Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические связи классификация

Рис. 4.14. Классификация видов химической связи. Рис. 4.14. <a href="/info/173694">Классификация видов</a> химической связи.

    Классификация химических реакций по характеру разрыва химической связи. При протекании химических реакций ковалентные связи в органических соединениях разрываются либо по гомолитическому, либо гетеролитическому механизму. При гомолитическом разрыве связи электронная пара распадается на два электрона и соответственно возникают два атома (или две группы атомов) с неспаренными электронами — радикалы. К гомолитическим относятся реакции радикальной полимеризации, горения органических соединений и др. [c.301]

    Из сложных веществ составляют основные классы неорганических соединений — оксиды, гидроксиды, кислоты и соли, а также многочисленные комплексные основания, кислоты и соли (см. гл. 9). Вопросы классификации веществ рассматриваются также при изучении химической связи и строения молекул (см. V). [c.33]

    Наряду с геометрической характеристикой кристаллических решеток важное значение имеет классификация их структуры по химическому составу, соотношению компонентов в химической формуле —соединения типа МХ(1—1), М2Х(1—1), МХг(2—1), МХз(3—1), взаимной координации частиц (цепные и сложные координационные решетки). Особенно широкое распространение получил классификация по виду химической связи между атомно-молекулярными частицами кристалла. По этому признаку кристаллические решетки подразделяются на ионные, ковалентные, молекулярные , металлические и промежуточные между ними. [c.142]

    Металлы и неметаллы в Периодической системе. Периодический закон как основа химической систематики дает возможность проанализировать положение простых веществ с учетом особенностей их свойств. Все простые вещества, как известно, подразделяются на две категории металлы и неметаллы. Эта классификация основана на существенно различном характере физических и химических свойств веществ, принадлежащих к разным классам. Принимая во внимание, что свойства веществ являются функцией химической связи, следует сделать вывод, что причины различий между металлами и неметаллами кроются в разном типе межатомного взаимодействия при образовании простых веществ. [c.241]

    В учебнике в краткой, нетрадиционной форме освещены основные положения органической химии. Изложению фактического материала предшествует краткое описание номенклатуры органических соединеиий, теории химической связи, классификации реагентов и реакций. Классы органических соединений рассмотрены сначала по реакционной способности, а затем по способам синтеза. При этом большое внимание уделено выявлению связи между химическим поведением н электронным строением реагентов. [c.4]


    Научная классификация химических соединений должна, во-первых, основываться на однородных принципах и признаках во-вторых, этими признаками должны быть не внешние особенности а особенности электронного строения и химической связи. Классификация же, основывающаяся на внешних и вторичных признаках не имеет четкого научного смысла и не способствует дальнейшему развитию исследований соединений, как это нами было показано на разборе неудачных попыток классификации гидридов [10] и карбидов ill]. Предложенная нами ранее классификация нитридов [12] была основана именно на рассмотрении особенностей электронного строения и химической связи этих фаз. В настоящей работе предлагается дальнейшее уточнение этой классификации с использованием представлений о роли образования стабильных электронных конфигураций в формировании свойств элементов и соединений [9, 13]. [c.9]

    По табл. 2 представляется возможным проследить некоторые причинно-следственные зависимости свойств материалов от характера химической связи. Классификация может быть полезной, например при выполнении работ по синтезу стеклообразных веществ со специальными свойствами. В частности, имеется ряд групп гипотетических стекол [группа 2 - ковалентность химической связи 96%, группа 3 (классы 1, 2, 3) -ковалентность 93%, группа 5 — ковалентность 90% и др.], которые являются перспективными с точки зрения синтеза нехрупких стекол. В ближайшие годы следует ожидать интенсификации работ по этим типам материалов. Их синтез возможен в атмосфере инертного газа или в вакууме. [c.7]

    Книга представляет собой перевод второго, дополненного и переработанного издания, выпущенного в ФРГ в 1976 г. (1-е русское издание вышло в 1965 г.)- В книге кратко описаны свойства и методы получения оксида этилена основное внимание уделено разнообразным продуктам его присоединения, обладающим поверхностноактивными свойствами. Дана их классификация по типам химических связей, охарактеризованы свойства, описаны методы анализа. Большая глава посвящена применению описываемых ПАВ в качестве моющих средств в целлюлозно-бумажной, текстильной, нефтяной, металлургической и многих других отраслях промышленности, как пестицидов, лекарственных и косметических препаратов и др. [c.608]

