Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газов и жидкостей химическая

    К колонным и башенным аппаратам в химической технологии относят в основном оборудование для процессов взаимодействия между жидкостью и газом (ректификация, абсорбция и мокрая очистка газов), жидкостью и жидкостью (экстракция) и газом и твердым телом (адсорбция). Особое положение занимают реакторы колонного типа, рассмотренные в ч. II. [c.136]


    Направление научных исследований синтез новых химических продуктов модификационные превращения полимеров, керамических материалов, металлов для придания им лучших химических, механических и электрических свойств химические процессы на поверхности раздела фаз катализаторы топливные элементы и электроды для батарей технология разделения и очистки газов, жидкостей электрофорез. [c.23]

    Для разделения системы Г —Ж применяются волокнистые фильтры из синтетических волокон. Гидравлическое сопротивление 5—60 Па, эффективность улавливания аэрозолей, туманов выше 99 %. Скорость газа 0,5—1,5 м/с. Капли тумана и аэрозоли за счет сил адгезии прилипают к поверхности ткани и по мере накопления и укрупнения стекают в приемные емкости. Обработка газов ультразвуком и в электромагнитном поле увеличивает степень очистки. Уловленная жидкость содержит —в пределах растворимости — химические соединения, находящиеся в газе, и ее использование зависит от количества в ней загрязнений. Санитарную очистку газов метод, как правило, не обеспечивает [5.64, 5.67]. [c.474]

    Отмечены случаи разрушения поршневых компрессоров для коксового газа в результате перегрузок механизмов, вызванных отложениями смол в цилиндрах и поршнях, разрушения аппаратов и трубопроводов в результате ограниченной проходимости газов и жидкостей и др. Большая часть трудоемких газоопасных работ в химических и нефтехимических производствах связана с очисткой аппаратуры от химических отложений и осадков. Так, на одном из заводов синтетического каучука на очистку аппаратуры от отложений ежегодно затрачивают около 10 ООО чел-ч. Причем очистка является газоопасной работой, так как связана с пребыванием людей внутри закрытых сосудов, а это не исключает несчастные случаи. [c.295]

    Превращения в системе жидкость (газ) — жидкость. В такой системе превращения проводятся с целью получения необходимых продуктов или извлечения определенного компонента из какой-либо фазы. К первой группе этих процессов относится, например, нитрование органических соединений смесью азотной и серной кислот (процесс в системе двух несмешивающихся жидкостей) или хлорирование жидких ароматических углеводородов (процесс в системе газ — жидкость). Примером второй группы процессов может служить очистка синтез-газа с помощью абсорбции нежелательного компонента жидкостью, в которой проходит химическая реакция с этим компонентом. [c.250]


    В двухфазной системе газ — жидкость осуществляются многие производственные процессы, широко распространенные в химической, нефтеперерабатывающей, коксогазовой, металлургической, целлюлозно-бумажной, пищевой и других отраслях промышленности. К ним относятся процессы абсорбции газовых компонентов жидкостями и десорбции газов из жидкой фазы, испарения и конденсации жидкостей (перегонка), ректификации, охлаждения и нагревания газов или жидкостей путем теплообмена между фазами, очистки газов от пыли, тумана и вредных газовых компонентов и т. п. [c.9]

    Туманом называется дисперсная система, содержаш ая взвешенные в газе мелкие капли жидкости. Размеры капель от 0,01 до 1 мкм в зависимости от условий образования тумана [23]. Причиной возникновения тумана во многих производствах является конденсация паров и распыление жидкости. В ряде производств химической промышленности осуществляется очистка газов от тумана серной, фосфорной и соляной кислот, органических продуктов и др. Однако улавливание, например, сернокислотного тумана — операция сложная. Частички его настолько малы, что очень плохо улавливаются в простых осадительных, инерционных и циклонных аппаратах, обычно применяемых для очистки газов от пыли и брызг. В то же время капли тумана трудно проникают через границу раздела фаз, поэтому они плохо поглощаются в таких промывных аппаратах, как башни с насадкой и камеры с разбрызгиванием жидкости. [c.182]

