Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная идентификация частиц

    При исследовании гетерогенных сплавов можно получать реплики с фиксированными частицами выделений. В этих случаях для идентификации частиц целесообразно применять электронную микродифракцию. [c.279]

    Для идентификации частиц, образующихся из бутадиена и его производных, можно использовать два метода. Оптический спектр анион-радикала бутадиена-1,3 был рассчитан простым методом молекулярных орбиталей в приближении Хюккеля, что привело к значениям та.х=382 и 473 ммк при значении р=2,62 эв. Соответствие с наблюдаемым спектром достаточно хорошее, так как ясно, что указанный подход слишком груб и при его использовании не следует ждать лучшего совпадения. Интересно, что на спектр слабо влияют метильные заместители, как это видно из табл. VI. 13, что указьшает на незначительное влияние сверхсопряжения или индукционных эффектов на электронные переходы анион-радикалов. Кроме того, были исследованы спектры ЭПР стеклообразных веществ. В спектре образца, со- [c.336]


    Идентификация частиц при помощи электронной дифракции [c.238]

    Широкое применение для идентификации и определения концентрации парамагнитных частиц (в том числе свободных радикалов) находит метод электронного парамагнитного резонанса (ЭПР) [13]. По спектрам ЭПР в газофазных реакциях, а также в электрическом разряде были обнаружены атомы Н, D, N, О, S, F, I, Вг, J и радикалы ОН, SH, SD, СЮ, ВгО, SO, NS, NF2, а также в ряде случаев измерены их концентрации. [c.26]

    Ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР) — два метода радиоспектроскопии, позволяющие изучать структуру и динамику молекул, радикалов, ионов в конденсированных и газовой фазах вещества. Спектры ЯМР обладают высокой специфичностью и широко применяются для идентификации соединений, в структурно-аналитических целях, а также для изучения быстрых обменных процессов. Спектроскопия ЭПР — метод исследования парамагнитных частиц и центров, кинетики и механизмов процессов, происходящих с их участием. Особенно большой прогресс в развитии методов спектроскопии ЯМР и ЭПР, достигнутый в последние годы, связан с появлением импульсных фурье-спектрометров, двухмерной спектроскопии и техники множественного ядерного, электрон-ядерного и электрон-электрон-ного резонанса. [c.5]

    Появление эффекта сверхтонкой структуры связано с взаимодействием магнитного момента неспаренного электрона с магнитным моментом ядра. Сверхтонкое взаимодействие представляет больщой интерес для ЭПР-спектроскопии, поскольку получаются характерные спектры, по которым можно проводить идентификацию парамагнитной частицы, а также получать сведения о делокализации неспаренного электрона по парамагнитному соединению. [c.207]

    Идентификация парамагнитных частиц но экспериментальному спектру ЭПР в общем случае складывается из следующих стадий 1) предположение о возможной структуре парамагнитной частицы, ответственной за спектр ЭПР 2) построение спектра ЭПР, соответствующего предполагаемой частице 3) сравнение построенного спектра с экспериментом. На второй стадии из постулированной структуры частицы, а также иногда из квантовохимических расчетов должны быть сделаны предположения о числе взаимодействующих с неспаренным электроном парамагнитных ядер, о возможном числе групп эквивалентных ядер, об относительных величинах констант СТС. Если удается достаточно однозначно выбрать структуру парамагнитной частицы, из экспериментального спектра могут быть получены константы СТС. [c.242]


    Существуют два основных препятствия при описании фотохимии больших молекул с той же точностью физических формулировок, что и для простых. Во-первых, структура спектров поглощения сложных частиц становится уже трудноразрешима, вследствие чего довольно трудно проводить как идентификацию состояния, так и распознавание оптической диссоциации и предиссоциации. Размытость спектральной структуры, естественно, является результатом как усложнения спектра и уплотнения колебательных и вращательных уровней, так и увеличения числа электронных состояний. Рис. 3.4 показывает исчезновение разрешаемой структуры спектра при переходе от формальдегида к ацетальдегиду. Во-вторых, для возбужденной многоатомной молекулы существует несколько путей фрагментации. [c.56]