    Для выбора катализатора необходимо ответить на три основных вопроса какие свойства материала катализатора влияют на протекание реакции, как именно влияют и каково взаимное влияние компонентов катализатора на протекание реакции. Чтобы ответить на эти вопросы, необходимо провести стехиометрический и термодинамический анализы, иметь классификацию реакций, классификацию химических связей между компонентами вещества, модели механизмов процессов, протекающих на поверхности катализатора. Необходимая информацию является неоднородной, или гибридной, по типам подзадач, по методам, используемым для их решения. Некоторые подзадачи формализуемы, существуют алгоритмы их решения, которые должны быть включены в ЭС. [c.251]

    На основе современных взглядов, основанных на классификации химических связей по их электронному строению и свойствам, к комплексным или координационным соединениям относят соединения с высокой координацией и трехмерно делокализованными связями (Берсукер). [c.44]

    В настоящее время ие существует устоявшейся классификации сил межмолекулярного взаимодействия. Некоторые авторы подразделяют их на физические, определяемые физическими характеристиками взаимодействующих молекул, и химические, приводящие к образованию направленных химических и квази-химических связей [14]. В работе [15] межмолекулярные взаимодействия подразделяются на универсальные и специфические, а автор [16] классифицирует их на взаимодействия ближнего и дальнего порядка. Все классификации достаточно условны, поскольку взаимодействия имеют единую природу, и в их основе лежат электростатические п электродинамические взаимодействия ядер и электронов атомов, входящих в молекулы. [c.14]

    Оксиды. Во всех оксидах кислород имеет степень окисления -2. По преимущественному виду химической связи выделяют, главным образом, ионные и ковалентные оксиды. Ионные соединения типичны для оксидов металлов, а ковалентные — для оксидов неметаллов. Классификацию оксидов по химическим свойствам см. в разд. 1.4. [c.342]

    Электронная теория значительно расширила понятие о кислотах и основаниях, позволив интерпретировать некоторые свойства веществ с единой точки зрения, однако эта теория имеет и недостатки. Одно из основных возражений против теории Льюиса заключается в том, что в этой теории для отнесения вещества к кислоте или основанию используется механизм его образования, что ставит классификацию в тесную зависимость от взглядов на природу химической связи. [c.33]

    Кратко познакомившись с основными методами теории химической связи, перейдем к обсуждению ее свойств. Свойства химической связи проявляются в свойствах различных типов молекул, кристаллов и других объединений атомов и молекул. Ранее считалось, что и природа различных видов связи (ковалентной, ионной, металлической, водородной и др.) различна. Сегодня можно считать, что известные на сегодня виды химической связи едины по своей природе. Поэтому существует возможность единой их классификации. Химическую связь можно подразделить на различные виды. [c.113]


    Классификация кристаллических форм основана на симметрии кристаллов. Различные случаи симметрии кристаллических многогранников подробно разбираются в курсах кристаллографии — науке о кристаллах. Связь между пространственным строением, природой химической связи и физико-химическими свойствами кристаллов изучает одна из составляющих наук кристаллографии — кристаллохимия. Здесь укажем только, что все разнообразие кристаллических форм может быть сведено к семи группам, или кристаллическим системам, которые, в свою очередь, подразделяются на классы. [c.158]

    Периодический закон и периодическая система и на сегодня являются основой химической классификации. Так, дальнейшее развитие химии привело к появлению целых классов новых неорганических соединений. Это гидриды, карбиды, нитриды, бориды и другие, свойства и условия образования которых целиком определяются положением элементов в периодической системе, такими их характеристиками, как величины ионизационных потенциалов, размеры атомов, тип химической связи и др. В качестве примера на рис. 5.7 представлена классификация гидридов элементов в соответствии с положением их в периодической системе. [c.102]