    В химической промышленности пспользуют эффективные пенные аппараты, предназначенные для проведения процессов в газожидкостных системах абсорбции, десорбции, испарения, конденсации, сушки и очистки газов, охлаждения газов и жидкостей и т. д. Высокая эффективность протекающих процессов достигается увеличением поверхности контакта взаимодействующих фаз. Пены способствуют очистке поверхностей от различных загрязнений. [c.351]

    Очистка газов. При очистке газов от взвешенных в них частиц применяют фильтрование. Например, для улавливания мельчайших капелек жидкости газ можно пропустить через слой стеклянной ваты. Газообразные примеси удаляют, пропуская газ через слой жидкого или твердого сорбента (поглотителя). Действие его может быть основано на химическом связывании молекул примесей, на растворении в жидком сорбенте или на поглощении активной поверхностью твердого сорбента. [c.23]

    АБСОРБЦИЯ — поглощение веществ жидкостями или твердыми телами — абсорбентами. В отличие от адсорбции, при А. поглощение веществ происходит всем объемом поглотителя. А. может быть обусловлена химическим взаимо действием (см. Хемосорбцию). Применяется в промышленности для разделения газовых смесей и очистки газов, для получения различных продуктов [c.5]

    АДСОРБЦИЯ — поглощение газов или растворенных веществ из раствора поверхностью твердого тела нли жидкости. А.— один из видов сорбции. Происходит под влиянием молекулярных сил поверхностного слоя адсорбента. В некоторых случаях молекулы адсорбата (вещества, которое поглощают) взаимодействуют с молекулами адсорбента и образуют с ними поверхностные химические соединения (см. Хемосорбция). При постоянной температуре физическая А. увеличивается при повышении давления или концентрации раствора. Процесс, обратный адсорбции, называется десорбцией. А. сопровождается выделением теп 1а. При повышении температуры А. уменьшается. А. применяется в промышленности для разделения смесей газов и растворенных веществ, для осушки и очистки газов (например, воздуха в противогазах), жидкостей (этиловый спирт очищают от сивушных масел активированным углем). А. играет большую роль во многих биологических и почвенных процессах. Большое значение имеет адсорбция радиоактивных элементов стенками посуды или поверхностью других твердых тел, что приводит к трудностям во время проведения эксперимента и к радиоактивному загрязнению. [c.8]

    Современная химическая промышленность выпускает десятки тысяч продуктов. Все многообразие химико-технологических процессов можно свести к пяти основным группам механическим, гидродинамическим, тепловым, диффузионным (массообменным) и химическим. Механические — это процессы дробления, измельчения, агломерации, транспортирования твердых материалов, гранулирования и т. п. Гидродинамические — это процессы перемещения жидкостей и газов по трубопроводам, перемешивания, псевдоожижения, очистка газов от пыли и тумана и др. Тепловые — это процессы нагревания, охлаждения, конденсации, выпаривания и т. д. Диффузионные (массообменные) — это процессы сорбции, ректификации, растворения, кристаллизации, сушки и т. д. [c.178]

    В гл. I, 24 мы познакомились с сорбцией и, в частности, с адсорбцией, с их ролью в гетерогенном катализе. Поверхностные явления, в частности адсорбция, играют большую роль в самых различных областях техники. Для нас важно знать, что адсорбция изменяет не только поверхностные, но и объемные свойства полупроводниковых материалов, влияет на работу выхода электронов с поверхности твердых тел. С адсорбцией и десорбцией приходится сталкиваться в процессах химического и электрохимического травления и полирования полупроводников и металлов, при очистке поверхности твердых тел от загрязнений и т. д. Адсорбция и связанные с ней изменения поверхностного натяжения и разности потенциалов на границе раздела фаз играют громадную роль в коллоидной химии и электрохимии. Адсорбция используется для очистки газов и жидкостей, для удаления остатка газов из вакуумных приборов, для поглощения ОВ (в противогазах), для извлечения ценных веществ из растворов и газов и из отходов различных производств с целью рекуперации, для разделения и анализа смесей (хроматография) и т. д. [c.168]


    Промышленное внедрение молекулярных сит фирмой Линде (дочерняя организация Юнион карбид ) началось в конце 1954 г. С того времени они применяются для осушки и очистки газов и жидкостей в различных отраслях промышленности. Кроме того, многие нефтяные и химические фирмы разрабатывают специальные процессы извлечения компонентов, содержащихся в различных технологических потоках в концентрации до 50% и выше, адсорбцией на молекулярных ситах. Адсорбция с применением молекулярных сит представляет собой столь же универсальный способ проведения различных технологических процессов, как перегонка, абсорбция жидкими поглотителями или дробная кристаллизация. [c.198]

