Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы дефекты структуры

    Дефекты структур кристаллов также влияют на электрическую проводимость полупроводников, обычно вызывая дырочную проводимость. В зависимости от преобладания того или иного вида проводимости различают полупроводники /г-типа и полупроводники р-типа. [c.118]

    Природа отклонений от стехиометрии в бинарных соединениях переменного состава состоит в том, что при любых температурах, отличных от абсолютного нуля, в реальном кристалле существуют дефекты структуры, С повышением температуры концентрация этих дефектов возрастает в силу увеличения энтропии системы (рост степени беспорядка). Наиболее упорядоченной структурой должен обладать идеальный кристалл, в котором каждый атом занимает предназначенный ему узел в подрешетке. При этом все узлы заняты, а все междоузлия свободны. Такая структура обладает полным порядком (энтропия равна нулю) и может быть реализована только при абсолютном нуле. При повышении температуры нарушения идеальной структуры возможны за счет возникновения незанятых узлов в кристаллической решетке, появления атомов в междоузлиях или существования в узлах решетки чужеродных атомов. Эти типы дефектов в кристалле являются простейшими. В реальных случаях возможно появление комбинаций этих дефектов. Возникновение таких дефектов в реальных кристаллах приводит к образованию ограниченных твердых растворов и появлению области гомогенности. Основные тины дефектов представлены на рис. 12. Рис. 12, а представляет схему идеальной кристаллической структуры бинарного соединения АВ. Рис. 12, б, б отражает существование незанятых узлов в подрешетках компонентов А и В. Такие незанятые узлы называются вакансиями или дефектами Шоттки. Это соответст- [c.57]


    Твердые вещества в данных условиях тоже могут находиться в состояниях, обладающих различной термодинамической устойчивостью, например, в различных кристаллических формах. В свою очередь для любой из этих форм более устойчивым является состояние, соответствующее идеально правильному кристаллу. Дефекты структуры, вызванные условиями образования кристалла или последующей деформацией под действием внешних механических сил, в какой-то степени уменьшают его устойчивость, так как образование этих деформаций связано с затратой энергии и сопровождается возрастанием энтропии. Точно так же кристаллическое тело в измельченном состоянии, т. е. обладающее большей поверхностью, менее устойчиво. Во всех подобных случаях уменьшение устойчивости сопровождается возрастанием изобарного потенциала. В таких состояниях вещество обладает большей химической активностью и меньшей химической стойкостью, большей способностью к фазовым переходам (большим давлением насыщенного пара, большей растворимостью и т. д..) Выделение вещества в более активных формах и состояниях может происходить самопроизвольно только из состояний с еще большим изобарным потенциалом (еще более активных в данных условиях). Обычно такими состояниями служат сильно пересыщенный раствор или переохлажденная жидкость. Кроме того, такое вещество может получаться при химической реакции, происходящей в условиях, достаточно далеких от равновесных. [c.227]

    Эти данные показывают, что в реальном кристалле дефекты структуры, обусловленные примесями, сложнее, чем ранее предполагалось. Электропроводность грязных кристаллов может оказаться меньше, чем чистых. В кристаллах, содержащих примеси различного сорта и различной валентности, существуют различные кулоновские поля, и температурный интервал освобождения носителей тока растягивается и сдвигается в область более высоких температур. [c.96]

    СК Реальные кристаллы. Описанная в 50 внутренняя структура кристалла, характеризующаяся строгой пространственной периодичностью, представляет собой известную идеализацию. Исследование строения реальных кристаллов показало, что во всяком кристалле эта периодичность всегда несколько нарушена. В реальных кристаллах наблюдаются дефекты структуры. Число этих дефектов ч их тип оказывают влияние на некоторые свойства кристаллических веществ. В ряде случаев эго влияние очень сильно, а некоторые из таких структурно-чувств и тельных свойств имеют очень большое практическое значение. [c.162]


    На рис. 15.1 показаны различные виды изотерм (кривые 1—4). Одной из наиболее типичных является 5-образная (рис. 15.1, кривая 2) диэлектрическая изотерма, полученная для ряда органических и неорганических сорбентов. Эта изотерма состоит из трех участков А, В, С. Согласно слоистой модели, молекулы первого слоя (участок А) обладают сравнительно малой ориентационной способностью в электрическом поле вследствие их сорбции на наиболее активных центрах. Такими центрами являются функциональные группы, способные образовывать водородные связи, дефекты структуры кристалла, координационно ненасыщенные атомы [647]. Молекулы второго слоя более подвижны и дают больший вклад в ориентационную поляризацию сорбата, что выражается в более высоких значениях й /йа (участок В). Однако при достаточно больших величинах сорбции с развитием сетки водородных связей происходит цементация сорбата, его структура становится более жесткой. [c.243]

