о присутствии водородных связей, хотя и косвенным способом. Внутри- и межмолекулярные водородные связи можно различать с помощью ИК-спектроскопии, так как разбавление раствора не сказывается на внутримолекулярных водородных связях и, наоборот, приводит к уменьшению числа межмолекулярных связей. [c.313]

    Для изучения структуры высокополимеров и белков применялась инфракрасная спектроскопия с поляризованным излучением. Полосы поглощения в инфракрасной области (4000—500 см ) обусловлены колебаниями молекул. Характеристические частоты определенных нормальных колебаний некоторых химических групп являются в значительной степени не зависящими от остального строения молекулы, которой эти группы принадлежат. В особенности это справедливо для колебаний с участием атомов водорода, в которых практически все движение при колебании сосредоточено в атомных ядрах, значительно более легких по сравнению с любым из других атомов в молекуле. Изложенное справедливо также для групп, содержащих двойные связи (таких как группы >С=0). [c.296]

    В настоящее время по мере того, как изучение состава нефти продвигается в область соединений с большим молекулярным весом, определение индивидуальных углеводородов становится почти безнадежным. Даже путем комбинации химических и физических методов труднс, а часто и невозможно выделить требуемую простую фракцию. Даже если бы это и можно было сделать, для калибровки hj kho было бы такое большое количество индивидуальных соединений, которое нельзя получить в ближайшем будущем. Поэтому химики-нефтяники вынуждены ограничиться сведениями о типе молекул углеводородов и структурных групп. Возможно, что это является наиболее ценным применением спектроскопии. Другой вопрос, с которым иногда сталкивается химия нефти, это установление структуры отдельного соединения. Для этой цели пользуются характеристическими частотами, наблюдаемыми в спектрах для определенных структур. Никогда нельзя написать структурную формулу соединения только на основании спектральных данных. Однако, сопоставляя спектральные данные с данными, полученными другими методами, часто мо кно сделать выбор между несколькими взаимно исключающимися структурами. [c.320]

    Широкому использованию спектроскопии для структурного и химического анализа в СССР способствовало развитие теории колебаний молекул (М. В. Волькенштейн, М. А. Ельяшевич, Б. И. Степанов, В. М. Татевский, И. Н. Годнев и др.), теории характеристических частот (А. С. Маянц, Л. Н. Грибов и др.), спектроскопии неорганических молекул (А. А. Мальцев и др.). [c.177]

    Современные методы спектрального анализа трудно применять к исследованию многокомпонентных систем, нефтей, нефтяных фракций, многокомпонентных полимеров. Исследования, проведенные в последние годы, позволяют выделить элекфонную феноменологическую спектроскопию (ЭФС) как перспективное направление в изучении совокупности свойств многокомпонентных органических веществ и оперативном контроле процессов химических и нефтехимических производств В отличие от обычного варианта электронной спектроскопии, в ЭФС вещество изучается как единое целое, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных фупп или компонентов. ЭФС основана на установленны х нами закономерностях связи оптических характеристик поглощения (коэффициентов поглощения, коэффициентов отражения, цветовых характеристик и тд.) с физикохимическими свойствами системы. Разработанные на этих принципах исследовательские методы использованы в лабораторной и производственной практике. [c.224]

    В рамках развития принципов феноменологического подхода к сложному веществу разработано новое научное направление - неатомарный недискретный подход к спектрам вещества разработаны принципы феноменологической электронной спектроскопии. Последняя дает возможность прогноировать свойства всех веществ на основе установленного нами закона квазилинейной связи свойств и оптических характеристик поглощения. По сравнению с классической, феноменологическая спектроскопия имеет ряд преимуществ, т.к. позволяет получать любую информацию о структуре и физико-химических свойствах веществ, рассматривая их спектр как единое целое, без выделения характеристических частот в спектрах отдельных компонентов. [c.101]