    Ценность этой классификации реакций состоит в том, что она позволяет качественно, но вполне надежно оценить реакционную способность субстрата в зависимости от характера действующего на него реагента. Например, при атаке электрофильного реагента, субстрат тем активнее, чем легче он передает свои электроны для образования химической связи с последним. В ряду ароматических субстратов — циклопентадиенид-анион, фуран, бензол, пиридин, тропилий-катион — реакционная способность в электрофильных реакциях падает от первого к последнему. Напротив того, в реакциях с нуклеофильными реагентами, передающими свою электронную пару субстрату, реакционная активность в приведенном ряду субстратов последовательно возрастает и становится максимальной для катиона тропилия. Бензол в приведенном ряду занимает среднее положение, но его активность можно сильно изменять, вводя заместители (см. 2.4). [c.34]

    Кристаллические тела классифицируются или по симметрии кристаллов, например кубические, тетрагональные, ромбические, гексагональные, или по осуществляемому в них типу химической связи ионные, ковалентные, металлические, вандерваальсовы. Оба этих вида классификации взаимно дополняют друг друга. Классификация по симметрии более удобна при оценке оптических свойств кристаллов, а также каталитической активности кристаллических веществ. С другой стороны, оценку теплот плавления, твердости, электропроводности, теплопроводности, растворимости удобнее проводить на основании типа связи в кристалле. [c.73]

    В зависимости от свойств элементов образующие химическую связь электроны могут находиться в различных энергетических и пространственных состояниях, в результате чего в молекулах возникают и разные типы связей. С целью классификации выделяют обычно два основных типа связи — ионную и ковалентную. Однако это разделение, условно и не отражает многообразия форм химического движения. [c.19]

    Классификация неорганических веществ и их номенклатура основаны на наиболее простой и постоянной во времени характеристике—химическом составе, который показывает атомы элементов, образующих данное вещество, в их числовом отнощении. Если вещество состоит из атомов одного химического элемента, т.е. является формой существования этого элемента в свободном виде, то его называют простым веществом, если же вещество состоит из атомов двух или большего числа элементов, то его называют сложным веществом. Все простые вещества (кроме одноатомных) и все сложные вещества принято называть химическими соединениями, так как в них атомы одного или разных элементов соединены между собой химическими связями. [c.6]

    Типы кристаллов. Многие физико-химические свойства кристаллических веществ определяются типом химической связи между образующими их частицами. В соответствии с этой классификацией кристаллы подразделяют на молекулярные, ковалентные, ионные, металлические и смешанные. [c.66]

    Кроме приведенной выше классификации, в современной органической химии появилась возможность классифицировать органические реакции также по их механизмам, т, е. по скрытым от непосредственного наблюдения деталям химического превращения, по способам образования и разрыва химических связей. Изучение механизмов реакций — одна из быстро развивающихся ветвей теоретической органической химии. Понимание механизма реакции вместе с тем важно и для успешного ее практического осуществления в лаборатории и в промышленности. [c.88]

    Общепринятая классификация всех реакций органических соединений, в том числе и реакций ароматического замещения, строится на несколько формальных брутто-схемах, в которых приводятся только исходные и конечные продукты химического превращения, и общих иредставлениях об образовании или разрыве химических связей. При этом реагирующие частицы условно разделяют на исходное соединение, считающееся субстратом, и атакующий реагент. Последний может быть электронодефицитным, электроноизбыточным или же содержать неспаренный электрон, т. е. являться свободным радикалом. Образование химической связи между субстратом и электронодефицитным реагентом происходит путем обобщения электронной пары, ранее полностью принадлежавшей субстрату. Такой реагент и реакции с его участием считают электрофильными. Наиример, рассматриваемые в настоящей главе реакции ароматического электрофильного замещения в первом приближении могут быть представлены брутто-схемой  [c.33]

    По характеру химической связи элементов с углеродом и другими элементами в их составе элементоорганические соединения делят на две большие группы. В первую группу включают соединения в- и р-элементов непереходных элементов), а во вторую — органические производные й- и /-элементов (переходных элементов). Для соединений первой группы характерно образование ковалентных полярных <7-связей. Для органических производных второй группы типичны комплексные соединения с участием -электронов предвнешней электронной оболочки атомов элемента. Существуют и другие способы классификации, однако свойства элементоорганических соедршений столь разнообразны, что проще рассмотреть наиболее типичные из них в порядке изменения строения электронной оболочки атома элемента, как это делалось при рассмотрении свойств неорганических соединений. [c.588]