    Санитарная очистка воздуха от газов и паров основана на процессах поглощения вредных веществ (в газовой или паровой фазе) жидкостью (абсорбционный метод) или твердыми телами (адсорбционный метод), а также на химическом превращении токсичных примесей в нетоксичные. В основе абсорбционного метода очистки газов лежат диффузионные, процессы перехода вещества из газообразной фазы в жидкую через поверхность раздела. Движущей силой абсорбции является разность исходного и равновесного парциальных давлений взаимодействующих компонентов, которая выражается формулой [c.60]

    Химические реакции,очистки протекают на границе раздела фаз и скорость этого процесса определяется скоростью подвода реагирующих компонентов к поверхности раздела фаз, скоростью химической реакции и отвода ее продуктов в объем жидкости. Поэтому вихри, способствующие конвективному переносу массы и энергии из одной фазы в другую, интенсифицируют также и процесс хемосорбции. Такая интенсификация осуществлена в устройстве , предназначенном для очистки газов от паров и тумана азотной кислоты, а такл е оксидов азота (рис. 4-1). Газ последовательно проходит через аппараты I и II. Каждый аппарат имеет вихревое контактное устройство и волокнистый фильтр, улавливающий туман. В каждом контактном устройстве жидкость циркулирует под действием энергии газового потока. [c.61]

    Мокрые газоочистные аппараты широко применяются для предварительной очистки и соответствующей подготовки (кондиционирования) газов, поступающих в газоочистные аппараты других типов, в том числе и сухие (например, в электрофильтры, рукавные фильтры). В качестве орошающей жидкости в мокрых газоочистных аппаратах чаще всего применяется вода при совместном решении вопросов пылеулавливания и химической очистки газов выбор орошающей жидкости (абсорбента) обусловливается процессом абсорбции. [c.92]

    Абсорбционные методы очистки газов основаны на различной растворимости газов в жидкостях. Абсорбционные процессы можно классифицировать по различным признакам. В зависимости от физико-химической основы их можно разделить на процессы физической абсорбции и химической абсорбции (или хемосорбции, т. е. абсорбции, сопровождающейся химической реакцией газа с хемосорбентом). Это разделение в целом является условным. Процессы абсорбции, сопровождающиеся относительно сильным физическим взаимодействием молекул газа с молекулами абсорбента (например, с образованием водородной связи), близки к процессам абсорбции при слабой химической реакции. [c.25]

    Перегонка является одним из важнейших технологических процессов разделения и очистки жидкостей и сжиженных газов в химической, нефтехимической, фармацевтической, пищевой и других отраслях промышленности. [c.99]

    Скрубберы — вертикальные цилиндрические аппараты, предназначенные для очистки газов от нежелательных химических соединений и механических примесей. Процесс очистки протекает при соприкосновении газа с жидкостью (реагентом) и осуществляется обычно в насадке из керамиковых колец или колец другого типа. Иногда для этой цели применяют небольшое число ректификационных тарелок, [c.63]

    Гидрохлорированный каучук может быть использован также для получения различных емкостей, туб и других изделий [139]. Из него могут быть получены эластичные нити и пряжа [140] для прочных химических тканей, используемых в качестве фильтров для очистки агрессивных жидкостей и газов [141]. Гидрохлорированный каучук применяют в антикоррозийных покрытиях 142] и лаковых композициях [143]. В смесях с поливинилхлоридом, поливинилиденхлоридом, сополимерами винилхлорида с винилиденхлоридом и акрилонитрилом, в смесях с хлоркаучуком, хлор-циклокаучуком и хлоропреновым каучуком гидрохлорированный каучук используют для получения связующих, увеличивающих адгезию некоторых каучуков к металлу, дереву, стеклу [144]. [c.229]

    Рассматриваемые в настоящей книге процессы очистки основаны на удалении из газовых потоков газообразных примесей. Разработанные схемы очистки газа включают как простые процессы промывки, так и сложные многоступенчатые процессы с рециркуляцией потоков. Нередко сложность процесса вызывается необходимостью выделения примесей в качестве товарного продукта или регенерации материалов, используемых для удаления примесей. Для очистки газа обычно применяют три технологических процесса 1) абсорбцию жидкостью 2) адсорбцию твердым веществом 3) химическое превращение в другое соединение. [c.8]