    Уже из простого перечисления ясно, что кристаллические и полукристаллические образования различной природы могут иметь один и тот же габитус, и, следовательно, по одним морфологическим признакам гидрата невозможна его идентификация. В этом существенный недостаток методики реплик, ибо во избежание возможного изменения образца в процессе его препарирования часто нельзя достоверно интерпретировать полученные данные с точки зрения фазового состава новообразований. То же справедливо и в отношении метода напыления или осаждения. Однако метод реплик или съемка на сканирующем микроскопе незаменимы при необходимости изучить прежде всего взаиморасположение частиц в пространстве, т. е. собственно надмолекулярную микроструктуру ненарушенного образца. Этими методами пользовались многие авторы [497—501], стремившиеся разработать представления о структуре затвердевшего цементного камня или решить важнейшую задачу прикладной электронной микроскопии — связать микроструктуру материала с его технологическими свойствами. При этом наиболее ценные, на наш взгляд, выводы получены при одновременном изу- [c.216]

    Многоэлектронные волны (с = 2 и более), регистрируемые в водных средах, в апротонных растворителях разделяются на несколько отдельных ступеней, соответствующих переносу одного электрона. Появление нескольких ступеней означает, что процесс протекает стадийно и на электроде образуются промежуточные продукты, которые имеют высокую реакционную способность. Поэтому они могут быстро исчезнуть в процессе электролиза, реагируя с компонентами среды или вступая в дальнейшие электрохимические реакции. Как правило, они представляют собой частицы радикального характера. Для их идентификации применяют специальные электрохимические ячейки, помещенные в резонатор ЭПР-спектрометра. Появление спектра ЭПР является доказательством образования радикальных частиц в ходе электродного процесса. [c.474]

    Этот метод является радиационно-химическим аналогом импульсного фотолиза. Для идентификации детектирования частиц используют скоростную спектрофотометрию. Кинетическую информацию обрабатывают с помощью ЭВМ. Активные частицы генерируют путем электронного удара коротким импульсом высокоэнергетических электронов, которые вызывают ионизацию и электронное возбуждение молекул, а возбужденные молекулы диссоциируют с образованием радикалов и атомов. [c.204]

    Совершенно понятно, что в случае положительно заряженных частиц (катионов) процесс восстановления на катоде связан с передачей электронов катиону с полной или частичной нейтрализацией его. Так как сродство к электрону у каждого вида ионов (или вообще частиц деполяризатора) различно (оно связано с энергетическими характеристиками электронных орбиталей данной частицы), то каждый из видов присутствующих в растворе катионов или других восстанавливающихся частиц взаимодействует с электронами при определенном минимальном отрицательном потенциале, что и обеспечивает возможность получения на полярограмме различных ступеней для различных катионов, т. е. их качественную идентификацию. [c.11]

    Полученные по реакции (п, у) радиоактивные изотопы анализируют при помощи разнообразной аппаратуры, обнаруживающей продукты распада этих радиоактивных ядер, в число которых могут входить Р-частицы, электроны конверсии, у-лучи и рентгеновское излучение. Характеристики этих излучений, а также периоды полураспада радиоактивных ядер обеспечивают принципиально вполне надежную идентификацию элементов, из которых данные ядра образовались. [c.210]

    В заключение заметим, что метод НПВО нельзя рассматривать как источник однозначной информации о частицах, адсорбированных на поверхности электрода он скорее характеризует частицы в более глубоком пограничном слое вблизи поверхности. Более того, наложение интерференционной абсорбции в пленке и оптической абсорбции веществом, находящимся в растворе у поверхности раздела, затрудняет использование НПВО для идентификации новых частиц, образующихся в растворе в результате электронных переходов, если только не проведены предварительные калибровочные эксперименты с спектроскопией в проходящем свете иж с молекулами известной структуры и абсорбционными свойствами. Тем самым потенциальная ценность метода не,сколько уменьшается. Спектроскопия в проходящем через оптически прозрачный слой свете предлагает более прямой подход к спектроскопическим характеристикам интермедиатов, образующихся в реакциях электроокисления или восстановления. С другой стороны, НПВО с достаточно прозрачными пластинками дает возможность работать в инфракрасной области, [c.460]


