Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гетероциклические полициклических

    Молекулярная структура компонентов битума. Структуры компонентов битума имеют большое сходство. Каркас структуры молекул образуется углеродным скелетом, составляющим 30—90% общей массы молекул. Как показано в работе [7], центральное ядро молекулы составляет полициклическая система, в состав которой входят шестичленные карбоциклические, преимущественно бензольные и отчасти циклопентановые и гетероциклические, кольца. Большая часть колец образует конденсированную полициклическую систему, в основном ароматическую. На периферии этой системы часть водорода замещена на ме-тильные группы и короткие (Сг—С4) разветвленные и нераз-ветвленные алифатические цепочки. Заместители могут включать и функциональные группы. [c.10]


    Номенклатура полициклических углеводородов, равно как и гетероциклических соединений, значительно сложнее, так как здесь встречается множество соединений с самыми различными структурами. Химик должен быть знаком с основными принципами, которые только и могут быть приведены здесь. Существует довольно большой список тривиальных наименований, из которых методом конденсирования строят названия структур, имеющих еще более сложные скелеты. Имеется и другой метод построения наименований полициклических соединений (бициклических систем), независимый от метода конденсации и списка тривиальных наименований. Кроме того, имеется несколько методов, применяемых для особых типов соединений. Ими заняться следует именно в перечисленном порядке, но сперва лучше рассмотреть общие методы записи формул и нумерации ароматических полициклических систем. [c.100]

    В начале промышленного освоения гидрокрекинга изучался и развивался в основном процесс при высоком давлении (200 ат и выше). Это обусловливалось использованием его преимущественно для переработки высоко-, ароматизированного сырья — смол процессов коксования и полукоксования каменных и бурых углей и продуктов их термического растворения (проводимого под давлением водорода), а также тяжелых нефтяных остатков. Для таких видов сырья в гидрируемые молекулы многоядерных ароматических углеводородов и гетероциклических соединений, а также в частично гидрированные полициклические соединения требовалось вводить много водорода. Эти реакции интенсифицировали повышением давления, которое при переработке каменноугольных пеков в промышленности достигало 700 ат. [c.51]

    Качественная характеристика и количественное соотношение отдельных групп углеводородов, полученных при избирательном каталитическом гидрировании асфальтенов, свидетельствуют о том, что в молекулах асфальтенов полициклические системы я яются преобладающими структурными звеньями. В этих полициклических структурах большую роль играют многоядерные конденсированные системы, содержащие как чисто карбоциклические (бензольные и полиметиленовые), так и гетероциклические кольца, содержащие атомы серы, кислорода и азота. [c.131]

    Первичные продукты пиролиза в подсводовом пространстве коксовой печи претерпевают дальнейшее термическое разложение, и в результате деалкилирования, дегидрирования гидроароматических циклических систем, конденсации и дегидратации фенолов образуются дополнительные количества кокса, газа и вторичные химические продукты. Последние представляют собой в основном смеси термодинамически наиболее выгодных незамещенных ароматических углеводородов или их метилпроизводных, а также полициклических гетероциклических соединений. Образование бензольных или полициклических ароматических углеводородов из ацетилена и некоторых других простых углеводородов при коксовании мало вероятно, так как в продуктах пиролиза угля ацетилен практически отсутствует. [c.150]


    С при атмосферном давлении. Сырой бензол — ароматические углеводороды, остающиеся в газе в виде паров после конденсации смолы и извлекаемые из газа абсорбцией органическими поглотителями. В сыром бензоле содержатся преимущественно бензол и его гомологи, а в каменноугольной смоле — би- и полициклические углеводороды и гетероциклические соединения. Выход продуктов коксования угля в пересчете на исходный безводный уголь составляет (в %)  [c.151]

    Тяжелая смола пиролиза может явиться и перспективным сырьем для производства полициклических ароматических углеводородов. Абсолютные ресурсы этих веществ в тяжелой смоле пиролиза уже в ближайшие годы превысят ресурсы полициклических ароматических углеводородов в каменноугольных смолах. Переработка тяжелых пиролизных смол проще благодаря отсутствию в них фенолов, оснований и различных гетероциклических соединений. Однако присутствие нестабильных олефинов и диолефинов затрудняет очистку смол ректификацией из-за полимеризации непредельных веществ, а при гидростабилизации происходит гидрогенизация значительной части ароматических углеводородов [136]. [c.191]

    Полициклические ароматические углеводороды получают обычно из каменноугольной высокотемпературной смолы, которую считают уникальным источником сьфья для их выделения. Практически все методики основываются на использовании этого сырья. По-видимому, в дальнейшем более благоприятным источником полициклических ароматических углеводородов будут тяжелые смолы пиролиза, экстракты из газойлей каталитического крекинга и риформинга. В них содержится много полициклических ароматических углеводородов (см. гл. 4) и отсутствуют основания, фенолы и гетероциклические соединения, что облегчает очистку. В результате гидрогенизационной переработки удается получать смеси, углеводородный состав которых несложен, на пример, фенантрен с незначительными примесями антрацена. Часть ароматических углеводородов в виде частично гидрированных продуктов находится в продуктах деструктивной гидрогенизации углей, а при каталитическом дегидрировании при 2,5 МПа они могут быть получены в чистом виде. Тяжелые масла гидрирования содержат 2,5% фенантрена и 1,5% хризена, что составляет в сумме 1,2% на исходный уголь [1, с. 108]. [c.295]

    Наряду с полициклическими ароматическими углеводородами основными источниками образования углерода являются асфальтосмолистые вещества, представляющие собой высокомолекулярные гетероциклические соединения, содержание которых в нефтяных остатках достигает 40—60%. [c.27]

    Газовой хроматографией в сочетании с другими методами в нефтяных фракциях наряду с полициклическими аренами обнаружено 60 азотсодержащих гетероциклических соединений [116]. [c.125]

    Многие другие гетероциклические и полициклические амины получают так же, как описано в приведенных выше примерах. [c.513]

    Полициклические кубовые красители — одни из самых прочных красителей (особенно к действию света) для целлюлозных волокон они представляют собой системы конденсированных ароматических и гетероциклических ядер, содержащих две и более групп >С = 0, соединенных между собой системой сопряженных двойных связей. Большая часть полициклических кубовых красителей является полициклическими хинонами, молекулы многих из них содержат галогены, алкокси-, ациламино-, реже свободные амино-, окси- и другие группы. [c.318]

    Каменноугольный пек является сложной смесью полициклических ароматических углеводородов и гетероциклических полициклических соединений (их доля в пеке — 25—30%). Среднее число колец в молекулах пека превышает 3 (четыре-пять и более). Пек представляет собой сложную по-лидисперсную систему, включающую переохлажденные истинные и коллоидные растворы. Этим объясняется отсутствие у пека четко выраженной температуры перехода в твердое состояние, а также очень резкое изменение вязкости пека при колебаниях температуры. [c.346]

    Асфальто-смолистые вещества являются неотъемлемым компонентом почти всех нефтей. Редко встречающиеся белые нефти представляют собой продукты разной степени обесцвечивания темных смолосодержащих нефтей, мигрировавших через толщи глин из глубоких недр земли. Содержание и химический состав асфальтосмолистых веществ в значительной мере влияют на выбор направления переработки нефти и набор технологических процессов в схемах действующих и перспективных нефтеперерабатывающих заводов. В связи с этим одним из главных показателей качества товарных нефтей при их классификации является относительное содержание асфальто-смолистых веществ. Количество асфальто-смолистых веществ в легких нефтях не превышает 4—5 вес. %, в тяжелых нефтях достигает 20 вес. % и более. Химическая природа асфальто-смолистых веществ точно не установлена. Она продолжает быть предметом глубоких исследований многих нефтехимиков. Причиной этого является исключительная сложность состава этих веществ, которые представляют собой комплексы полициклических, гетероциклических и металлоорганических соединений. [c.32]


    Предполагалось, что нейтральные смолы представляют собой вещества, образующиеся в результате окислительной конденсации ароматических и нафтеновых углеводородов. Однако более глубокое изучение свойств естественных искусственных смолистых продуктов опровергает предположение об их тождественности [40]. Анализируя результаты собственных исследований и имеющиеся литературные данные, С. Р. Сергиенко говорит [19, с. 468—470] о большой доле циклических элементов структуры в молекулах нефтяных смол. В состав циклических элементов входят ароматические, циклопарафиновые и гетероциклические кольца, они соединены между собой алифатическими цепочками и имеют алкильные боковые цепи. В последних могут находиться и циклические заместители. Конденсированные структурные элементы молекул смол, не подвергавшихся термической обработке, обычно содержат 2—3 кольца. Поликонденсированные структурные элементы если и присутствуют, то в очень незначительном количестве. В смолах, выделенных из тяжелых нефтяных дистиллятов и остатков, подвергавшихся термическому воздействию, содержится значительное колшество полициклических структур. [c.31]

    В группу веществ, именуемых нефтяными смолами, входят соединения с развитыми углеводородными скелетами и гетероатомами в форме разнообразных функциональных групп. При использовании адсорбционных способов выделения в смолистые фракции попадают и сравнительно пизкомолекулярные (с молекулярными массами до 500—600 ед.) гетероатомные соединения, главным образом полициклические, в том числе и такие, принадлежность которых к определенным гомологическим рядам установлена с помощью современных аналитических методов (например, полиарено- или нолинафтенонроизводные различных гетероциклических соединений). [c.199]

    Под термином "масла принято подразумевать высокомолекулярные углеводороды с молекулярной массой 300 - 500 смешанного (гибридного) строения. В их состав входят парафиновые, циклопарафиновые и ароматические структуры в разнообразных комбинациях. Методом хроматографического разделения из масляных фракций выделяют парафино-нафтеновые и ароматические углеводороды, в том числе легкие (моноциклнческие), средние (бициклические) и полициклические (три и > циклические). Наиболее важное значение имеют смолы и асфальтены, которые часто называют коксообразующими компонентами, поскольку они создают сложные технологические проблемы при переработке ТНО. Смолы - плоскоконденсированные системы, содержащие 5-6 колец ароматического, нафтенового и гетероциклического строения, соединенных посредством алифатических структур. Установлено, что асфальтены в отличие от смол образуют пространственные в большей степени конденсированные кристаллоподобные структуры. Наиболее существенные отличия смол и асфальтенов проявляются по таким основным признакам, как растворимость в низкомолекулярных алканах, соотношение С Н, молекулярная масса, концентрация парамагнитных центров и степень ароматичности  [c.56]

    Пространственные изомеры в бицикланах, так же как и в моноциклических углеводородах, находятся в равновесных для этих температур соотношениях. Во всех случаях более устойчивые стереоизомеры, не имеющие г ыс-вицинальных взаимодействий илп аксиально ориентированных заместителей, присутствуют в значительно больших концентрациях. Интересно также, что метпль-ные гомологи тиабицикло(3,3,0)октана и тиабицикло(3,2,1)ок-тана уже давно были найдены в ряде нефтей [41, 42]. Это наводит на мысль о генетически единых нутях образования всех нефтяных компонентов. Надо также отметить, что полициклические нефтяные углеводороды по своему строению близки к другим природным гетероциклическим соединениям. Так, структуры бицикло(3,3,0)-октана п бицикло(3,2,1)октана часто встречаются в азотистых соединениях (пирролизидип, тропаны). Можно привести и другие аналогии [45]. [c.355]

    Уменьшение общего количества колец в гидрогенизатах, полученных при каталитическом гидрировании высокомолекулярных конденсированных бициклоароматических соединений нефти, объясняется главным образом реакцией гидрогенизола сернистых гетероциклических соединений, сопутствующих этой фракции, и, возможно, отчасти гидрогенолизом пентаметиленовых колец. Полициклические конденсированные системы, образованные шестичленными карбоциклическими кольцами, в этих условиях могут лишь насыщаться водородом в результате гидрирования ароматических ядер, не изменяя своего углеродного скелета. При гидрировании высокомолекулярных конденсированных бициклоароматических соединений из радченковской нефти [5, 6] в присутствии N1 Ренея к моменту полного удаления из них серы 54% всех ароматических ядер сполна насыщаются водородом, переходя в циклопарафиновые структуры, а 33% конденсированных ароматических ядер гидрируются частично, переходя в углеводороды ряда бензола, в которых бензольное кольцо соединено в конденсированной циклической структуре с несколькими полиметиленовыми кольцами. [c.229]