    В соответствии с обсуждавшейся ранее классификацией (см. 2.1), активный реагент в ароматическом нуклеофильном замещении имеет избыток электронов, который он делит с субстратом при образовании химической связи  [c.146]

    Тема Комплексные соединения рассматривается в трех разделах Классификация неорганических соединений , Химическая связь и Растворы , что облегчит студентам усвоение объемного и сложного материала. С целью развития навыка у студентов в использовании теоретических знаний для решения практических вопросов введена глава Смешанные задачи . [c.3]

    Опишите благородные газы (инертные газы), рассказав об их открытии, важности для Периодической классификации и значении для становления идей о химической связи. [c.372]

    В учебнике планомерно проводится мысль, что органическая реакция — это взаимодействие электрофила и нуклеофила с участием катализатора и растворителя. Поэтому первостепенной задачей при рассмотрении механизма реакции является выявление реакционных центров и направления перемещения электронной плотности в реагентах, Для более полного решения этой задачи характеристике классов предшесгвует краткое рассмотрение таких вопросов, как природа химической связи, классификация реагентов и реакций, теория электронных смещений, общие закономерности органической реакции. [c.5]

    Большое внимание уделено вопросам химической связи, классификации веществ, термохимии, электрохимии, отдельным аналитическим заданиям, высокоиолиме-рам. В книге имеются практически целенаправленные работы, связанные с инженерными специальностями. [c.2]

    Твердые молекулярные соединения очень разнообразны и многочисленны. Но по обилию и сложности форм они не идут ни в какое сравнение с атомными и атомно-молекулярными твердыми соединениями. Это связано с тем, что при отвердевании последних межмолекулярное взаимодействие отступает на задний план, и направление этого процесса всецело определяется действием направленных межатомных связей. Соединение ковалентными связями протяженных структурных единиц, обрывков цепей, сеток, фрагментов каркаса, принимающих самую причудливую форму и любые положения, исключает их плотную укладку вместо кристаллизации обычно идет неупорядоченное структурообразование, в частности, при высокой температуре в расплаве — стеклообразование, при низкой температуре в растворе — гелеообразование. Заметим, что плавление и отвердевание стекла или смолы — химический процесс, так же как и образование геля в результате полимеризации или поликонденсации. Ведь и в том, и другом случае разрываются и вновь образуются межатомные химические связи. Для атомных твердых соединений характерно образование различных рядов. Классификацию соединений этого типа мы рассмотрим отдельно (см. гл. XIII). [c.18]

    В зависимости от степени обобществления электронной плотности химической связи между несколькими атомами различают локализованную и делокализо-ванную химическую связь. Локализованной связью называется такая химическая связь, электронная плотность которой сконцентрирована (локализована) в пределах двух наиболее близко расположенных друг к другу ядер атомов. Если электронная плотность химической связи распределена между тремя и более ядрами, то такая связь называется трехцентровой, многоцентровой, а в общем случае — делокализованной. Характер делокализации электронов химической связи может, в свою очередь, различаться по размерности пространства. Существуют связи, делокализованные в одном измерении, делокализованные в плоскости и делокализованные в трехмерном пространстве. Хорошо известная металлическая связь с позиций изложенной классификации является короткодействующей и дальнодействующей, неполярной, в высшей степени делокализованной (в трех измерениях) связью. [c.114]

    Далънодействующая хгшическая связь условно может быть разделена на два типа универсальную межмолекулярную связь и специфическую межмолеку-лярную связь. Универсальная связь проявляется при взаимодействии между любыми молекулами, а специфическая — между теми, у которых имеются соответствующие друг другу участки. Такие молекулы, которые соответствуют друг другу как к каждому замку должен быть свой ключ , называются комплементарными. Подробнее с проявлениями различных видов химической связи мы познакомимся ниже при обсуждении конкретных вопросов строения и свойств вещества. Примеры некоторых видов химической связи в изложенной классификации приведены на рис. 4.14. [c.115]

    В настоящее время принято различать химические связи пяти видов ионную, ковалентную, металлическую, водородную и ван-дер-ваальсовы взаимодействия. Такая классификация связана с введением определенных упрощений, идеализаций- и обусловлена отсутствием единой теории, способной одновременно описать все молекулы. Отнесение химической связи в конкретной молекуле к тому или иному виду не всегда является простой задачей. Иногда для этой цели приходится принимать во внимание целую совокупность химических и физических свойств. Сейчас пока отметим, что связи первых трех видов по своей прочности во много раз превосходят связи двух последних видов. [c.172]