    Абсорбция является, по-видимому, наиболее важным процессом очистки газа и применяется в весьма многих процессах. В основе абсорбции лежит массообмен, т. е. переход вещества из газообразной в жидкую фазу через поверхность раздела обеих фаз. Абсорбированное вещество физически растворяется в жидкости или вступает с ней в химическую реакцию. Десорбция (или отпарка) представляет собой обратный процесс выделения поглощенного вещества из жидкой фазы. [c.8]

    Динамика газовых пузырьков в жидкостях представляет значительный интерес по многим причинам. Во-первых, изучение движения пузырьков дает ценные сведения о свойствах простейшей границы раздела фаз жидкость — газ и о закономерностях фазовых преврашений (испарении, конденсации) и химических реакциях па поверхности. Во-вторых, этот процесс интересен и с чисто технической точки зрения. В таких областях промышленности, как газовая, нефтяная и химическая широко используются процессы и аппараты, действие которых непосредственно связано с закономерностями движения пузырьков. Речь идет о процессах сепарации газа от жидкости, барботаже пузырьков через слой смеси, которая при этом обогащается различными реагентами, содержащимися в пузырьках, процессе флотации, используемом при очистке загрязненных жидкостей и т. д. [c.121]

    Примечание. Данные табл. 2 имеют ориентировочное значение. Фильтры с номером 00 применяют для механической очистки газов, фильтры с номерами О и I - для удаления из жидкостей крупнозернистых осадков, а фильтры с номерами 2-5 - в аналитической практике и физико-химических исследованиях. [c.30]

    С необходимостью рассмотрения процесса коагуляции встречаются не только в химической технологии, но и в других областях науки и техники — в биофизике, астрономии, гидрометеорологии [2 ], при решении проблем очистки газов от аэрозольных частиц (см. 8.7 и 10.3.7) и жидкостей от тонкодисперсных включений [5]. [c.21]

    В зависимости от характера осаждаемых из газа частиц различают сухие и мокрые электрофильтры. Первые применяют для очистки газов от пыли, а вторые — от мельчайших капель жидкости, взвешенных в газе. Соответственно химическим свойствам осаждаемых в электрофильтре частиц и температуре газа выбирают материалы, применяемые для изготовления корпуса аппарата и электродов. [c.58]

    В химической промышленности абсорбцию применяют для получения готового продукта путем поглощения газа жидкостью, разделения газовых смесей для выделения одного или нескольких ценных компонентов, очистки газов от примесей вредных компонентов, улавливания ценных компонентов из газовых смесей. [c.62]

    Мокрую очистку газов применяют в тех случаях, когда допустимы охлаждение и увлажнение очищаемых газов и хорошо отработаны технологические мероприятия по предотвращению брызгоуноса и утилизации отработанных стоков. Однако, несмотря на указанные ограничения, мокрое пылеулавливание в ряде случаев может оказаться более целесообразным и оправданным, чем сухое. Например, при использовании этого способа очистки в дробильных отделениях химических заводов затраты на эксплуатацию сокращаются почти в 2 раза, а капитальные затраты на оборудование — в 12—15 раз по сравнению с сухой пылеочисткой [17]. Аппараты мокрого пылеулавливания проще по конструкции, обладают эффективностью, присущей наиболее сложным сухим пылеуловителям. Их легко изготовить непосредственно на химическом предприятии, как правило, они не имеют подвижных узлов, которыми часто оснащены сухие пылеуловители (например, узлы встряхивания в рукавных фильтрах или электрофильтрах). Процесс очистки газов от пыли с использованием жидкости сводится в основном к трем стадиям кондиционирование (подготовка) взвешенных частиц методом коагуляции или конденсации выделение частиц из газового потока удаление выделенных частиц из пылеуловителя. [c.108]