    Для идентификации многокомпонентных органических систем обычно используется сочетание нескольких методов, например, фракционирование методов ЯМР-, УФ-, ИК -спектроскопии и хроматографии, масспектрометрии [11,12] Существенным недостатком известных методик является трудоемкость, длительность и неоднозначность результатов анализа. До последнего времени применению методов электронной абсорбционной спектроскопии препятствовало отсутствие теории электронных спектров таких систем, главным образом из- за их сложности ( рис 4 1). Для исследования таких объектов требуются новые методы. Предлагаемый в данной работе подход относится к ( ю-номенологическим методам, т к. система, поглощающая излучение, рассматривается как единое целое, а максимумы спектров и электронные переходы во внимание не принимаются. Такое необычное направление в электронной спектроскопии определено нами, как электронная феноменологическая спектроскопия (ЭФС). Вещество изучаегся как единое це юе, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных групп или компонентов системы. Известно, что электронное строение веществ определяет его физико-химические свойства [13]. В свою очередь, электронные спектры также определяются конфигурацией электронных оболочек [14]. [c.64]

    Инфракрасная спектроскопия. В инфракрасной области спектра наблюдают сигналы, соответствующие отдельным функциональным группам. Поэтому инфракрасный спектр является характерным для каждого соединения. Только оптические изомеры дают одинаковые спектры. Обнаружение отдельных функциональных групп производят по их характеристическим частотам. Для сложных молекул (которые в основном исследуют) применяют эмпири- [c.240]

    Метод колебательной спектроскопии, включающий инфракрасную спектроскопию и спектроскопию комбинационного рассеяния, принадлежит к числу немногих методов, в равной степени широко используемых при изучении как твердой фазы, так и растворов. Обычно информацию о строении комплексонатов получают при исследовании спектра лиганда [181, 202, 243, 234]. При этом наиболее широко распространены работы, связанные с наблюдением поглощения в диапазоне характеристических частот валентных колебаний карбоксильной, фосфоновой, С—Н- и N—Н-групп .  [c.409]

    Для дальнейшего прогресса молекулярной спектроскопии актуальное значение имеют закономерности в характеристических частотах инфракрасных спектров и в характеристических химических сдвигах протонов спекторов ЯМР органических соединений. В этом отношении большой интерес представляют характеристические частоты ножничных деформационных колебаний активных метиленовых групп. [c.88]

    Инфракрасная спектроскопия менее информативна для изучения конформаций полипептидов в растворе по сравнению с более пригодными для этой цели другими спектроскопическими методами, однако оказалось возможным идентифицировать межмолекулярную водородную связь в пептидных моделях, основываясь на валентных колебаниях N—И. Характеристические частоты 3340 см- (N—Н, включенная в водородную связь) и 3420 см- (N—Н, не участвующая в водородной связи) относятся соответственно к конформациям с внутримолекулярной водородной связью, а частоты 3440 и 3460 СМ- — к растянутой конформации К-метиламидов N-ацетиламинокислот [30]. Наличие всех четырех указанных пиков позволяет оценить количество каждого конформера для этих соединений. Для этих пиков, однако, имеются различные отнесения [31]. [c.435]

    Использование Раман-спектроскопии для установления конформаций полипептидов ограничивается поли ( -аминокислотами), однако для этой цели могут быть использованы и характеристические частоты амидной полосы I, полученные в водных растворах с использованием лазерной Раман-техники [33]. [c.435]

    Валентное карбонильное поглощение v( O), вероятно, применяется наиболее часто из всех характеристических частот групп, используемых обычно в работах по определению структуры. Важность этого поглощения не уменьшилась с появлением спектроскопии ЯМР, так как оно дает прямую информацию (а не косвенную, какой является величина т для а-протонов), касающуюся наличия или отсутствия отдельных карбонильных групп. Карбонильное поглощение почти всегда интенсивно (е 300 2000) и лежит в пределах области характеристических частот групп (1820—1620 см рис. 4.5). Точное значение частоты, как правило, дает возможность химику сделать выбор между вероятными структурами так, более высокая частота всегда бывает обусловлена карбонильной группой 5-членного, а не 6-членного кольца, и это свойство было широко использовано в исследовании природных веществ, для того чтобы отличить 5-членные циклические формы от 6-членных для кетонов, лактонов, лактамов и ангидридов. Конечно, иногда случается так, что накладываются поглощения двух различных карбонильных групп одной и той же молекулы, как в соединении XXVII, но двойственное происхождение одиночной полосы можно обнаружить при внимательном исследовании интенсивности (ср. табл. 4.1). [c.167]

