Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы при нитровании основные

    Суммированы основные работы за 1965—1970 гг. по новым реакциям электрохимического синтеза органических соединений и новым идеям в области интенсификации процессов электросинтеза. Рассмотрены реакции анодного окисления углеводородов, спиртов, альдегидов, кетонов, карбоновых кислот и соединений других классов, реакции анодного замещения и присоединения — галоидирование, цианирование, нитрование, гидроксилирование, алкоксилирование, сульфирование, карбоксилирование, алкилирование и др. Приведены сведения об образовании элементоорганических соединений при анодных и катодных процессах. Рассмотрены катодные реакции восстановления без изменения углеродного скелета — восстановление непредельных ароматических, карбонильных, нитро- и других соединений с кратными связями, образование кратных связей при восстановлении, катодное удаление заместителей, а также реакции гидродимеризации и сочетания, замыкания, раскрытия, расширения и сушения циклов, в том числе гетероциклов. Рассмотрены пути повышения плотности тока, увеличения поверхности электродов, совмещение анодных и катодных процессов электросинтеза, применение катализаторов — переносчиков, пути снижения расхода электроэнергии и потерь веществ через диафрагмы. Описаны конструкции наиболее оригинальных новых электролизеров. Таблиц 2, Иллюстраций 10, Бйбл, 526 назв. [c.291]


    А. И. Захаров выдвигает другую схему нитрования, исходя из допущения, что основная роль катализатора сводится к ослаблению общей стойкости бензольного ядра посредством [c.76]

    Основным лабораторным и производственным методом введения аминогруппы в ароматическое соединение является нитрование и восстановление. Обычно восстановителем служит железо в присутствии небольших количеств соляной кислоты сотни тонн чугунных стружек, собираемых как отходы металлообрабатывающей промышленности, используются для этой цели в производстве промежуточных продуктов. В лаборатории часто применяют также цинк, олово и хлористое олово. Восстановление водородом на медном или никелевом катализаторе успешно применяется, например, при восстановлении нитробензола и а-нитронафталина восстановление нитрофенолов, нитроантрахинонов и частичное восстановление ж-динитробензола производят сульфидом натрия. В ряде случаев восстановление ведется раствором бисульфита натрия под давлением, причем одновременно происходит сульфирование (например а-нитронафталин-> -нафтиламин-2,4-дисульфокислота). Изучено также и электролитическое восстановление, но оно не имеет значения для превращения нитросоединений в амины. Восстановление азосоединений [c.100]

    Основные причины, затрудняющие использование солей ртути в качестве катализатора при нитровании, следующие  [c.85]

    В главе Способы введения нитрогрупп наряду с основными сведениями подробно рассмотрен вопрос о нитровании в присутствии катализаторов. [c.11]

    В технологии основного органического и нефтехимического синтеза встречаются практически все реакции органических, а часто и неорганических веществ окисление и дегидрирование, гидрирование и нитрование, сульфирование и этерификация и др. Выбор реактора в значительной степени зависит от типа протекающих в нем реакций. Все встречающиеся в отрасли химические реакции можно классифицировать по следующим основным признакам 1) по числу стадий химических превращений 2) по термическим условиям 3) по агрегатному (фазовому) состоянию реагентов 4) по наличию и типу катализаторов. [c.91]

    Нитрование ароматических соединений осуществляется большей частью смесью азотной и серной кислот. Последняя одновременно является катализатором, водоотнимающим средством и веществом, способствующим более полному использованию азотной кислоты и препятствующим окислительным процессам. В нитрующей смеси происходит кислотно-основное взаимодействие, которое ведет к об- [c.467]


    Основные реакции электрофильного замещения в пирроле суммированы на рис. 27-3. Помимо преобладающего замещения в положение 2, необходимо отметить следующие важные моменты во-первых, нитрование и сульфирование пиррола возможны, но только в том случае, если исключена сильнокислая среда, в которой происходит полимеризация во-вторых, пиррол достаточно реакционно способен для того, чтобы галогенирование и ацилирование по Фриделю — Крафтсу могло протекать без участия катализатора однако пирролы, содержащие электроноакцепторные заместители (например, —НОг, —СОаН), менее реакционноспособны, чем пиррол, и для замещения в этих случаях требуется присутствие катализатора. [c.389]