    Трансляция может осуществляться в одном, двух или трех направлениях одновременно. Примером трансляции точки в двух направлениях можно считать расположение атомов в плоском слое. При наличии трех трансляций, не лежащих в одной плоскости, возникает пространственная система точек. Соединив точки прямыми линиями, совпадающими с направлениями трансляций, получаем пространственную решетку, которая является геометрическим образом кристаллической решетки. Точки, регулярное расположение которых в пространстве создает решетку, называются узлами решетки. По характеру частиц, находящихся в узлах, кристаллические решетки подразделяются на ивнные, атомные, металлические и молекулярные. Как можно заметить, такая классификация основана на природе химических связей, рассмотренных ранее. [c.236]

    Этот пример, на наш взгляд, не усложняет картину природы химической связи, а, наоборот, лишь наглядно иллюстрирует, что природа любой химической связи остается одинаковой — электрические взаимодействия заряженных частиц, а также падчеркинает отмеченную выше условность классификации различных типов связей. [c.99]

    И, наконец, в-третьих, классификация может быть основана на характере изменения химической структуры макромолекул в результате химических реакций в них. Эта классификация представляется наиболее информативной с точки зрения состояния и свойств конечных, т. е. целевых, продуктов реакции. Согласно этой классификации различают полимераналогичные, внутримолекулярные и межмакромолекулярные реакции полимеров. Если при химической реакции происходит только изменение химического состава и природы функциональных групп в полимере без изменения исходной длины макромолекулы, то такие превращения полимеров называются полимераналогичными. Если в результате реакции изменяется длина исходной макромолекулярной цепи (как правило, в сторону уменьшения) или в цепи появляются циклические структуры, но сами макромолекулы остаются химически несвязанными друг с другом, то такие реакции называются внутримолекулярными. Если же исходные макромолекулы соединяются друг с другом химическими связями в результате реакции функциональных групп макромолекул друг с другом или взаимодействия полифункциональных низкомолекулярных реагентов с разными макромолекулами, то такие реакции называются межмакромолекулярными. Они приводят [c.218]

    Более ста лет назад химиков очень заиктересовали периодичность химических свойств элементов как функция их атомного веса и существование групп элементов с очень сходными свойствами. Все это побуждало химиков создать удовлетворительную классификацию элементов. Самую удобную для своего времени классификацию дал вс ликий русский ученый Д. И. Менделеев. Периодическая система Д. И Мендслеера явилась самым бе льшим вкладом одного человека а общую химию всех элементов. Она и.мела важное значение как обобщение имеющихся в то время знаний, а также большую предсказательную силу, что было доказано открытием новых элементов. Другая важная черта вклада Д. И. Менделеева состояла з том, что он дал направление дальнейшего развития теории валентности и химической связи. [c.3]

    Принятая выше классификация бинарных соединеиий по типу химической связи к иитерметаллическим соединениям не применима, поскольку здесь доминирует лишь металлическая связь. Отсюда вытекают и определенные трудности с номенклатурой интермета.тли-ческих соединений. [c.78]

    Ни одна классификация не в состоянии отраг ить всего многообразия взаимодействий. Например, многие нитриды металлов вставных декад, представляющие собой так называемые фазы внедрения, обладают ярко выраженными металлическими свойствами, что позволяет отнести их в объектам металлохимии. Рассматривая взаимодействия металлов друг с другом, следует отметить, что здесь нельзя выделить классически понимаемых химических связей. Поэтому деление на нормально-валентные и аномально-вален-тные соединения применительно к металлохимии теряет смысл. Специфика металлической связи и особенности кристаллического строения металлов способствуют образованию ими при взаимодействии друг с другом разнообразных по своим свойствам фаз. Характерная особенность последних состоит в том, что большая часть из них не подчиняется правилам валентности и характеризуется изменчивостью состава в широких пределах. [c.365]


Смотреть страницы где упоминается термин Химические связи классификация: [c.473]    [c.407]    [c.68]    [c.80]    [c.748]   
Химия и периодическая таблица (1982) -- [ c.80 , c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте