Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитрование производных ароматических кислот

    Химические свойства. Фуран, его гомологи и производные обладают ароматическими свойствами, однако фурановое кольцо не имеет такой прочности, как бензольное или некоторые другие гетероциклические кольца. Почти не изменяясь от ш,елочей, он легко разрушается сильными кислотами и окислителями. Для него характерны реакции замещения, но при соблюдении определенных условий. Например, азотная кислота разрушает фуран, поэтому прямое его нитрование невозможно. Применяют более мягкий нитрующий реагент — ацетилнитрат (образуется при смешении уксусного ангидрида с азотной кислотой) в пиридиновом растворе [c.415]


    Нитрование ароматических углеводородов и их производных применяют давно, в 1940-х годах начали осуществлять нитрование низших парафинов, при котором образуются смеси нитропроизводных исходного углеводорода и его низших гомологов. Так, при нитровании пропана азотной кислотой в паровой фазе при 400°С образуются следующие соединения  [c.265]

    Таким образом при нитровании фенолов, ароматических аминов и их алкилированных производных мы встречаемся с иным механизмом реакции, названным Ингольдом специальным механизмом. При этом оказалось, что для нитрования этих высоко реакционноснособных соединений возможен переход от обычного нитрования нитроний-ионом к этому специальному механизму. Такой переход можно осуществить изменением концентраций азотной и азотистой кислот. При низких концентрациях азотной кислоты реакция сильно катализируется присутствующей азотистой кислотой и протекает по кинетике второго порядка (см. выражения скорости). Посте-ценное повышение концентрации азотной кислоты приводит сначала к уменьшению каталитического действия азотистой кислоты, затем к полному его исчезновению, когда порядок реакции становится нулевым, и, наконец, к появлению незначительного тормозящего действия азотистой кислоты. [c.194]

    В реакцию непосредственного нитрования вступают не только ароматические углеводороды, но и многие другие ароматические производные, как, например, галоидные производные, фенолы, амины, альдегиды и ароматические кислоты. Благодаря большому числу получающихся продуктов и возможностям их дальнейшего превращения непосредственное нитрование является одним из главнейших синтетических методов в ароматическом ряду.  [c.518]

    При нитровании разнообразных производных ароматических кислот также получаются различные выходы мета-нитропроизводных, [c.353]

    Начиная с 1888 года М. И. Коновалов предпринял систематическое изучение действия азотной кислоты на алифатические, алициклические, жирноароматические углеводороды, их галоидные производные, спирты и кетоны. На большом числе разнообразных соединений он показал, что как концентрированная, так и сильно разбавленная азотная кислота способна нитровать предельные соединения и парафиновую цепь ароматических соединений и что в зависимости от условий нитрования, как, например, температуры, концентрации азотной кислоты и т. д., могут быть получены различные продукты реакции. Коновалов изучал также нитрование углеводородов азотной кислотой в растворах уксусной кислоты и солями азотной кислоты . [c.135]


    Нитрование ароматических соединений азотной кислотой каталитически ускоряется ионом НЗО , доставляемым серной кислотой. Силикагель катализирует процесс нитрования бензола N0 в паровой фазе. Низшие окислы азота являются катализаторами процесса нитрования производных бензола четырехокисью азота. Для проведения процесса нитрования парафинов катализатора не требуется. [c.330]

    Можно производить нитрование различных производных ароматических углеводородов — фенолов, аминов, кислот и др. Нитрование этих соединений протекает с различной легкостью, поэтому обычно подбирают наиболее благоприятные условия реакции в каждом отдельном случае. Так, например, фенолы нитруются очень легко — реакция идет с разбавленной азотной кислотой без нагревания. Часто проводят процесс в сернокислом растворе, применяя вместо азотной кислоты азотнокислый натрий (или калий). Гидроксильная группа фенола, являющаяся заместителем первого рода, ориентирует вступающую нитрогруппу Б о- и п-положения [c.63]

    Иначе протекает нитрование ароматических соединений азотной кислотой в присутствии ртути или ее солей, так называемое окислительное нитрование. При этом, кроме нитрования, происходит гидроксилиро-вание и образуются нитрофенолы и полинитрофенолы или их производные. Например, из бензола образуется 2,4-динитрофенол и пикриновая кислота - из толуола 2,4,б-тринитро-ж-крезол и оксинитробензойная кислота из бензойной кислоты—2,4,6-тринитро-З-оксибензойная кислота , а из нафталина—нитронафтолы наряду с а-нитронафталином. [c.211]