    Поскольку колеблющиеся молекулы способны поглощать ИК-излучение при определенных резонансных частотах, ИК-спектр поглощения молекул отражает картину нормальных колебаний, активных в ИК-спектре. Эти нормальные колебания обычно не подвержены влиянию со стороны соседних частиц, так что ИК-спектр является в высшей степени характеристичным для данной молекулы. Таким образом, ИК-снектры отличаются от молекулярных спектров в УФ- и видимой областях. Наблюдаемые в молекулярных спектрах электронные переходы в значительной мере зависят от межмолекулярного комплексообразования, сольватации и других факторов. Поэтому инфракрасная абсорбционная спектрометрия является мощным инструментом качественной идентификации молекул. [c.725]

    Описано несколько примеров ионизации молекул в цеолитах. Во-первых, это ионизация воды в результате гидролиза катионов данная реакция —одна из причин появления водородных атомов с кислотными свойствами. Несколько других примеров ионизации молекул рассматривается в гл. 6. Высокая способность цеолитов фиксировать положение заряженных частиц в цеолитной структуре показана на примере четной идентификации орбиталей, на которых локализуются электроны, захваченные Na - и Мае -центрами цеолитов Y и X (см. гл. 6). [c.400]

    Для исследования этих простых, но принципиально важных ионных реакций необходимы источники как электронов, так и водородных атомов в полярных средах, особенно в воде, и способы определения и измерения концентраций сольватированных электронов и атомов водорода физическими или химическими методами. В последующих главах мы опишем способы получения сольватированных электронов и атомов водорода, методы идентификации и физические свойства электрона в различных агрегатных состояниях, реагенты на электрон и атом водорода, относительные скорости реакций этих двух частиц и, наконец, различные другие связанные с этим вопросы. [c.459]

    В большинстве спектров изменения, вызываемые увеличением энергии ионизирующих электронов выше 25 эв, невелики. Даже при передаче молекуле значительно больших количеств энергии, например при бомбардировке частицами высоких энергий при радиолизе, наблюдается аналогия с масс-спектра ми [300, 1349], которая распространяется и на продукты перегруппировки [1483]. Пики перегруппировочных ионов, мало чувствительные к изменениям условий бомбардировки, могут быть использованы для идентификации. Пики ионов определенных масс, образующихся в процессе перегруппировки, характерны для определенных химических групп, например пик ионов с массой 19 — для спиртов. [c.268]

    Как уже отмечалось, большинство реакций электроокисления сопровождается образованием в качестве промежуточных частиц радикалов или катион-радикалов. Достаточным условием для возникновения частиц с неспаренным электроном является одноэлектронный переход. Установление структуры генерируемых при электроокислении радикалов имеет важнейшее значение для понимания механизма процесса. Однако в далекой анодной области использование большинства известных методов обнаружения и идентификации радикальных образований связано со значительными затруднениями. [c.194]

    Вслед за ядром в клетке были открыты (около 1900 г.) так называемые крупные гранулы, или митохондрии. По своим размерам эти клеточные органеллы также стоят на втором месте непосредственно за ядром. Митохондрии, окрашенные такими красителями, как янус зеленый, находятся почти на пределе разрешения обычного светового микроскопа. В фазовоконтрастном микроскопе их различить легко. Однако подлинных успехов в изучении структуры митохондрии удалось добиться только в последние 15 лет после появления электронного микроскопа. Число митохондрий, их размеры и форма могут в разных клетках сильно варьировать, но их ультраструктура во всех случаях в достаточной степени сходна и вместе с тем отличается от ультраструктуры других органелл настолько, что в большинстве случаев однозначная идентификация этих частиц не составляет большого труда. Это фундаментальное сходство всех митохондрий независимо от того, какому организму они принадлежат — человеку, грибу или простейшему. Общее число митохондрий в клетке колеблется примерно от десятка у дрожжей до нескольких сотен в животной клетке отдельная митохондрия напоминает по форме эллипсоид вращения, длинная и короткая оси которого равны соответственно 1,5 и 0,5 мк, а средний объем составляет около [c.243]

