Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иониты, классификация способность

    Согласно классификации А. В. Киселева [4, с. 18] адсорбенты можно отнести к трем типам. Тип I — неспецифические адсорбенты, к которым относится графитированная сажа. Адсорбенты этого типа не содержат на своей поверхности функциональных групп или ионов, способных к обмену. К этому же типу адсорбентов можно отнести высокомолекулярные углеводороды, например полиэтилен. [c.54]


    При классификации хим. элементов по условиям их миграции в биосфере учитываются их ионное состояние (катионогенные и анионогенные), интенсивность и контрастность миграции, способность концентрироваться на геохим. барьерах. Каждая группа элементов характерна для опреде- [c.520]

    Следует отметить, что во всех этих реакциях принимают участие простые анионы второго типа (согласно классификации, введенной нами в табл. 18.2). Как мы уже знаем, они обладают способностью акцептировать протоны от ионов гидроксония Н3О, но плохо акцептируют протоны от молекул воды. [c.335]

    Недостатком деления частиц, как и их реакций, на два типа является излишняя обобщенность. При таком делении исчезает важная характеристика — механизм реакции, а реакционная способность однотипных по этой классификации частиц, например Н и СС1 или газового иона и иона Н" в растворе, несравнима. [c.22]

    Классификация ионитов чаще всего основывается на отношении их к водородным (или гидроксильным) ионам, на зависимости обменной емкости от кислотности (щелочности) раствора. Такая классификация может служить основой для выбора ионитов, за исключением тех случаев, когда смола обладает резко выраженной специфической способностью поглощать ионы определенного вида. Б. П. Никольский предлагает делить иониты на четыре группы  [c.140]

    Для характеристики химических реакций в неводных растворах, как правило, применяют как классификацию Бренстеда, так и Льюиса. По специфическому взаимодействию растворителя с анионами и катионами Д. Паркер [12] предлагает делить растворители на диполярные апротонные и протонные. Протонные растворители способны образовывать водородные связи с ионами растворенного вещества, в го время как диполярные апротонные растворители таких связей не образуют. Поэтому процессы сольватации ионов в таких растворителях существенно отличаются. [c.6]

    Химические сенсоры способны селективно откликаться на изменение концентрации какого-либо компонента (ион, молекула) в жидкой или газовой фазах. Приведенная ниже (рис. 6.2) классификация потенциометрических химических сенсоров [3] показывает многообразие их типов. В классификации химических сенсоров датчики с твердотельными кристаллическими мембранами занимают центральное место не только по числу определяемых компонентов (более 20 различных ионов) и по селективности (сенсоры на ионы серебра и фтора), но и по той роли, которую они играют в качестве базовых объектов для изменил таких сенсорных механизмов, как селективность, предел обнаружения, быстродействие, влияние pH, Red/Ox и др. [c.711]


    Отличительной особенностью ароматических альдегидов является их способность вступать в реакцию бензоиновой конденсации под действием цианид-иона. Первой стадией реакции является присоединение иона СК к альдегиду с образованием аниона циангидрина, карбанион-ная форма которого является по классификации Пирсона мягким основанием из-за большой диффузности (сопряжение с ароматическим ядром)  [c.352]

    В классификации Кульского [1], истинно растворенные примеси воды подразделены по характеру их поведения в процессах очистки воды на молекулярно растворенные (газы и органические соединения с малодиссоциированными группами) и ионно растворенные (главным образом, минеральные соли). Характерные свойства последних — ярко выран енная способность к гидратации и заметное влияние на структуру и физические свойства воды. [c.38]

    Анализируя приведенный в данном разделе материал, можно видеть, что в настоящее время еще нельзя сделать достоверный выбор между тем или иным механизмом влияния промоторов на активность алюмо-хромовых контактов. Более определенным представляется вопрос об активных центрах дегидрирования. Сейчас практически доказано, что в случае окиснохромовых катализаторов такими центрами служат Сг +-ионы (возможно, не полностью координированные). При этом решающим фактором для дегидрирующей способности является, как будет показано далее, наличие электронной конфигурации 3d . По классификации Рогинского [62], дегидрирование принадлежит к окислительно-восстановительному типу реакций и, следовательно, должно катализироваться твердыми телами, обладающими свободными или легко возбудимыми электронами. [c.153]