    Таблицы основных характеристических частот в органических соединениях приведены по источникам [25, 2, 6]. При отнесении полос следует учитывать, что указанные в табл. 6.4—6.7 полосы поглощения являются приближенными, поскольку не только обусловлены характеристическими колебаниями атомов в данной связи, но и зависят от природы окружающих эту связь атомов, электронных заместителей, межмолекулярного взаимодействия, природы растворителя, если запись спектра производилась в растворе. Поэтому заключения о строении вещества, сделанные на основании его ИК-спектра, желате но подтвердить другими физическими и, прежде всего, ЯМР-спектроскопией [15], или химическими методами. При отнесении полос поглощения необходимо иметь в виду ряд обобщений, связывающих характеристические частоты, наблюдаемые в ИК-спектрах, с природой связей и функциональных групп. Наибольшие значения частот (V > 2500 см ) соответствуют частотам связей с легким атомом водорода — ОН, ЫН, СН и др. [c.179]

    В основе традиционного спектроскопического анализа полимеров лежит приближение характеристических частот. Суть этого приближения состоит в том, что колебания полимерных цепей как простых молекул могут быть идентифицированы с помощью отдельных химических групп, колебания которых слабо зависят от типа химического соединения и его структуры. Обширный экспериментальный материал, накопленный в области колебательной спектроскопии низкомолекулярных соединений, позволяет быстро и надежно интерпретировать спектры полимеров. Идентификация полос неизвестной природы подробно рассмотрена Белла.ми [6,7, 150], Наканиси [78] и др. [12, 35, 44, 102, 111, 119]. Кроме того, издан ряд атласов ИК спектров наиболее важных промышленных полимеров [42, 46, 304, 307, 621]. Поэтому идентификация полимеров по ИК спектрам не представляет в настоящее время особых трудностей. Успешному решению этой задачи способствует интенсивное внедрение в практику лабораторных исследований электронно-вычислительной техники, использование библиотек колебаний молекулярных фрагментов, хранящихся в памяти ЭВМ [27, 32, 196, 197]. [c.14]

    Как уже упоминалось, присутствие во фракции ароматических углеводородов вносит существенную погрешность в расчеты по схеме [11] из-за взаимовлияния поглощения ароматических и алифатических связей. Однако в большинстве случаев легкоки-иящие углеводородные фракции содержат определенное количество ароматических и нафтеноароматических соединений. Ароматические соединения являются необходимым комнонентом многих товарных нефтепродуктов (топлив, масел) с другой стороны, присутствие в сырье для каталитического крекинга ароматических соединений ухудшает результаты процесса (уменьшаются выход газа, бензинов, общая глубина крекинга). Возмон ности ИКС в анализе ароматической части нефти ограничены, поскольку все ароматические соединения поглощают в области характеристических частот (1600, 814, 700 см ), и можно определить только общее (суммарное) содержание ароматических соединений и замещенных в различных положениях бензольных колец (триплет при 900—700 см ). Более селективное определение ароматических соединений возможно с привлечением УФ- и флуоресцентной спектроскопии. [c.22]


Смотреть страницы где упоминается термин Спектроскопия характеристические частоты: [c.415]    [c.66]    [c.30]    [c.71]    [c.4]    [c.44]    [c.9]    [c.558]    [c.239]   
История органической химии (1976) -- [ c.240 ]

История органической химии (1976) -- [ c.240 ]




ПОИСК





Смотрите так же термины и статьи:

Спектроскопия по частоте

Характеристические частоты



© 2025 chem21.info Реклама на сайте