    Путем сульфирования и нитрования из ароматических аминов получаются производные, содержащие в ароматическом ядре сульфогруппы (см. Сульфаниловая кислота) и нитрогруппы. К реакциям замещения в ароматическом ядре относится и рассмотренное выще введение нитрозогруппы в бензольное ядро третичных жирно-ароматических аминов (см. Нитрозосоединения). [c.424]

    Кинетика нитрования ароматических углеводородов в их галоидных производных азотной кислотой в уксусном ангидриде исследована Троновым, Камай и Коваленко.  [c.42]

    Геминальные ди- и тригалогениды (кроме производных мета-па) гидролизуются (см. разд. Г, 2.5.1), получающиеся альдегиды и карбоновые кислоты идентифицируют, как обычно. Из ароматических фторидов и хлоридов можно получить производные редакциями нитрования или сульфирования (см. разд. Д, 2.12). [c.314]

    Исследовано действие ацетилнитрата на некоторые ароматические соединения. Бензол, толуол, бензилхлорид, бензойная кислота, фенол, анизол, ацетанилид, нафталин, хинолин дают при нитровании соответствующие мононитросоединения с теоретическими или почти теоретическими выходами. При действии ацетилнитрата на производные бензола получаются, [c.423]

    При нитровании разнообразных производных ароматических кислот также получаются различные выходы мета-нитронроизводных, что объясняется изменением —С-эффекта этой группы, вследствие сопряжения С=0-группы с неподеленными электронными парами свя- [c.311]

    Ароматические амины и фенолы могут вступать с мышьяковой кислотой в реакцию, подобную реакциям нитрования и сульфирования. При этом получаются производные ароматических арсиновых кислот. Так, например, анилин с мыщьяковой кислотой п-аминофениларсиновую, или арианиловую, кислоту. [c.396]

    В некоторых случаях непредельные углеводороды идентифицируют в виде дибромпроизводных. Для идентификации ароматических углеводородов окисляют их боковые цепи и исследуют образовавшиеся карбоновые кислоты. Многие ароматические углеводороды исследуют в виде характерных кристаллических производных пикриновой кислоты. К шестичленным нафтенам применяют реакцию пербромирования по Густавсону — Коновалову, а ко всем насыщенным —нитрование по Коновалову разбавленной кислотой в запаянных трубках. [c.90]

    Кинетика нитрования ароматических углеводородов и их 1Л0ИДНЫХ производных азотной кислотой в уксусном ангидри- [c.67]

    При дальнейшем изучении нитрования различных ароматических соединений азотной кислотой в органических растворителях Ингольд с сотрудниками 171, 721 показали, что нитрование фенолов, ароматических аминов и их лкилированных производных отличается от нитрования других ароматических соединений. Это отличие проявляется в различном влиянии азотистой кислоты на скорость нитрования. Как мы видели, нитрование в органических растворителях, достаточно ре -акционноспособных к электрофильньш замещениям ароматических соединений (бензола, толуола и др.)> протекает по кинетике нулевого порядка, причем добавление азотистой кислоты несколько снижает скорость реакции. Выражение для скорости в этом случав имеет следующий вид  [c.193]

    Ароматические нитросоединения нолучаются обычно прямым нитрованием соответствующих соединений. Ароматические нитросоединения применяются в больших количествах как красители и взрывчатые вещества, а также в парфюмерной промышленности. Они используются также в качестве растворителей и химических реагентов. Нитрогруппа может действовать как хромофорная группа в красителях, особенно если имеется несколько нитрогрупн и они располагаются в кольце таким образом, что становятся частью сложной сопряженной системы. Значительно чаще нитрогруппа используется как исходная группа для получения соответствующего анилина в результате применения восстановления в довольно мягких условиях. Использование нитросоединений в промышленности взрывчатых веществ направлено в первую очередь на военные цели. Промышленное производство взрывчатых веществ основано больше на нитроглицерине, т. е. на сложном эфире азотной кислоты, чем на истинных нитросоединениях. Некоторым, весьма существенным исключением являются нитрокарбонитратные пороха, содержащие нитрат аммония и незначительные количества тринитротолуола или динитротолуола. В парфюмерной промышленности нитросоединения используются в качестве синтетических мускусов. Большая группа производных полинитро-/к/)т-бутилбензола обладает запахом, напоминающим мускус. [c.543]


    Иначе действует азотистая кислота при нитровании фенолов, ароматических аминов и их алкилированных производных. Прибавление азотистой кислоты в этом случае увеличивает скорость реакции, причем порядок реакции иа нулевого етано-витси вторым [c.194]

    В промышленности успешно применяется ряд процессов для переработки разбавленной серной кислоты. В частности, по методу Полинга проводится коицеитри-)ование кислоты в реакторе с наружным обогревом, соединенном с дефлегматором, (концентрирование осуществляют и путем непосредственного контакта с горячими газами. Однако проведение этих процессов сопряжено с рядом трудностей в тех случаях, когда в сериой кислоте помимо воды и газов содержатся также другие примеси. Примеси органических соединений, таких как например ароматических соединений в количестве до 2 %, образующихся при нитровании производных бензола или нафталина, обычно удаляют путем дистилляции или окисления. [c.361]

    Кинетика нитрования ароматических углеводородов и их галоидных производных азотной кислотой в з ксусном ангидри-исследована также В В Троновьш, Г X Камай и А Г Коваленко [162] [c.67]

    Не специфичны для рассматриваемых солей реакции окисления молекулярным кислородом. Зато очень часто нитрат и сульфат ртути применяются в процессах каталитического окисления азотной кислотой (окислами азота) и серной кислотой (олеумом). Соединения ртути являются, вероятно, наиболее активными катализаторами этих реакций. При окислении циклогексанола и азотистых гетероциклов азотной кислотой или окислами азота [906, 908—910] в присутствии нитрата ртути образуются карбоновые кислоты, т. е. нитрогруппа не входит в молекулы продуктов при взаимодействии бензола и его производных с азотной кислотой наряду с окислением происходит нитрование [902—904]. Окисление нафталина или я-ксилола серной кислотой либо олеумом в присутствии сульфата ртути приводит к образованию ароматических кислот в то же время HgS04 часто применяется в органическом синтезе как катализатор сульфирования [913—916]. [c.1349]

    Сходство между реакциями электронов с ароматическими соединениями и другими процессами замещения в ароматическом ряду исследовали методом ар-корреляций на примерах реакций гидратированных электронов с пара-замещенными производными бензойной кислоты, лгета-замещенными толуолами и /гара-замещен-ными фенолами [120]. В этих случаях также были получены прекрасные корреляционные прямые между т) и а. Однако в отличие от таких реакций, как галогенирование и нитрование, значения р для реакций гидратированных электронов с этими соединениями варьировали в широких пределах. Неаддитивность величин г] можно объяснить тем, что имеется несколько факторов, определяющих реакционную способность электрона при взаимодействии его с моно- и дизамещенными бензолами. В первом случае важным фактором является распределение п-электронной плотности по кольцу, тогда как для дизамещенных продуктов значение приобре- [c.136]

    Фенолами называются производные ароматических углеводородов, у которых один или несколько атомов водорода в бензольном кольце замещены на гидроксил, например, СеНзОН. Те ароматические соединеиия, в которых гидроксил замешает водород в боковой цепи, называются ароматическими спиртами, например, СбНб — СН2ОН — бензиловый спирт. Фенолы, в отличие от спиртов, обладают слабокислотными свойствами. Это выражается в том, что они легко вступают в реакцию со щелочами, образуя соединения, аналогичные алкоголя-там, называемые фенолятами. Простейший фенол называют карболовой кислотой. Для фенолов, кроме реакций замещения водорода гидроксильной группы, характерны реакции замещения водорода в бензольном ядре, например, реакции галоидирования, нитрования и сульфирования. Эти реакции протекают легче, чем у бензола, так как наличие гидроксильной группы в ядре резко увеличивает подвижность атомов водорода в орто- и пара-положении. [c.45]

    Л1еханизм взаимодействия азотной кислоты с антраценом, которое приводит, видимо, к обргзованию мезо-нитродигидроантранола (выделены лишь производные его), еще полностью не выяснен возможно, что и в этом случае реакция идет с окислами азота Во всяком случае реакционность мезо-атомов углерода у антрацена столь своеобразна, что делать на основании этой реакции какие-либо выводы о механизме нитрования других ароматических углеводородов явно нецелесообразно. [c.150]