    Между состояниями веществ, четко определяющими их положение в каждой из групп, существуют еще и промежуточные состояния, обусловленные динамической связью между описанными системами. Так, молекулярные растворы могут быть частично диссоциированы (слабые электролиты), а при ассоциации частиц они приближаются к коллоидным растворам. Промежуточное положение между коллоидными и молекулярными растворами занимают и высокомолекулярные соединения. Последние могут также содержать ионогенные группы, способные (в определенных условиях) обменивать подвижные ионы на ионы, находящиеся в растворе. Учитывая взаимосвязь подобных систем, в разработанной классификации предусмотрена возможность перевода загрязняющих веществ из одного [c.55]

    Реакционная способность ионов металлов по отношению к различным лигандам предопределяется главным образом значениями их ионных потенциалов z r (отношение заряда иона 2 к его радиусу г), а также электронными структурами иона и лиганда. На рис. 1.1 представлена классификация наиболее часто встречающихся ионов, которая основана на этих критериях. На рисунке приведены также аналитические группы классической сульфидной систе- [c.25]

    Чатт [18] впервые обратил внимание на важность л-связи при объяснении классификации ионов металлов на классы (а) и (б). Однако, по-видимому, это положение справедливо и для кислот и оснований, не являющихся ионами металлов. Таким образом, способность к образованию я-связей является одним из критериев в обосновании этой концепции. Необходимо обратить внимание, что оба эти критерия отрицают возможность соединения жесткой кислоты и мягкого основания и, наоборот, мягкой кислоты и жесткого основания. [c.363]

    Возникающие при этом труднорастворимые соединения способны в определенных условиях вызывать коррозию третьего вида по классификации В. М. Москвина [36] (особенно при воздействии сульфат-ионов). [c.26]

    Вопрос о влиянии физико-химических свойств соединений на процесс образования гранул до настоящего времени не рассматривался. Впервые, на основании теории неорганических адгезивов сделана попытка связать характер образования гранул с природой ионов, участвущих в их построении. Потребовалось разработать качественную классификацию способности солей к образованию гранул классификация такого рода оказалась необходимой для оценки и прогнозирования процессов переработки смешанных растворов применительно к переработке в КС жидких стоков при создании безотходных технологий, все шире используемой в последние годы. Физико-химические основы грануляции рассмотрены в гл. IV. [c.5]

    Обычно ПАВ классифицируют в зависимости от их способности к диссоциации на ионогенные и неионогенные " . В свою очередь ионогенные ПАВ разделяются на анионо- и катионоактивные и ам-фолитные (амфотерные) . Такая классификация имеет своей основой свойства головки молекулы. Ионные ПАВ всегда связаны с противоионами и их свойства существенным образом зависят от природы этих ионов. Гидрофобная часть молекулы ПАВ ( хвост ) обычно состоит из углеводородной цепи различной длины, которая может содержать ненасыщенные, ароматические фрагменты, быть частично галогенизированной и т.п. [c.66]

    В настоящее время принято различать химические связи пяти видов ионную, ковалентную, металлическую, водородную и ван-дер-ваальсовы взаимодействия. Такая классификация связана с введением определенных упрощений, идеализаций- и обусловлена отсутствием единой теории, способной одновременно описать все молекулы. Отнесение химической связи в конкретной молекуле к тому или иному виду не всегда является простой задачей. Иногда для этой цели приходится принимать во внимание целую совокупность химических и физических свойств. Сейчас пока отметим, что связи первых трех видов по своей прочности во много раз превосходят связи двух последних видов. [c.172]


    Третий пример, который ставит под сомнение ценность классификации по Льюису, это каталитическая способность кислот Льюиса. Оказалось, что в некоторых случаях кажущееся каталитическое действие кислот Льюиса было вызвано загрязнениями, приводившими к образованию ионов водорода . И вообще, было установлено, что реакции, на которые оказывают каталитическое действие кислоты Льюиса, не катализируются протонными кислотами. Это надо учитывать, так как Льюис считал каталитическое действие одним из четырех критериев кислотного характера. Недавно были найдены реакции, в которых кислоты Льюиса служили лучшими катализаторами, чем протонные кислоты. Так, Белл и Скиннер проводили каталитическую деполимеризацию параль-дегида в эфире с помощью и кислот Льюиса, и протонных кислот. В общем кислоты Льюиса оказались лучшими катализаторами, чем протонные кислоты. Тем не менее Белл указывает, что эта реакция единственная в своем роде и что в ней требуется перераспределение электронов, а не перемещение атомов. Все же нет сомнения, что во многих реакциях кислоты Льюиса ведут себя как катализаторы. [c.335]

    Теории кислот и оснований. Представления о кислотно-основном равновесии начали формироваться в конце XVHI в. В работах Лавуазье кислотные свойства связывались с наличием кислорода. Однако, как было установлено Дэви и Гей-Люссаком, ряд вещ,еств, не содержащих кислорода, обладает кислотными свойствами (HF, НС1 н т. п.). В то же время многие кислородсодержащие соединения кислотами не являются. Поэтому было предложено считать кислотами вещества, в состав которых входит водород, способный замещаться на металл, С появлением представлений Аррениуса об электролитической ионизации возникла возможность классификации кислот и оснований по характеру их диссоциации в растворах. С этой точки зрения кислотой следует считать электролит, в водном растворе которого присутствуют гидратированные ионы водорода (ионы гидроксония). Основания в водных растворах отщепляют ион гидроксила. [c.264]

    Химическая экология природных вод. Химический состав и классификация природных вод. Макрокомпоненты хлорид-, сульфат-, карбо-нат- и гидрокарбонат-ионы, катионы натрия, калия, магния, кальция. Ионы кремния, железа, алюминия, фосфора, азота в разных степенях окисления, органические вещества в природных водах. Микрокомноненты ионы лития, стронция, меди, серебра, хрома, марганца, бромид-, иодид-ионы и их способность к комилексообразовапию. Эколого-химические особенности загрязнения гидросферы. Металлы как загрязняющие вещества источники ностунления в воду, токсические эффекты, химическое состояние. Органические соединения - загрязнители вод разных типов хлорорганические, фосфорорганические соединения. Особенности нефтяного загрязнения. Детергенты в природных водах. Коллоидные ПАВ и их влияние на загрязнение природной воды. [c.4]

    В качестве лигандов могут выступать любые полярные или поляризуемые молекулы (неполярные молекулы обладают меньшей способностью в этом отношении), которые имеют неподеленные электронные пары, пригодные для образования координационных связей с центральным атомом. Один из способов классификации лигандов (табл. 23.2) основан на их способности образовывать лишь одну связь с ионом металла (монодентатные лиганды) или две такие связи (бидентатные лиганды). К числу биден-татных относятся лиганды, имеющие два до-норных атома, как, например, этилендиамин (НзМ - СН2 - СН2 - МНз) бидентатными (дословно— двухзубыми ) они называются потому, что имеют два положения, в которых образуются связи с центральным ионом. Например, в комплексе кобальта с этилендиамином, Со(Н2МСН2СН2МН2)2С1з, каждый этилендиамин связан с центральным ионом следующим [c.405]