    Для нитрования пропана двуокисью азота предложен катализатор, состоящий в основном из металлического алюминия . [c.161]

    Из катализаторов для процесса нитрования некоторое значение имеет только ртуть. Так, при нитровании бензола 50—60%-ной азотной кислотой в присутствии азотнокислой ртути основным продуктом реакции является не нитробензол, а 2,4-динитрофенол. [c.17]

    Основным методом введения нитрогруппы в молекулу ароматического углеводорода является нитрование смесью азотной и серной кислот (нитрующая -смесь) в жидкой фазе. Серная кислота является не только водоотнимающим средством, но и катализатором, а также препятствует протеканию окислительных реакций и способствует более полному использованию азотной кислоты. [c.466]

    Серная кислота — главнейший продукт основной химической промышленности. Поэтому она занимает по выработке первое место среди неорганических кислот. Основным потребителем серной кислоты является производство минеральных удобрений— суперфосфата и сульфатов аммония и калия. Для этого может применяться как башенная (75—76% Н25 04), так и контактная (92,5—94%) серная кислота. Контактную кислоту используют для очистки нефтепродуктов, коксохимических продуктов, а также цветных металлов. Серной кислотой сульфируют органические соединения полученные вещества хорошо растворимы в воде (красители, лекарства, моющие средства и др.) ее применяют также при выработке вискозного волокна и как катализатор в промышленности органического синтеза. Для этого используют как контактную кислоту, так и дымящую (олеум). Ее применяют в качестве водоотнимающего средства в реакциях нитрования при производстве нитробензола, нитроцеллюлозы, нитроглицерина и т. д. Серная кислота сильная и малолетучая, поэтому она способна вытеснять летучие или слабые кислоты из их солей, что используется в производстве фтороводорода, хлороводорода, хлорной, фосфорной и борной кислот. Разбавленная горячая серная кислота хорошо растворяет оксиды металлов, и ее используют для травления металлов — очистки их, особенно железа, от оксидов. [c.34]

    Нитрогликоль может быть получен и непосредственным нитрованием этилена без перевода его в гликоль. Реакция открыта Кекуле [124] и подробно исследована многими учеными [12.5—130]. Нитрование ведут пропусканием этилена через серно-азотную кислотную смесь при 50 °С в присутствии АдМОз в качестве катализатора. При этом получают маслообразный продукт с плотностью 1,47, состоящий в основном из смеси нитрогликоля и нитроэтилового спирта. Нитрогликоль отделяют от этой смеси перегонкой с острьш паром [129]. Схема реакции нитрования  [c.623]

    Производство продуктов органического синтеза основано на типовых реакциях органической химии гидрирования и дегидрирования, гидратации и дегидратации, хлорирования, гидрохлорирования и дегидрохлорирования, окисления, сульфирования, нитрования, конденсации, полимеризации. Направление химической реакции и ее скорость зависят от совокупности химических и физических параметров процесса температуры, давления, времени, агрегатного состояния и соотношения реагентов, применения катализаторов, растворителей, способов подачи и отвода теплоты и др. Установление оптимальных условий, позволяющих получать наивысший выход продукта хорошего качества, связано со знанием основных закономерностей химической технологии. Процессы органического синтеза протекают в кинетической области, вследствие чего общая скорость их определяется скоростью химической реакции и вычисляется по уравнению [c.279]

    Большое значение оказывают количество и активность катализатора, При небольших количествах катализатора и мягких условиях образуются в значительной,степени орто- и пара-то-меры. С увеличением количества катализатора возрастает содержание мета-томера. Кроме того, образование лега-изомера при мягких условиях наблюдается при высокой реакционной способности и низкой избирательности карбокатионов. В присутствии больших количеств катализатора ароматические углеводороды почти количественно превращаются в 1,3-диалкил- и 1,3,5-триалкилбензолы, что объясняется их большой основностью и соответственно стабильностью соответствующих сг-комплексов. Многочисленными примерами показано, что чем выше энергия у реагента (больше дефицит электронов), тем меньше его селективность как при атаке различных по основности ароматических углеводородов, так и отдельных положений монозамещенных ароматических соединений. Например, молекулярный бром (слабая кислота Льюиса) реагирует с толуолом в 600 раз быстрее, чем с бензолом, тогда как бром-катион из гипобромида (сильная кислота Льюиса) лишь в 36 раз. Подобный же эффект наблюдается для этих реагентов и при атаке различных положений толуола. В табл. 2.4 приведены факторы парциальных скоростей нитрования и галогенированЕя толуола и трет-бутилбензола. [c.42]


    Катализаторы не нащли широкого применения в реакции нитрования. Однако при нитровании ароматических соединений азотной кислотой в присутствии солей ртути проявляется своеобразное каталитическое влияние ртути, обусловливающее образование оксинитросоединений. Так, при действии на бензол 50—55%-ной азотной кислоты в присутствии азотнокислой ртути при 50"" получается 2,4-динитрофенол с выходом 85% при более высокой температуре в качестве основного продукта реакции получается пикриновая кислота  [c.49]

    Райг С сотрудниками установил [13], чю легкость нитрования вторичных аминов зависит от основности аминогруппы. Было найдено, что основные свойства аминов, которые нитруются в отсутствие катализатора с хорошим выходом, значительно слабее, чем у морфолина. Для очень сильных аминов (например, ди-н. бутиламина) катализатор лучше всего применять в эквимолекулярном количестве. [c.327]

    Н. А. Валяшко, В. И. Близнюков и А. Е. Луцкий [48] нитровали толуол двуокисью азота следующим способом реакция N204 (3 моля) с толуолом (1 моль) проводилась в запаянной стеклянной трубке при температуре до 70°. Уже нри комнатной температуре реакция шла очень энергично. При температуре 70° наблюдались взрывы. Основным направлением реакции было вступление N02 в метальную группу, побочное направление реакции — вступление в ядро с образованием мононитротолуолов. В процессе нитрования образуются продукты окисления — бензойная и щавелевая кислоты. Катализаторы, обычно направляющие нитрогруппу в ядро, в этих ус- [c.366]

    Исследования Топчиева и Алании показали впервые, что хлор является гомогенным катализатором реакций нитрования углеводородов окислами азота в газовой фазе. При этом, наряду с основными продуктами реакции — нитроироизводными углеводородов, наблюдалось образование и хлоридов. Это обстоятельство давало основание иреднслагать, что при определенных соотношениях между хлором и окислами азота реакцию можно нанравить практически нацело в сторону образования хлоридов, используя окислы азота как гомогенный катализатор процесса хлорирования. [c.283]

    Около 10 лет назад фтористый водород стал доступным техническим продуктом и с тех пор приобретает все возрастающее значение в органическом синтезе. Фтористый одород, так же как и другие галоидоводороды, способен присоединяты я к оли )инам, образуя фториды. Однако значительно более важное применение фтористого водорода основано на его мощном дегидратирующем действии, которое позволяет заменять им серную кислоту во многих реакциях конденсации. Как известно, основным недостатком серной кислоты является то, что одновременно с конденсирующим она оказывает сульфирующее и окисляющее действие, особенно на вещества ароматического ряда. Фтористый водород свободен от этих недостатков, он почти никогда не вызывает осмоления и лишь в редких случаях производит фторирование ароматических соединений. Далее, фтористый водород с успехом заменяет такие катализаторы, как ВРз, А1С1з и другие галогениды металлов, при этом преимущество фтористого водорода заключается в том, что он редко производит конденсацию ароматических ядер и никогда не вызывает миграцию алкильных групп. Жидкий фтористый водород является прекрасным растворителем для большого числа органических соединений, что позволяет проводить такие реакции, как нитрование, сульфирование, фторирование и диазотирование в гомогенной среде. [c.32]

    Значительное число промышленных првцессов основного органического и нефтехимического синтеза протекает в гетерофазных системах, особенно часто в системах газ — жидкость или жидкость — жидкость. При этом один из реагентов или (и) катализатор находится в жидкой фазе, а второй или даже оба реагента присутствуют в газовой или другой жидкой фазе, не смешивающейся с первой. Примеры таких процессов очень многочисленны. Так, в системе из двух несмешивающихся жидкостей протекают реакции сульфирования и нитрования ароматических соединений, сульфатирования высших спиртов и жидких олефинов, оксимиро-вания циклогексанона в производстве капролактама, взаимодействие формальдегида с изобутиленом при получении изопрена. Еще чаше встречаются реакции в системах газ — жидкость, так называемые барботажные процессы. К ним относятся жидкофазное хлорирование, окисление и гидрирование различных соединений, алкилирование ароматических веществ и парафинов газообразными олефинами, жидкофазные синтезы из ацетилена и окиси углерода (получение ацетальдегида, винилацетилена, виниловых эфиров, оксосинтез) и ряд других процессов. [c.192]

    Вольфенштейн й Бетерс [26] заметили, что при взаимодействии азотной кислоты умеренной концентрации с бензолом в присутствии ртутной соли выделяется значительное количество окислов азота. Исследуя это явление, они установили, что основными продуктами реакции являются оксинитросоединения динитро- и тринитрофенОл и в небольших количествах нитробензол. Было выяснено, %о реакция зависит от концентрации азотной кислоты концентрированная азотная кислота (а также серно-азотная кислотная смесь) в присутствии ртутной соли дает только нитробензол при применении разбавленной азотной кислоты снижается количество образующегося нитробензола, но одновременно увеличивается количество нитрофенолов. Добавка ртутного катализатора не дает окислительного эффекта в случае нитрования ароматических соединений, содержащих нитрогруппы [29, 31]. Нитрование азотной кислотой в присутствии ртути, приводящее к образованию нитро-оксисоединений, называют окислительным нитрованием. Окислительное нитрование бензола до динитрофенола разработано и может быть внедрено в промышленность [32—35]. [c.78]

    К. к.-о. приобрел за последние годы исключительно важное практич. значение в химич. процессах, осуществляемых в промышленном масштабе. К числу таких важнейших процессов относятся гидратация и изомеризация олефинов, этерификация спиртов, нитрование углеводородов, гидролиз крахмала и других полисахаридов, алкилирование ароматич. соединений, каталитич. крекинг нефти, синтез высокомолекулярных соединений методами ионной полимеризации и др. Процесс парофазной гидратации этилена в этиловый сиирт, являющийся основным источником синтетич. этилового снирта, осуществляется с использованием в качестве катализатора фосфорной к-ты, нанесенной на пористые силикатные носители. Аналогичные катализаторы применяются при парофазном алкилированип бензола олефинами. Катализаторами алкилирования ароматич. соединений в жидкой фазе служат хлористый алюминий или фтористый бор. Широкое применение в качестве катализаторов процесса полимеризации нек-рых непредельных углеводородов получили фтористый бор, хлорное олово и др. Напр., полимеризация иаобутилена при каталитич. действии BFg протекает с очень большой скоростью при весьма низких темп-рах (ок. —100°). Для каталитич. крекинга нефтп используют алюмосиликатные катализаторы, поверхность к-рых обладает кислотными свойствами- Большая практич. значимость К. к.-о. определила интенсивное развитие исследований в последние годы в области практич. использования кислот и оснований как катализаторов различных процессов и в направлении выявления закономерностей и механизма каталитич. действия этого класса соединепий. [c.241]

    Одним из важнейших процессов каталитического восстановления нитросоединений является получение смеси толуилендиаминов из смеси динитротолуолов. Каталитическое восстановление является основным методом получения этих важных диаминов. Смесь динитротолуолов (полученная нитрованием о-нитротолуола) восстанавливается в метанольном растворе (с добавкой реакционной массы от предыдущей операции для уменьшения разогревания массы при реакции) при 100—170 °С с применением в качестве катализатора Ni-Ренея. Давление при реакции 50—100 кгс/см [318]. Предложено восстанавливать динитротолуол и в водной эмульсии при атмосферном или несколько повышенном давлении с использованием в качестве катализатора Pd на угле или Ni на силикагеле [319], в водном спирте с Pd/ или Pt-катализатором [320]. [c.1782]


Смотреть страницы где упоминается термин Катализаторы при нитровании основные: [c.360]    [c.215]    [c.329]    [c.329]    [c.405]    [c.480]    [c.329]    [c.405]    [c.115]    [c.567]    [c.331]    [c.193]    [c.23]    [c.160]    [c.36]    [c.160]    [c.42]   
Нитрование углеводородов и других органических соединений (1956) -- [ c.286 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы при нитровании

Основные катализаторы



© 2025 chem21.info Реклама на сайте