    Основное направление научных исследований — создание химической технологии производства соды. Разработал несколько удачных методов очистки газов. Обнаружил (1861), что аммиак, двуокись углерода и раствор поваренной соли реагируют между собой с образованием бикарбоната натрия, который может быть превращен в соду (способ Сольве). Преодолев технологические трудности, в частности решив в промышленном масштабе проблему смешения жидкости и газа, построил (1863) на средства семьи завод по производству соды. Способ Сольве быстро завоевал популярность, так как был значительно более простым и дешевым по сравнению со способом производства соды, предложенным ранее Н. Лебланом. Сольве сконструировал (1872) карбонизационную колонну. К 1890 основал содовые заводы в большинстве стран Европы и в США. [c.472]

    Измерение расхода сточной жидкости, поступающей на отдельные сооружения, аппараты или на очистную станцию (установку) в целом, является непременным условием их правильной эксплуатации. Кроме того в процессах очистки сточной жидкости возникает необходимость измерять расходы выпадающих из нее осадков ила, используемого для биохимического окисления органических веществ загрязненных растворов и суспензий химических реагентов воздуха, идущего на аэрацию газа, получающегося в результате сбраживания ила и осадков. [c.9]

    Для глубокой очистки газов и жидкостей в лабораторной практике в последнее время, наряду с такими известными физико-химическими методами, как четкая ректификация, противоточное распределение и экстракция, с успехом начинает применяться и так называемая препаративная хроматография [1—3], в основном ее проявительный вариант, существенным недостатком которого, как известно, является малая производительность и разбавление конечных продуктов инертным газом-носителем. Применение проявляющего газа при разделении выдвигает также весьма сложную проблему глубокой очистки больших количеств этого газа для предотвращения попадания посторонних примесей в конечные выделенные фракции чистого мономера. [c.198]

    Абсорберы, адсорберы, десорберы. Процессы сорбции широко применяют в химической промышленности для очистки паров и газов жидкостями (аб сорбция) и твердыми веществами (адсорбция). [c.267]

    Абсорбционные процессы широко распространены в химической промышленности они применяются для очистки газов от нежелательных компонентов, для получения готовых продуктов путем поглощения газа жидкостью, для разделения газовых смесей, для улавливания ценных компонентов из газовой смеси и т. д. [c.108]

    Методы очистки газов в соответствии с характером вредных примесей делятся на методы очистки от аэрозолей и очистки от газообразных и парообразных примесей. Все способы очистки газов определяются в основном физико-химическими свойствами примесей, их составом, агрегатным состоянием, диснерс1юстью и др. Разнообразие вредных примесей в промышленных выхлопах обусловливает большое разнообразие приемов очистки и применяемых реагентов. Классификация и краткая характеристика наиболее распространенных методов очистки газов от аэрозолей помещена в табл. 17. Очистка газов от газообразных и парообразных примесей особенно характерна для химической промышленности и широко применяется на химических предприятиях. Методы очист-ки промышленных газовых выхлопов от газообразных и парообразных примесей можно разделить на три основные группы 1) абсорбция жидкостями 2) адсорбция твердыми поглотителями и 3) каталитическая отастка. [c.229]

    Очистку газа от двуокиси углерода и сероводорода проводи жидким поглотителем (абсорбентом) в абсорбере, а затем их выделях из жидкости в десорбере (регенераторе). Процесс абсорбционнс очистки — циклический. Поглощение основано на химическом взаим действии СОа и НдЗ с веществами, обладающими сравпитель слабыми щелочными свойствами, и образовании нестойких соед нений. Другие компоненты газовой смеси, не обладающие кислоч, ными свойствами, не поглощаются. жидкостью и не взаимодейству1( с ней. На стадии регенерации в результате повышения температур поглотителя и снижения парциального давления поглощенное компонента химические связи разрушаются. [c.113]

    В зависимости от характера осаи даемых из газа частиц различают сухие и мокрые электрофильтры. Первые применяют для очистки газов от пыли, а вторые — от мельчайших капель жидкости, взвешенных в газе. Соответственно химическим свойствам осаждаемых [c.64]

    Встречающиеся в газовых системах продукты окисления весьма разнообразны, и их появление зависит от состава среды, температуры и характера применяемых химических веществ. Чаще всего продуктами окисления в системах газа, а также газа и жидкости являются сера (из Н25), карбоксильные кислоты (из метанола, гликоля и алканоламинов), оксиды железа (из железа), полисульфиды (из меркаптанов), оксиды амина (из аминов), тиосульфат (из Н28 и 5). Эти соединения могут вызывать сильную коррозию. Они образуются в трубопроводах или попадают в них из установок очистки газа. [c.343]

    Шибряев Б. Ф. Металлокерамические фильтрующие элементы для очистки агрессивных жидкостей и горячих газов. Химическое и нефтяное машиностроение. М., 1966, № 8, стр. 13—15. [c.392]

    Абсорбция (от лат. absorptio — поглощение) — поглощение (растворение) веществ жидкостями или твердыми телами. В отличие от адсорбции поглощение веществ происходит во всем объеме поглотителя. А. связана с растворением веществ в поглотителе или с химическим взаимодействием (хемосорбция). А. используется в промышленности для разделения газовых смесей, очистки газов, получения различных продуктов (серной кислоты посредством А. SO3. соляной кислоты — А. газообразного НС1), разделения смесей веществ, в радиохимии и аналитической химии для разделения смесей элементов, выделения в чистом виде радиоактивных элементов. [c.4]

    Процесс абсорбции обратимый, поэтому он используется не только для получения растворов газов в жидкостях, но и для разделения газовых смесей. При этом после поглощения одного или нескольких компонентов газа из газовой смеси необходимо выделить из абсорбента поглощенные компоненты. Выделение (регенерацию) поглощенных компонентов из абсорбента называют десорбцией. Регенерированный абсорбент вновь направляют на абсорбцию. В качестве абсорбентов при разделении углеводородных газов используют бензиновые или керосиновые фракции, а в последние годы и газовый конденсат, при осушке — диэтиленгликоль (ДЭГ) и триэтиленгликоль (ТЭГ). Для абсорбционной очистки газов от кислых компонентов применяют М-метил-2-пирролидон, гликоли, пропиленкарбонат, три-бутилфосфат, метанол в качестве химического поглотителя используются MOHO- и диэтаноламины. [c.12]

    Потери растворителя могут серьезно осложнять работу установок эта-ноламиновоп очистки газа. Потери его могут вызываться увлечением раствора потоком газа, испарением или химическим разложением амина. Потери вследствие уноса или испарения нежелательны не только из-за высокой стоимости применяемых химикалий, но также вследствие загрязнения трубопроводов жидкостью, отлагающейся на их стенках. Кроме того, если этаноламиновые растворы применяются для очистки газа, используемого в каталитических процессах, унос или испарение растворителей может вызывать отравление катализатора. [c.56]

    Абсорбщюнные процессы находят широкое применение в химической промынягенности. Это получение готовых продуктов путем поглощения газа жидкостью (абсорбция SO3 в производстве серной кислоты, абсорбция НС1 с получением соляной кислоты и т.д.), разделение газовых смесей для выделения одного или нескольких ценных компонентов смеси, очистка газов от вредных примесей, улавливание ценных компонентов из газовой смеси для предотвращения их потерь. [c.278]

    Пенные аппараты могут быть применены для многих процессов, раопрюетраненных в химической и смежной с ней отраслях лромышленности абсорбции газов, дистилляции (десорбции газов из жидкостей), нагревания или охлаждения газов и жидкостей, сушки и увлажнения газов, очистки газов от пыли и вредных загрязнений, улавливания туманов, обработки суспензий и т. д. [2. 6]. Во многих производствах пенные аппараты уже прошли промышленные испытания и успешно освоены. Однако для некоторых условий еще требуется проведение предварительных лабораторных и стендовых испытаний. Естественно, пенные аппараты, как и любые другие массообменные интенсивные аппараты, имеют свои рациональные области применения, где они дают возможность усовершенствования аппаратурного оформления многих технологических процессов очистки и обработки газов и жидкостей. [c.82]

    В качестве орошающей жидкости в мокрых пылеуловителях чаще всего применяется вода при одновременном решении вопросов пьшеулавливания и химической очистки газов выбор орошающей жидкости (абсорбента) обусловливается процессом абсорбции. [c.131]


Смотреть страницы где упоминается термин Очистка газов и жидкостей химическая: [c.29]    [c.474]    [c.208]    [c.36]    [c.136]   
Автоматический анализ газов и жидкостей на химических предприятниях (1976) -- [ c.240 ]




ПОИСК





Смотрите так же термины и статьи:

Газы в жидкости



© 2025 chem21.info Реклама на сайте