    Простейшие виды дефектов структуры кристалла представлены иа рис. 49 и 50. Первые из них, называемые дефектами Френкеля, заключаются в том, что некоторые ионы из узлов кристаллической решетки смещены в другие положения. Нормальные места их в данный момент Остаются свободными и затем замещаются другими ионами. Вторые, называемые дефектами Шотки, заключаются в существовании свободных мест в различных узлах решетки. [c.143]

    Третий закон оправдан теоретическими соображениями. Далее ( 8, этой главы) мы узнаем, что согласно уравнению Больцмана (VI. 16) энтропия тела равна нулю, если термодинамическая вероятность состояния W равна единице. Значению = 1 отвечает единственно возможное макросостояние — идеально правильно построенный кристалл, в кристаллической решетке которого атомы занимают узлы в строгом соответствии с геометрическими законами. В реальных кристаллах вследствие их образования и охлаждения в неравновесных условиях имеются различные дефекты структуры. Поэтому энтропия реальных кристаллов при О К должна быть больше нуля. Фактически энтропия реальных кристаллов очень мало отличается от нуля, и этой разницей пренебрегают без ущерба для точности термодинамических расчетов. Газы, жидкости, стеклообразные фазы и растворы не подчиняются третьему закону термодинамики. [c.97]

    Кристаллы с пониженной термодинамической устойчивостью (т. е. с дефектами структуры, с сильно развитой поверхностью или находящиеся в напряженном состоянии под действием внешних сил и проч.) всегда обладают соответственно повышенной растворимостью, т. е. для них кривая ликвидуса рис. 116 должна несколько сместиться к центральной области диаграммы. [c.340]

    Различие степени пересыщения может влиять на направление процесса и на вид получаемых конечных продуктов. Так как наиболее устойчивая кристаллическая форма всегда обладает наименьшей растворимостью, то при повышении концентрации раствора прежде всего достигается состояние насыщения (затем пересыщения) именно в отношении этой формы. При дальнейшем повышении концентрации раствор вместе с тем может достигнуть насыщения (и пересыщения) и по отношению к более активным формам. В этих условиях легче могут образовываться кристаллы с различными дефектами структуры или становится возможным образование одной из метастабильных форм или начинается возникновение зародышей новой фазы (или новых фаз). В последнем случае, при возможности выделения вещества в двух кристаллических формах, преобладание той или другой из них в конечном продукте определяется соотношением скоростей процессов, а не термодинамической устойчивости этих форм. [c.361]

    Кристаллы кремния высокой чистоты, имеющие минимальное число дефектов структуры, характеризуются очень низкой электрической проводимостью. Примеси и нарушения правильности строения резко увеличивают их проводимость. [c.415]

    Действительно, при абсолютном нуле все атомы (молекулы) кристалла находятся на основном колебательном уровне, которому соответствуют колебательные квантовые числа, равные нулю. Такое состояние может быть осуществлено только одним способом, т. е. ш=1. В реальных кристаллах неизбежно присутствие хотя бы ничтожных примесей и наличие дефектов структуры. Их распределение можно реализовать различными способами и, следовательно, даже при 7=0 ш>1 и 5о>0. [c.81]

    Рассматривая внутреннее строение кристаллов, мы предполагали, что имеем дело с идеальными кристаллами, т. е. с такими, в которых нет никаких отклонений в положении тех или иных элементов структуры или в их химическом составе. Однако как природные, так и искусственно выращенные кристаллы имеют дефекты структуры, а в их решетке находятся примесные атомы. [c.89]

    Установлено, что фактическое участие в каталитическом процессе принимают только или преимущественно особые активные микроструктуры — активные центры, составляющие небольшую часть общей поверхности катализатора. Ими могут быть ионы аномальной валентности атомы, расположенные на ребрах или вершинах граней кристалла дефекты, искажающие идеальную структуру кристалла другие места адсорбции и т. д. [c.765]


    Локальные напряжения в твердом теле, так же как и грани, обладающие наибольшими значениями а, чаще всего являются центрами адсорбции. Наряду с гранями большое значение для адсорбции имеют дефекты структуры реальных кристаллов. Они изучаются физикой твердого тела, и здесь следует отметить лишь основные положения, непосредственно связанные с адсорбцией. Наиболее простыми- типами являются точечные дефекты по Френкелю, образованные избыточными (в междоузлиях) или внедренными атомами (или ионами), и дефекты по Шоттки, образованные недостающими в решетке атомами — вакансиями. Организованные совокупности точечных дефектов представляют собой дислокации, краевые (линейные) или винтовые. Дислокации выходят на поверхность в виде ступенек и обусловливают в основном несовершенство поверхностей. [c.138]

    Состояние поверхности катализатора, ее структура и степень развития играют важную роль. С. 3. Рогинский доказал, что активность катализатора тем выше, чем больше его свободная энергия, т. е. чем больше термодинамическая неустойчивость, выражающаяся в высокой раздробленности частиц и в наличии большого числа несовершенств строения кристаллов (дефектов). [c.52]

    Несомненно, каждый реальный кристалл обладает всеми перечисленными дефектами и его свойства в связи с этим должны существенно отличаться от свойств идеализированных кристаллов, модели которых были рассмотрены выше. Дефекты структуры действительно оказывают сильное влияние на многие свойства твердых тел. К ним относятся прочность, электропроводность, механические и электромагнитные потери, каталитические свойства и др. Эти свойства получили название структурно чувствительных. Для описания таких свойств рассмотренные выше модели являются малоподходящими. Однако часто оказывается, что ответственным за какое-либо определенное свойство реального кристалла является один тип дефектов. Это может быть обусловлено тем, что какой-либо дефект присутствует в гораздо большей концентрации, чем прочие, либо же тем, что на данное свойство прочие дефекты влияют в значительно меньшей степени. В таких случаях конкретное структурно чувствительное свойство можно достаточно удовлетворительно объяснить усовершенствованной моделью, включающей модель рассматриваемого дефекта (точечного или протяженного). [c.69]

    Особенно интенсивнь1м в этот период было изучение строения и свойств твердых тел. Кроме обычных температур исследования были распространены на область высоких и очень высоких температур, а также на область очень низких температур. Исследования эти стимулировались быстро развивающимся применением полупроводников, а также применением твердых веществ (металлов, керамики и. пр.) в различных областях новой техники. Исследовались тонкие особенности внутреннего строения кристаллов дефекты структуры (дислокации, вакансии и пр.), дефект-ы состава (влияние примесей, нестехиометрические фазы и фазы переменного состава). На новом уровне решалась задача получения веществ высокой степени чистоты (полупроводники, мономеры). Изучались особенности внутреннего строения полимеров. [c.25]

    Дефекты структуры реальных кристаллов разнообразны. Прежде всего, различают точечные, линейные и поверхностные дефекты. Простейшие и в то же время важнейшие точечные дефекты это незанятые узлы решетки или вакансии и атомы, находящиеся в междуузлиях. Существование таких дефектов связано с тем, что отдельные атомы или ионы решетки имеют энергию, превышающую ее среднее значение при данной температуре. Такие атомы колеб- [c.162]

    Линейные дефекты структуры называются дислокациями. Простейший вид днслокации — краевая дислокация. Она представляет собой край одной из атомных плоскостей, обрывающейся внутри кристалла. Дислокации возникают как в процессе роста кристаллов, так и при местных механических, тепловых и других воздействиях на кристаллы (см., например, рис. 142, а, б на стр. 538). На рис. 02 изображена краевая дислокация (линия АВ), возникшая в результате сдвига части кристалла по плоскости АВСО в направлении, указанном стрелкой. [c.163]

    Молекулярно-кинетическая теория плавления исходит из положения. что уменьшение степени порядка в расположении частиц твердого тела начинается задолго до плавления в связи с увеличива-юп1,ейся тепловой подвижностью частиц с повышением температуры. При этом растет число точечных дефектов структуры, что способствует разрыхлению кристаллической решетки. С дальнейшим повышением температуры в непосредственной б.тизости от кристалло-графпческп правильное расположение частиц теряет устойчивость, причем решающая роль в разрушенип да.льного порядка переходит к появляющимся более или менее значительным флуктуациям плотности, в которых участвует значительное число атомов. [c.8]

    ГЧ УЛьпые кристаллы. Кристаллы, состоящие из соверщенно оди-нaк JBыx элементарных ячеек, называются идеальными. Образующиеся в реальных условиях кристаллы могут несколько отличаться от кристаллов идеальных. Реальные кристаллы построены из некоторого числа блоков правильного кристаллического строения, расположенных приблизительно параллельно друг другу, ио все же несколько дезориентированных. Это явление называется мозаичностью структуры кристаллов, которая ведет к возникновению дислокаций, т. е. линейных, а также поверхностных и объемных дефектов структуры, образующихся 1з процессе роста кристаллов или же при пластической деформации. Помимо дислокаций в реальных кристаллах образуются также участки неупорядоченности, локализованные обычно около отдельных узлов решетки, — так называемые плоские дефекты. [c.72]

    Теория дислокаций исходит из того, что идеально правильный порядок расположения атомов (как это показано на рис. 94) в реальных кристаллах нарушается. Даже ничтожное отклонение от этого порядка может привести к тому, что в некоторых участках кристалла число атомов в соседних плоскостях неодинаково (рис. 95). Тогда вдоль всей плоскости скольжения АВ (в направлении, перпендикулярном плоскости чертежа) возникает дефект структуры, называемый дислокационной линией, или дислокацией. Если есть дислокации, атомные связи между плоскостями будут рваться под действием-Янещ-него усилия неодновременно, а поочередно. Следствием этого является передвижение дислокации из одного участка кристалла в другой. Когда дислокация выйдет на поверхность, там образуется ступенька атомного размера. Если на поверхность выйдет много дислокаций, [c.216]

    Обычно кристаллы классифицируют по признакам общей симметрии. В этом отношении жидкие кристаллы можно подразделять на смектические, нематические и холестерические. Для смектических жидких кристаллов, обычно являющихся термотропными, характерен ближний одномерный и ориентационный порядок, что имеет место и у твердых кристаллов. У нематических жидких кристаллов проявляется дальний ориентационный порядок в каком-либо одном направлении. Аналогичный порядок расположения молекул имеют и холестерические жидкие кристаллы, но они отличаются по равновесной структуре и текстуре. Существующие в различных жидких кристаллах видимые в обычный оптический микроскоп дефекты структуры получили название дисинклинаций. Иногда одна часть полимерной системы имеет смектическую, а другая — нематическую фазу. При этом может происходить переход [c.30]

    Идеальный кристалл рассматривается как тело, построенное из атомов, расположенных строго по законам симметрии кристаллической решетки. В реальных веществах существует непрерывный переход от идеально правильного в геометрическом и физическом смысле кристалла к телам с полностью неупорядоченным расположением атомов — аморфным или стеклообразным. Идеальный кристалл, как и аморфное тело с полностью неупорядоченной структурой, является крайним членом этого ряда. Практически всегда имеют дело с промежуточными членами его. Часть реальных кристаллов примыкает к почти идеальным, степень неупорядоченности которых незначительна. Реальные аморфные тела в свою очередь сохраняют некоторую степень упорядоченности. Отклонения в строении реального кристалла от идеализированного с геометрически правильным расположением атомов называются дефектами кристаллической решетки. Дефекты оказывают большое влияние на свойства реальных кристаллов, а во многих случаях обусловливают проявление особых свойств, которые не присупхи кристаллам со структурой, близкой к бездефектной. [c.166]

    Внутренняя структура зерна металла не является строго правильной. Металлам, как и всем реапьным кристаллам, присущи дефекты структуры. При этом многие свойства металлов сильно зависят от характера и от числа имеющихся в металле дефектов. Так, в процессах диффузии важную ро.оь играют вакансии. Эти процессы протекают, например, при насыщении в горячем состоянии поверхностного слоя металлического изделия другими элементами для защиты от коррозии или для придания поверхности изделия тв ердости. Проникновение атомов постороннего элемента в глубь металла происходит, в основном, по местам вакансий. С повышением температуры число вакансий возрастает, что служит одной из причин ускорения процесса диффузии. [c.320]

    Для выявления дефектов структуры, выходящих на поверхность кристаллов, Бойкова А. И. с сотрудниками применила метод селективного химического травления. Плотные спеки твердых растворов 2S травили 1%-ным раствором HNO3 в спирте в течение 40 мин. Со скола травленой поверхности снимали двухступенчатые. целлулоидно-угольные реплики. В результате травления на поверхности кристаллов образовывались ямки размером 0,1 — 0,2 мкм. Дефектность характеризовали двумя параметрами плотностью ямок травления и их ориентацией на поверхности. Плот- [c.157]

    Это так называемые дефекты кристаллического строения, присутствие которых сказывается, и иногда очень существенно, на свойствах кристаллов. Так, техническое железо имеет прочность 175—315 МПа (около 25 кг/мм ), сложнолегированная сталь рекордной прочности — 3900 МПа (400 кг/мм ), а бездефектный кристалл чистого железа — 13000 МПа (1300 кг/мм ). Многие другие практически важные свойства кристаллов определяются именно присутствием специально создаваемых дефектов структуры, в частности, каталитическая активность, полупроводниковые свойства, способность к люминесценции, окраска и другие. [c.155]

    Различают два вида дефектов точечные, охватывающие одну-две элементарные ячейки, и протяженные — микротрещины, микрокаверны, мозаика, дислокации и др. Особенно много дефектов на поверхности кристаллов. Ее структура может быть ступенчатой, на ней адсорбируются атомы (молекулы) других веществ из окружающей среды, так как атомы, находящиеся на поверхности кристалла, имеют ненасыщенные валентности и поэтому проявляют большую активность к веществам в окружающей среде (см. гл. VI). [c.135]

    Граница зерен однокомпонентного поликристаллнческого твердого тела является специфической поверхностью раздела двух объемов одинакового состава, находящихся в одинаковом (твердом) фазовом состоянии. Структура границ зерен и их удельная свободная поверхностная энергия Огз во многом определяются степенью разориен-тировки зерен относительно друг друга. При слабой взаимной разори-ентации соседних участков кристаллов (их обычно называют в этом случае блоками) величина Огз мала и приблизительно линейно возрастает с увеличением угла разориептировки. На рис. I—11, а изображен Простейший вид подобной малоугловой границы блоков края неполных атомных плоскостей могут рассматриваться как особые линейные дефекты структуры твердого тела, называемые краевыми дислокациями (см. также с. 339). [c.29]

    Пластическое деформирование кристаллических твердьа тел связано с появлением и передвижением в их объеме особых линейных дефектов структуры, подзываемых дислокациями (см. гл. IV, 4). Дислокация отделяет в плоскости скольжения ту часть кристалла, в которой произошло смешение атомов на одно межатомное расстояние, от той части кристалла, где такого смещения еще ае происходило (рис. Х1-31). Перемещение дислокации через весь кристалл приводит к сдвигу в плоскости скольжения на одно межатомное расстояние. Движение дислокаций может тормозиться различными дефектами кристаллической решет -кн инородными атомами, включениями, другими дислокациями, границами блоков монокристаллов, двойниковыми гр 1вицами, границами зерен в полик- [c.404]

    Природа отклонений от стехиометрии в соединениях переменного состава состоит в том, что при любых температурах, отличных от абсолютного нуля, в реапьном кристалле существуют дефекты структуры. С повышением температуры концентрация этих дефектов возрастает в силу увеличения энтропии системы. Наиболее упорядоченной структурой должен обладать идеальный кристалл, в котором каждый атом занимает предназначенный ему узел в кристаллической решетке. При этом все узлы заняты, а все междоузлия свободны. Такая структура обладает полным порядком (энтропия равна нулю) и может быть реализована только при абсолютном нуле. При повышении температуры нарздпения идеальной структуры возможны за счет возник- 0 0 0 0 0 0 0 0 0 [c.263]


Смотреть страницы где упоминается термин Кристаллы дефекты структуры: [c.537]    [c.538]    [c.166]    [c.51]    [c.162]    [c.162]    [c.325]    [c.250]    [c.184]    [c.187]    [c.339]    [c.34]   
Общая химия 1982 (1982) -- [ c.162 , c.163 , c.537 , c.538 ]

Общая химия 1986 (1986) -- [ c.155 , c.156 , c.520 , c.521 ]

Общая химия Издание 18 (1976) -- [ c.158 , c.159 , c.530 , c.531 ]

Общая химия Издание 22 (1982) -- [ c.162 , c.163 , c.537 , c.538 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалл дефекты

Кристалл структура



© 2025 chem21.info Реклама на сайте