    Так же как среди нефтяных кислот преобладают соединения, молекулы которых содержат пятичленное карбоциклическое кольцо, среди высокомолекулярных сераорганических соединений нефти главную роль играют, по-видимому, ди- и полициклические системы, содержаище в конденсированном ядре пятичленное гетероциклическое кольцо (тиофеновое или тиофановое) и, по крайней мере, одно ародгатическое (бензольное, или нафталиновое) ядро. Большой экспериментальный материал, накопленный в нашей лаборатории и в лабораториях других [исследователей в результате изучения химической природы высокомолекулярной части нефтей, не подвергавшихся воздействию высоких температур, свидетельствует о том, что максимальное количество серы всегда содержится в тех фракциях углеводородов, в которых сконцентрированы ароматические соединения, имеющие в молекуле конденсированные циклические структуры. В ароматических же соединениях относящихся к гомологам бензола, 1. е. содержащих изолированные бензольные кольца, серы значительно меньше (в 2—3 раза), чем в ароматических соединениях с конденсированными циклическими структурами. Все эти данные свидетельствуют о том, что главная часть серы высокомолекулярных соединений нефти является циклической, -входящей в состав таких циклических конденсированных структур, как бензтиофеп (I), дибензтиофен (II) и, возможно, нафтотиофен (III)  [c.344]

    Основным условием успешного применения (т. е. однозначного определения структуры индивидуальных соединений) хромато-масс-спектрометрии является наличие широкого круга эталонных углеводородов для их сравнения с нефтяной фракцией [211]. Это, естественно, надо отнести и к гетероатомным соединениям нефти. Если структуру алканов еще можно устанавливать и при наличии ограничен-ного числа эталонов, то для определения структуры мо-ноциклоалканов, полициклических углеводородов, алкилзамещен-ных ароматических и гетероциклических соединений нефти наличие эталонов становится все более настоятельным. Причина этого заключается в близости масс-спектров изомерных соединений. Для циклических неароматических соединений эта близость определяется легкостью перегруппировочных процессов (Н-сдвиг, скелетные- перегруппировки), движущей силой которых является по- [c.137]

    Установлению строения изопреноидов, реликтовых алканов, моно- и полициклических неароматических углеводородов, а также тритерпанов и стеранов посвящены работы [96, 108, 109, 211]. Масс-спектры 120 аренов, бГь азотсодержащих гетероциклических систем рассмотрены в работе [212], а масс-спектры порфиринов и тетрапирролов рассмотрены в работе [213]. [c.138]

    Доля углерода в карбо- и гетероциклических ароматических фрагментах молекул асфальтенов составляет 26...95 %, а в циклоалкановых структурах 6...56%[4,5,6,22,30,32,54,64,68,72].Число ароматических колец в средней молекуле 6...38. Они распределены по 2...4 полициклическим звеньям смешанного строения. Нафтеновые структуры вместе с ароматическими образуют компактную полициклическую молекулярную структуру [30,68,73...75]. Не исключается присутствие неконденсированных циклоалкановых, ароматических и гетероатомных колец [30,75]. Степень замещения конденсированных ароматических структур 39...74%.  [c.15]

    Азот в асфальтенах входит в состав таких гетероциклических структур, как пиррол, пиридин, хинолин, карбозол, индол и их бензологи, сосредоточиваясь преимущественно во внутренних частях крупных полициклических структур [6,74...78] или в ароматических кольцах. Важная форма существования азота - металлоорганические комплексы порфиринового и непорфиринового типов. [c.16]

    Наконец, смолисто-асфальтеновые вешества содержатся практически во всех нефтях. Их содержание и химический состав влияют на выбор направления переработки нефти. Легкие нефти содержат их в количе-ствахдо4-5% мае., тяжелые —20% мае. и более. Эти вещества представляют собой комплексы полициклических, гетероциклических (т.е. 8-, К-, 0-содержащих) и металлоорганических соединений, точный состав которых до сих пор не установлен. Известно лишь, что нейтральные смолы (полужидкие вещества темно-красного цвета) растворимы в петро-лейном эфире (легком бензине) асфальтены (бурые или черные вещества, твердые, хрупкие и неплавкие), не растворимые в петролейном эфире, растворимы в горячем бензоле карбены частично растворимы лишь в пиридине и сероуглероде карбоиды не растворяются ни в одном из известных органических или минеральных растворителей асфальтогеновые кислоты и их ангидриды растворимы в спирте, бензоле и хлороформе. [c.17]