    Идентификация промежуточных продуктов радиолиза воды и водных растворов проводилась главным образом методами оптической спектроскопии. Интересные данные о свойствах заряженных частиц, возникаюш их при радиолизе воды, можно получить, измеряя изменение электропроводности воды сразу же после подачи импульса. Хотя открытие гидратированного электрона по полосе оптического поглош,ения в видимой области спектра почти не вызывает сомнений, все же окончательным доказательством его суш ествования явилось бы обнаружение кратковременного возрастания электропроводности дезаэрированной воды после прохождения импульса длительностью 10 сек.  [c.251]

    Электронный парамагнитный резонанс (ЭПР). В основе метода лежит явление резонансного поглощения электромагнитных волн парамагнитными веществами в постоянном магнитном поле. Метод можно применять при наличии в молекуле исследуемого вещества неспаренных электронов с соответствующими магнитными моментами, обусловленными вращательным движением электронов. Метод ЭПР особенно эффективен для идентификации свободных радикалов (стр. 69). Метод может применяться для изучения органических веществ в любом агрегатном состоянии. Это делает его незаменимым при изучении кинетики и механизма химических реакций, в которых участвуют парамагнитные частицы. Прибор для изучения спектров ЭПР называется радиоспектрометром. [c.19]

    Спектр ЭПР характеризуется следующими параметрами интенсивностью линии поглощения, шириной и формой линии, величиной -фактора, сверхтонкой структурой (СТС). По этим параметрам можно определить характер взаимодействия неспаренного электрона и отсюда природу и строение парамагнитных частиц. При идентификации парамагнитной частицы наиболее важной характеристикой является СТС спектра ЭПР. [c.16]

    Сочетание сигналов вторичных электронов, дающих изображение топограг фии поверхности, и сигналов отраженных электронов, дающих картину распределения среднего атомного номера, с качественным и количественным рентгеновским анализом делают ЭЗМА важнейшим методом анализа твердых тел. Он стал рутинным для решения любых типов задач и анализа любых типов материалов (идентификация частиц в металлах, фаз в геологических объектах, пылевых токсичных частиц, асбестовых волокон). Главным ограничением метода является размер аналитического объема—обычно 1-3 мкм диметром и глубиной, что мешает проводить количественный рентгеновский анализ нанофаз, хотя их можно увидеть, используя сигналы вторичных или отраженных электронов. Можно детектировать поверхностные слои толщиной не менее нескольких нанометров, но провести селективный анализ в этом случае не представляется возможным, и очевидно, что необходимо использовать другие методы — аналитическую электронную микроскопию и электронную оже-спектроскопию для микроанализа с высоким разрешением по глубине (единицы нанометров). [c.335]

    Дифракционные картины не позволяют окончательно доказать происхождение частиц магнетита, выделенных из тканей в их интерпретации необходима определенная осторожность. Мелкозернистые порошки чистого магнетита, например такие, которые предположительно принимают участие в магниторецепции, будут давать идеальные, четкие и однозначные дифракционные картины. Размытость пятен или линий на картинах дифракции ренгеновских лучей и электронов может возникать из-за неоднородности образца. Toy и Менч (Towe, Moen h, 1981) предполагают, что размытость картины дифракции электронов на однодоменных кристаллах магнетита, выделенных из магниточувствительных бактерий, обусловлена дефектами в кристаллической структуре. Многодоменные частицы также могут давать размытую дифракционную картину. Поэтому необходимо сочетать идентификацию частиц с определением их доменного состояния. Электронографию и измерение размеров и формы изолированных кристаллов можно проводить на одних и тех же образцах, помещенных на медные сетки. Таким образом, хотя дифракция электронов - более трудоемкая методика, чем рентгенография, именно она, в сочетании с размерами и морфологией, позволяет делать окончательные выводы о происхождении частиц (гл. 6, 20). [c.220]

    Многие из пиков, помеченных буквами А, В, С и В, приписаны возбуждениям встряхивания [27]. Вероятно, пики встряхивания могут быть идентифицированы для многих молекулярных частиц и, возможно, окажутся полезными для идентификации электронных структур многих систем. Следует отметить, что ярко выраженные сателлиты встряхивания были обнаружены в фотоэлектронных спектрах Ы1(СО)4, Ре(СО)5, Сг(СО)б, (СО)б и (СО)5СгХ (Х = КНз, РРЬ, и т.д.) [61]. [c.354]

    Большинство мембранных фильтров изготовлено из целлюлозных материалов, и задержанные частицы остаются на поверхности фильтра. Они могут быть подсчитаны с помощью микроскопа в падающем свете. Если фильтр сделан прозрачным (путем пропитки оптическим маслом), можно воспользоваться и проходящим светом. Материал, из которого изготовлен фильтр, растворяется в подходящих органических растворителях (эфиры — апример, в этилацетате . кетоны — в ацетоне, метаиоле, пиридине и др.), поэтому частицы легко и быстро извлекаются. Мембранные фильтры изготавливают также из термостойких материалов, кислотостойких эпоксидных смол или поливинилхлорида, стойкого в среде некоторых ограничеоких растворителей. Фильтры могут применяться также для идентификации специфических материалов методом цветного пятна. Обычио эти тесты проводят на аммиак, кальций, галоиды, свинец, сульфат- и нитрат-ионы. Шлуни и Лодж [795] исследовали фильтрацию аэрозолей с помощью электронной микроскопии Баум и Рисс [63] и Фридрихе [282] описали многоступенчатый фильтр для последовательного отбора проб. [c.88]

    Важным этапом исследования электродных реакций методом ВДЭК является идентификация фиксируемых на кольцевом электроде частиц. Она осуществляется на основе кинетической информации об их свойствах. Источниками последней служат поляризационные кривые на дисковом и кольцевом электродах, определение числа электронов, принимающих участие в каждой из реакций. Примечательная особенность метода ВДЭК состоит в возможности получения разнообразной информации о свойствах обнаруженных продуктов, механизмах их образования и исчезновения путем исследования связи между значениями относительного выхода соответствующих частиц Qi и такими параметрами, как скорость вращения и потенциал дискового электрода, концентрация исходного реагента, pH и температура раствора. [c.211]

    Исследована возможность использования ИК - Фурье спектроскопии для идентификации примесных составляющих газовых сред. В основу разработки методики положен принцип совмещения возможностей ИК -Фурье спектрометра и газоанализатора Колион - I А, основанного на принципе фотоионизации исследуемого вещества и последующей регистрации ионизированных электронов. Приборами класса Колион удается определять лишь суммарную концентрацию примесных компонентов и вероятность превышения ПДК идентифицируемых примесей. ИК - Фурье спектрометры обладают достаточно высокой чувствительностью и при определенных условиях (например, в случае использования газовой кюветы достаточной длины) позволяют обнаружить многие компоненты в атмосфере с чувствительностью несколько частиц на миллион и идентифицировать эти компоненты. Точность определения концентрации вещества с помощью газоанализатора Колион -1А несравненно выше, чем у РСС - спектроскопии. Поэтому идентификация вещества с помощью ИК - Фурье спектрометра и уточнение его концентрации на газоанализаторе позволяет решить некоторые аналитические проблемы с приемлемой точностью. [c.73]

    Иммунная электронная микроскопия. ИЭМ позволяет обнаружить специфически связанные с антителами вирусные частицы. Преимуществом этого метода является одновременная концентрация вируса и его идентификация с помощью специфической сыворотки. Предложенные модификации ИЭМ предусматривают обработку вирусосодержащего материала антисывороткой в высоком титре, добавление к осадку фосфорно-вольфрамовой кислоты или уранилацетата с последующим нанесением на пленку (подложку) и высушиванием. При электронной микроскопии видны скопления вирусных частиц. [c.276]