    В монографиях [17—19] приведены мало отличающиеся между собой классификации. В представленной ниже классификации в качестве главного классификационного признака предлагается избрать природу донорных атомов, так как именно от ннх в первую очередь зависит способность взаимодействовать с определенными группами ионов металлов. Затем следует учитывать природу мостиковых групп, связывающих донорные атомы между собой,— от их длины и характера зависит размер полости макроцикла и жесткость (или конформационная гибкость) макроциклического лиганда Весьма существенную роль играет размерность макроциклических лигандов (двухмерные или трехмерные). Рациональная классификация должна также помочь объединить сходные методы синтеза макроциклических лигандов Располагая макроциклические соединения в определенном порядке, мы не считаем его незыблемым номера групп макроциклов можно изменить, а группы переставить. Например, помещение под номером I полиазамакроциклов связано с наибольшей изученностью синтезов соединений этой группы, хотя, конечно, под этим номером можно было бы поместить и полиоксамакроциклические лиганды [c.11]

    Как мягкие основания, серосодержащие экстрагенты образуют наиболее прочные связи с легкополяризуемыми ионами (меди, серебра, ртути, золота и платиновых металлов), относящимися к классу мягких кислот по классификации Пирсона. Длина и строение алкильного радикала оказывают существенное влияние на экстракционную способность серосодержащих экстрагентов. Удлинение и разветвление алюшьных радикалов обычно приводит к уменьшению Кг). Аналогичный, но еще более сильный эффект вызывает замена алкильных радикалов на фенильные. Образующиеся в органической фазе комплексы, как правило, кинетически инертны, и процесс реэкстракции затруднен. Соответственно сфера применения серосодержащих экстрагентов ограничена гругшовым концентрированием или групповым вьщелением халькофильных элементов [45]. [c.162]

    Аналитические группы анионов — классификация анионов, в основе которой лежит их способность к образованию нерастворимых в воде солей с катионами Ba и Ад. По этому критерию все анионы делят на три фуппы I фуппа — анионы, образующие нерастворимые в веде соли бария - 30 , ЗО -, СО -, РО , З О -, С О , В О , Ю" Ю , АвО , Р, тартрат-ионы С Н О , цитрат-ионы, а также СгО , Сг О -, II фуппа анионы, образующие нерастворимые в воде и азотной кислоте соли серебра, -СГ, Вг, Г, N03 , СМ", и бензоат анион СзНзСОО" III фуппа — анионы, образующие растворимые в воде соли характеризуются отсутствием фуппового реактива -МОз, N0 СН3СОО", ВЮ , СЮ . [c.27]

    В кислотно-основном каталитическом взаимодействии углеводороды чаще образуют карбкатионы, являющиеся промежуточными прод тсгами при их изомеризации. В соответствии с классификацией Г. Ола, карбокатионы могут быть подразделены на два класса трехаалентные ( классические ) карбениевые ионы и пентакоординированные ( неклассические ) карбониевые ионы. Трехвалентные карбениевые ионы играют важную роль в электрофильных реакциях тс-донорных систем, например алкенов и ароматических соединений, которые легко реагируют даже со слабыми электрофилами. Пентакоординированные карбониевые ионы являются ключевыми в реакциях о-донорных систем, т. е. систем с простыми связями. Способность простых связей выступать в роли о-доноров с образованием карбониевых ионов путем создания двухэлектронной трехцентровой связи обусловливает то, что при изомеризации алканов первичным актом является протолиз связи С-Н или С-С. Такое взаимодействие возможно в присутствии катализаторов с очень сильными кислотными свойствами, получившими название сверхкислот или суперкислот . [c.893]

    Адсорбенты по той же классификации, т. е. в зависимости от химического строения их поверхности, определяющего способность к тому или иному виду межмолекулярных взаимодействий, делятся на три типа. К первому типу относятся неспецифические адсорбенты, не несущие на своей поверхности ни ионов, ни каких-либо функциональных групп, связей или центров с локально сосредоточенными на периферии зарядами и не обладающие электронодонорными или электроноакцепторными центрами. На таких адсорбентах любые молекулы адсорбируются неспецифически. К адсорбентам этого типа можно отнести графитированные сажи, в особенности графити-рованную около 3000 °С термическую сажу, поверхность которой состоит в основном из базисных граней графита. Кроме графитированной сажи к неспецифическим адсорбентам относится чистый нитрид бора, молекулярные кристаллы благородных газов и насыщенных углеводородов, а также пленки из таких углеводородов и пористые углеводородные полимеры. Адсорбция на таких адсорбентах мало зависит от локального распределения в адсорбируемых молекулах электронной плотности, в частности, от наличия я-связей и неподеленных электронных пар. Различие в валентных состояниях атомов углерода в таких адсорбентах, как, например, графит, с одной стороны, и насыщенные углеводороды — с другой, сказывается на адсорбции незначительно, хотя и может быть выявлено в некоторых системах (подробнее см. разд. 1 гл. П и рис. 11,12) [90, 91]. [c.22]

    ТЫ И основания образовывать ковалентную связь. Оба уравнения, (14.10) и (14.8), являются четырехпараметрическими, и хотя на первый взгляд они кажутся очень разными, тем не менее важно помнить, что ни то, ни другое не имеет единственного решения относительно этих параметров. По двум из них просто устанавливают масштаб [Ер, и Сд иода произвольно приравнивают единице), тогда как два других параметра выбирают согласно некоторой предполагаемой физической модели и автоматически смещают все другие величины для того, чтобы получить согласие с этой моделью. Именно поэтому абсолютно тщетными оказались попытки найти соотношение между и С в уравнении (14.10) и о и 5 в уравнении (14.8), а также показать преимущество одного подхода по сравнению с другим [48—50]. Можно предположить, что. для системы, которая зависит от способности к образованию связей, классификация, основанная на применении параметров Е и С, практически приемлема в том случае, когда размеры донорных атомов близки к размеру катиона металла [51]. Если эти размеры несоизмеримы, то стерический эффект становится доминирующим. Поэтому трудно предсказать взаимодействие крупных лигандов, например хлорид-ионов или лигандов с доиорными атомами серы, с небольшими катионами металлов, например медью (II) или никелем (II), используя параметры Е и С, однако возможно гораздо лучшее прогнозирование взаимодействия этих же лигандов с крупными катионами, такими, как серебро(I) и свинец(П). [c.266]

    В общей классификации вода является типичным протонным растворителем. В то же время, можно указать на ряд особенностей, выделяющих воду среди растворителей этого типа. Во-первых, вода обладает высоким значением диэлектрической проницаемости е, что обеспечивает легкость диссоциации в ней ионных соединений, а также ионных пар. Во-вторых, как отмечает Бентли [301], вода обладает уникальным сочетанием высокой ионизирующей способности со значительной нуклеофильностью, что может обусловить особенности механизма гидролиза. В-третьих, малые размеры молекул воды при высоком значения е приводят к некоторым аномалия] диэлектрического поведения (диэлектрическое насыщение вблизи ионов) [302]. Наконец, особенности структуры воды приводят, как было показано выше, к возникновению вкладов в термодинамические функции гидратации, роль которых в других протонных растворителях, не обладающих трехмерной структурой, очень мала. [c.167]

    Характерная особенность ненасыщенных функций — их способность к реакциям присоединения. Ненасыщенность функциональных групп может быть вызвана двумя причинами наличием кратных связей (тип а), либо способностью центрального атома к реакциям присоединения за счет свободных электронных пар (за счет изменения валентности, тип б). В некоторых случаях ненасыщенность может быть следствием обоих причин (тип в). Классификация не должна быть формальной, неЕ асыщенная по строению (с двойными связями) сульфогруппа по свойствам должна быть отнесена к насыщенным с другой стороны, отнесенная к насыщенным группа —0R может при известных условиях вести себя как ненасыщенная (образование оксониевых соединений, простейшим примером которых является ион гидроксония Н3О ). [c.272]


Смотреть страницы где упоминается термин Иониты, классификация способность: [c.29]    [c.380]    [c.336]    [c.7]    [c.274]    [c.15]    [c.213]    [c.162]    [c.129]    [c.265]    [c.11]    [c.268]    [c.322]    [c.359]    [c.57]   
Технология синтетических пластических масс (1954) -- [ c.553 ]




ПОИСК







© 2025 chem21.info Реклама на сайте