    Среди многочисленных химических преврагцений соединений с малыми циклами большое значение имеют реакции, приводящие к образованию гетероциклических структур. В последние десятилетия в практику тонкого органического синтеза вошли олефины нового поколения, такие как полициклические каркасные, напряженные оле-фины с малыми циклами. Мы нашли новые подходы к синтезу N- и О-содержащих гетероциклических соединений на основе реакций олефинов, содержащих малые циклы, С тетранитрометаном (ТНМ) и его производньл1и. [c.49]

    Гидролиз ароматических аминов не является общей реакцией, но все же он более распространен, чем обэтом можно судить по pядyv примеров, приводимых в литературе. Электроноакцепторные г зуппы находящиеся в о- и я-положениях, и в этом случае облегчают реакцию. Кроме того, J идpoлизy подвержены полициклические арома--тические и некоторые гетероциклические амины, так как по мер возрастания аннелирования возрастает вклад таутомерной имино- -формы [c.285]

    Родственными альдоксимам производными, которые также служат промежуточными соединениями на пути к нитрилам, являются К-хлоримины [59], иодиды N,N,N-тpимeтилгидpaзиния [60], окиси К,Н-диметилгидразона (пример 6.5) [61], 4-алкилиденамино-], 2,4-триазолы [62] и азины [63, 64]. Они требуют применения реагентов, более редких, чем гидроксиламин, хотя азины легко получаются с хорошим выходом из сульфата гидразина [65]. Нагревание или различные реагенты, как уже указывалось, необходимы для превращения промежуточного соединения в нитрилы. Интересно отметить, что облучение ряда ароматических азинов в неполярных растворителях дает нитрилы с выходами от 80 до 95% [64]. Эти методы применимы главным образом к ароматическим, а не к алифатическим альдегидам. Метод, включающий 4-алкилиденамино-1,2,4-триазолы в большей степени, чем остальные четыре, был использован для получения ряда гетероциклических и полициклических соединений. [c.452]

    Ацилирювание по Фриделю — Крафтсу может применяться к ароматическим углеводородам (в том числе и полициклическим), галогенопроизводным углеводородов и реакционноспособным гетероциклическим соедннениям (например, тиофену, фураяу). Аро- [c.420]

    Синтез Вильсмейера применим к реакцнонносиособным ароматическим соединениям, особенно к полициклическим соеднианням, фенолам, их простым эфирам, а также к реакцнонноспособным гетероциклическим соединениям, содержашлм кислород, серу и азот. Б отличие от синтезов Гаттермана, Гаттермана — Коха и Гаттермана— Адамса в эту реакцию также хорошо вступают вторичные II третичные ароматические амины. [c.427]

    В соответствии с этим, при гидрокрекинге подвергаются насыщению в первую очередь коксообразующие компоненты. При рассмотрении гидрообессеривания упоминалось, что в получаемом жидком продукте сокращается по сравнению с исходным сырьем количество асфальтенов (представляющих собой сложный комплекс ароматических, нафтеновых и гетероциклических структур) и частично разрушаются полициклические ароматические углеводороды, превращаясь в ароматические с меньшим числом колец. При более глубоком процессе гидрокрекинга происходит дальнейшее разрушение этих структур и переход от полициклических ароматических к моно- и бициклическим углеводородам — алкиларо-магическим, двухядерным алициклическим. Алкилбензолы могут отщеплять алкильную группу, но бензольное кольцо в условиях гидрокрекинга насыщается слабо. Если, например, взять за основу антрацен, то основное направление реакции выразится схемой  [c.252]

    Поскольку в полициклических соединениях на гетероатомы могут быть заменены атомы углерода разных тщклов тг в самых различных комбтшатщях, число возможных гетероциклических соедтшений исключительно велико. [c.991]


Смотреть страницы где упоминается термин Гетероциклические полициклических: [c.150]    [c.71]    [c.93]    [c.94]    [c.446]    [c.469]    [c.527]    [c.527]    [c.55]    [c.187]    [c.20]    [c.73]    [c.474]    [c.51]    [c.72]    [c.190]    [c.218]    [c.259]   
Основы органической химии 2 Издание 2 (1978) -- [ c.372 , c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Полициклические



© 2025 chem21.info Реклама на сайте