    Помимо рассмотренных работ следует также указать па работы, в которых электронная микроскопия в сочетании со структурными методами применялась для исследования морфологических и структурных превращений, имеющих место при старении гелей гидроокиси алюминия [71—74]. Так называемые вильштеттеровские С-альфа-, С-бета- и С-гамма-гели гидроокиси алюминия, представляющие особый интерес ввиду их сорбционных свойств по отношению к энзимам и вирусам, отличаются разнообразгем формы частиц и изменением этой формы и свойств при старении. Электронно-микроскопическое исследование старения С-альфа-гелей показало, что сферические или бесформенные вначале частицы через несколько часов превращаются в кристаллические фибриллы, характерные для С-бета-гелей, которые далее переходят в соматоиды [71]. Электронномикроскопическое и рентгеновское изучение гелей позволило констатировать сложную морфологию и различную кристаллическую структуру частиц в зависимости от метода приготовления и возраста геля [72]. Например, С-гамма-гели и соответствующие золи состоят из гексагональных призм, которым мон<но приписать структуру гибсита, а также из конусообразных частиц со структурой байерита. Су уки [73], изучая старение гелей гидроокиси алюминия при повышенной температуре, описал превращение вначале аморфных частиц в волокнистые кристаллы бемита и далее в гексагональные монокристаллические пластинки гидратов байерита и гидраргиллита. Идентификация кристаллов осуществлялась электронографическпм методом. [c.153]

    В последнее время все возрастающее внимание исследователей привлекают опыты по определению, идентификации и измерению концентрации радикальных частиц, образующихся в качестве промежуточных продуктов при облучении полимеров. Изменение электрических свойств ПММА в результате его облучения послужило основанием для вывода о наличии в облученном ПММА устойчивых частиц со свободным электроном [216—218]. При облучении ПММА электронами в нем возникает временный эффект оптической поляризации, аналогичный электро-оптическому эффекту Керра [219]. Этот эффект может быть вызван первичным лучом или ориентированными в пространстве зарядами, однако более вероятно, что он связан с присутствием в качестве промежуточного продукта вторичных неспаренных электронов. Проведенные ранее наблюдения спектров электронного парамагнитного резонанса в облученных рентгеновскими лучами образцах ПММА [220] послужили началом интенсивных исследований в этой области. Обычно в образцах, облученных при комнатной температуре, а иногда и при низких температурах, наблюдается спектр ЭПР, состоящий из квинтета тонкой структуры с четырьмя дополнительными гнирокими линиями. Спектр этот [c.105]

    Жидкокристаллические растворы полииминоксилов. До недавнего времени изучению методом ЭПР в растворах органических радикалов, обладающих более чем одним неспаренным электроном, мешали или малая продолжительность жизни этих частиц, или сильное дипольное взаимодействие между электронами. Теперь можно создавать стабильные бирадикалы, которые имеют малые ве.тичины расщеплений в нулевом поле и поэтому дают в растворе хорошо разрешенные спектры. Для идентификации таких радикалов большую помощь может оказать использование жидких кристаллов [60,61] в качестве растворителей. Детальная разработка этого изящного метода идентификации полирадикалов, Б которых не проявляется эффект конформационного электронного обмена, принадлежит Лакхарсту [62]. [c.137]

    МОЖНО судить о характере дефекта. Так, изучение /-центров в кристаллах галогенидов щелочных металлов методом ЭПР показывает, что их электронная волновая функция является линейной комбинацией 5- и р-орбиталей электронов иона натрия при некотором перекрывании с волновой функцией иона галогена. Подобные исследования были проведены на простых полупроводниках при изучении различных дефектов, в частности кластеров, образующихся при взаимодействии дефектов (см. гл. 7). Было показано, что ЭПР —это уникальный метод идентификации структуры сложных дефектных центров. Например, при облучении кремния частицами с высокой энергией образуются дефекты, одним из которых, как показал анализ спектров ЭПР, оказался атом примеси кислорода, расположенный рядом с вакансией. Метод ЭПР применяется для детального исследования электронной структуры центров, например парамагнитного иона Мп + в инертной матрице А12О3, и позволяет объяснить некоторые важные оптические и магнитные свойства твердого тела. [c.84]