    Ориентирующее влияние заместителей с пятивалентным фосфором было изучено в реакциях электрофильного замещения (в основном нитрования) ароматических фосфониевых солей [1], окисей арилфосфинов [2] и производных фенилфосфоновой кислоты [3]. [c.85]

    Анилин и другие ароматические амины легко окисляются иод действием нитрующей смеси азотной и серной кислоты, а также раствора азотной кислоты в уксусной кислоте или уксусном ангидриде. Поэтому нитрованию подвергают анильные производные амииов. При этом наблюдаются интересные различия в ориентации для ннтруюхцих агентов различной природы. [c.1643]

    Свойства. — Эффективным методом получения моно-, ди- н тринитро производных многих ароматических углеводородов, а также их окси-, галоад- и других замещенных является нитрование азотной кислотой или ее смесью с уксусной кислотой, уксусным ангидридом или серной кислотой. Полинитросоединения, получаемые путех прямого нитрования, имеют мета-ориентацию о- и /г-динитросоединения, хотя и могут быть получены косвенными методами, но встречаются редко. Нитросоединения применяются в качестве растворителей, взрывча тых веществ, красителей, дущистых веществ, реактивов для анализоа, а также имеют большое значение как промежуточные соединения при получении аминов, в которые они превращаются при восстановлении. [c.197]

    В разнообразных нитрующих смесях используется азотная кислота или одно из ее производных. Одна разбавленная азотная кислота обычно применяется только в тех случаях, когда сосдихкише нитруется очень быстро и необходимо избежать образования иолииитросоединений. При нитровании фенола разбавленной азотной кислотой получается моно-нитрофенол, при пспользовании же более концентрированных кислот часто получается тринитропроизводное, т. е. пикриновая кислота. Разбавленная азотная кислота при нагревании действует в первую очередь как окислитель, а не как нитрующий аго[1т. Концентрированная и дымящая азотная кислота иногда применяется 1сри нитровании ароматических соединений с неконденсированными системами колец. [c.544]

    Ароматические углеводороды в промышленных условиях нитруют азотной кислотой (или смесью HNO3 и H2SO4) в жидкой фазе кинетика этих процессов изучена достаточно полно. Было установлено, что скорость нитрования азотной кислотой не зависит от концентрации ароматического углеводорода (реакция нулевого порядка), в тех же условиях скорость нитрования ароматических соединений с пониженной реакционной способностью (например, галоидных производных) зависит от концентрации и природы ароматического соединения. [c.299]

    Робинсон с сотрудниками изучил нитрование надазотистой кислотой ряда ароматических соединений бензола, толуола, хлорбензола, нитробензола, феиола, диметиланилина, фене-тола, фениллропилового эфира и ацетофенона. Выход нитро-и гидроксилированных производных невелик (порядка 10%). [c.198]

    Тиофен устойчив к нагреванию. По многим свойствам он очень напоминает бензол, но отличается от последнего сравнительно легкой окисляемостью при реакции с хлорноватистой кислотой, азотной кислотой и др. В этом отношении тиофен похож на фу-рановые соединения. Ароматический характер тиофена проявляется в различных реакциях замещения. Соблюдая некоторые предосторожности (разбавление инертными растворителями, охлаждение), действием хлора и брома можно получить а-галоид-производные тиофена. При нитровании и сульфировании в мягких условиях образуются соответственно а-нитротиофен и а-суль-фотиофен. [c.584]

    Действие азотной кислоты в присутствии ртути на ароматические соединения и их производные исследовали также Блехта п Патек [1681. При нитровании толуола 50%-ной азотной кислотой, в которой растворено 2% ртути, образуются. нитротолуолы и п-нитробензойная кислота с выходом 10% от теории (т. пл. п-нитробензойной кислоты 237—238°). В продуктах реакции обнаружен также тринитро-м-крезол. Эти авторы пе подтверждают образования нитросалициловой кислоты, наблюдавшегося другими исследователями [1671. [c.71]


Смотреть страницы где упоминается термин Нитрование производных ароматических кислот: [c.244]    [c.47]    [c.26]    [c.68]    [c.150]    [c.56]    [c.56]    [c.79]    [c.406]    [c.23]   
Курс теоретических основ органической химии (1959) -- [ c.312 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические кислоты

Ароматические кислоты и их производные



© 2025 chem21.info Реклама на сайте