    Другой перспективный способ идентификации промежуточных продуктов радиолиза воды и исследования кинетики радиационных реакций с их участием состоит в сочетании метода электронного парамагнитного резонанса и импульсного электронного излучения. Очевидно, наиболее важные результаты здесь могут быть получены при изучении парамагнитных частиц в жидкой воде. Однако вследствие того, что из-за ряда причин трудно создать в жидкой воде достаточно высокую концентрацию короткоживущих продуктов, подобные исследования пока еще не проводились. Тем не менее в настоящее время уже стало возможным исследование методом ЭПР кинетики гибели радикалов в жидких углеводородах непосредственно во время облучения [7]. Кроме того, опубликованы работы Б. Бельского и Э. Саито [8, 9], в которых этим методом с успехом была изучена кинетика рекомбинации в жидкой воде радикалов НОг, генерированных в результате реакции ионов Се с избытком Н2О2. Поэтому можно смело сказать, что решение данной проблемы — дело недалекого будущего [c.251]

    Свободные радикалы — это частицы, обладающие высокой химической активностью и весьма малым временем жизни. Они образуются в цепных процессах, например в процессах горения и полимеризации, а также в системах под действием света и ионизирующих излучений. Интерес к природе этих частиц, условиям их возникновения, времени жизни и роли, которую они играют в механизме процессов, всегда был очень велик. Однако глубокое и интенсивное исследование свободных радикалов стало возможным лишь после открытия в 1945 году Е. К. За-войским явления электронного парамагнитного резонанса (ЭПР) и развитого на основе этого открытия метода ЭПР-спектросконии. К тому же свободные радикалы научились стабилизировать в твердой фазе (в матрицах ) при низких температурах. В этих условиях радикалы сохраняются в течение времени, достаточного для их идентификации, исследования пх свойств и структуры, а также реакций превращения. Сопоставление данных ЭПР о радикалах, образующихся при облучении твердой и жидкой фаз, показывает, что принципиальных различий как в величинах радиационных выходов, так и в типе радикалов нет. Это позволяет с теми или иными ограничениями переносить на жидкую фазу результаты ЭПР-спектроскопии, полученные для твердой фазы. [c.7]

    Наконец, последний период, начавшийся в 50-х гг., характеризуется развитием экспрессных методов апализа и выделения короткоживущих изотопов, получающихся в основном на ускорителях ядерных частиц с целью синтезирования новых атомных ядер. При этом широкое расиространение нашли экстракционные, хроматографич. и высокотемпературные методы выделения радиоэлементов без носителя, т. е. без специально вводимых стабильных изотопов этих элементов, а также такие специфич. радиохимич. приемы, как улавливание ядер отдачи и идентификация по радиоактивным дочерним продуктам. Можно ожидать, что в недалеком будущем появятся новые методы изучения химич. свойств крайие нестабильных образований типа тяжелых ядер с периодами полураспада порядка секунд и долей секунд, и даже систем типа мезоатомов, возникающих при захвате мезонов на стабильные боровские орбиты с образованием своего рода мезонной оболочки, аналогичной обычной электронной оболочке атома. [c.245]

    Радиохимич. методы нашли широкое применение при исследовании закономерностей, изучаемых другими химич. дисциплинами — коллоидной химией, термодинамикой, химич. кинетикой и пр. Методич. особенностью Р. является определение элементов и изотопов по их радиоактивному излучению или по продуктам ядерных превращений. Это позволяет не только простым способом определять количество того или иного изотопа в исследуемом веществе, но часто и выполнять изотопный и элементный анализы смеси, пользуясь различием радиоактивных свойств отдельных изотопов. Поэтому радиометрич. методы играют очень большую роль в Р. Идентификацию и определение изотопов производят измерением активностей всех типов радиоактивных излучений — альфа-, бета-частиц, гамма-квантов, электронов конверсии, осколков деления. Наибольшее распространение получили счетчики радиоактивных излучений, хотя в отдельных случаях используются калориметры, радиометры и прочие приборы интегрального типа, а такше специальные ядерные фотоэмульсии, регистрирующие проходящие заряженные частицы (см. Радиография). [c.246]


Смотреть страницы где упоминается термин Электронная идентификация частиц: [c.225]    [c.5]    [c.57]    [c.157]    [c.65]    [c.180]    [c.240]    [c.48]    [c.88]   
Биогенный магнетит и магниторецепция Новое о биомагнетизме Т.2 (1989) -- [ c.238 , c.239 , c.240 , c.241 , c.242 ]




ПОИСК







© 2025 chem21.info Реклама на сайте