Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент подвижности ионов

    Так как температурные коэффициенты подвижности ионов К и С1 имеют близкие значения, то и значения В для этих ионов тоже близки [62]. На основе допущения, что значения В для ионов и С1" равны, была составлена табл. VIП-8. [c.324]

    Связь между коэффициентом В, подвижностью иона и энтропией растворения. Температурный коэффициент подвижности ионов так же, как и температурный коэффициент В, закономерно зависит от кристаллографического радиуса [c.148]


    Изучение растворов ионных фторидов ограничивалось немногими соединениями, например, такими, как легко растворимые фториды щелочных металлов. Подробно были изучены водные растворы фтористого водорода и фторидов, а также ряда других соединений в безводном фтористом водороде соответствующие данные подробно рассмотрены ниже. Подвижность иона фтора при бесконечном разбавлении (м д-) равна 46,6 [103] температурный коэффициент подвижности иона составляет 0,0238 [101]. Подвижность при бесконечном разведении в метиловом спирте при 25° равна 40,2, а в воде при этой же температуре 54,4 [76]. [c.15]

    М — коэффициент подвижности ионов в смоле  [c.146]

    Учитывая связь, существующую между коэффициентом диффузии и подвижностью ионов, а также ионной электропроводностью, можно написать следующие уравнения для эффективного коэффициента диффузии электролита  [c.144]

    Из (7.82) видно, что селективность электрода зависит не только от константы обмена, но и от отношения подвижностей обменивающихся ионов, и коэффициент селективности Ка представляет собой произведение отношения подвижностей ионов на константу обмена  [c.177]

    T. e. произведение подвижности (a следовательно, и электропроводности) на коэффициент вязкости является величиной постоянной и, следовательно, температурный коэффициент подвижности должен быть равен величине, обратной температурному коэффициенту вязкости. Действительно, температурный коэффициент подвижности большинства ионов в водных растворах равен 2,3—2,5%, в то время как величина, обратная температурному коэффициенту вязкости воды, равна 2,43%. [c.438]

    Коэффициент диффузии D соли можно выразить через подвижности и коэффициенты диффузии ионов, иа которые эта соль диссоциирует  [c.565]

    У растворов электролитов диффузия проходит скорее, так как размеры ионов меньше, чем недиссоциированных молекул [93]. Рассуждения о расположении электростатических сил приводят к заключению, что, несмотря на разную подвижность ионов, диффузия их проходит с одинаковой скоростью, так что раствор остается электрически нейтральным. Нернст [77] предложил формулу для расчета коэффициента диффузии для сильно разбавленных растворов электролитов  [c.48]

    Контакт двух фаз на идеальной модели происходит по геометрической плоскости. По Варду и Бруксу [112], существует очень тонкий (толщиной в несколько ангстремов) слой, который является переходной областью между двумя фазами. На обеих сторонах этого слоя имеется некоторый конечный перепад между концентрацией растворенного вещества в одной фазе и равновесной концентрацией в другой. Учитывая возможную величину этого перепада и толщину слоя, Вард и Брукс приняли допущение, что в этом слое коэффициент диффузии О гораздо меньше, чем в основной массе жидкости. Таким образом, прохождение молекул через этот слой связано с преодолением дополнительных сопротивлений. Дэвис [22] также сообщает, что в диссоциированных растворах подвижность ионов на поверхности стыка значительно меньше (в 10 раз), чем в основной массе жидкости. [c.52]


    Коэффициент диффузии ионов можно выразить через их подвижность  [c.43]

    Известны электролитические подвижности ионов при бесконечном разбавлении и 25° С, а также их температурные коэффициенты  [c.56]

    Для водных и органических растворителей на температурную зависимость электропроводности влияют вязкость, диэлектрическая проницаемость, степень диссоциации и подвижности ионов. Для водных растворов степень диссоциации для большинства электролитов уменьшается с ростом температуры, уменьшается вязкость растворов и возрастает подвижность ионов. Для органических растворителей температурный коэффициент электропроводности положителен. Изме- [c.281]

    Влияние растворителя учитывается введением диэлектрической проницаемости Ер. Предполагается, что в растворе электролита вследствие электростатического взаимодействия между ионами (притяжение между разноименными и отталкивания между одноименными) вокруг каждого иона образуется в среднем по времени сгущение ионов противоположного знака. Такие сгущения образуют так называемые ионные атмосферы противоположного данному иону знака и, следовательно, в принципе межионное взаимодействие можно свести к взаимодействию между ионными атмосферами. Ионная атмосфера характеризуется зарядом, величина которого быстро убывает с ростом расстояния от центра. Заряд ионной атмосферы тем больше, чем больше общая концентрация ионов в растворе. При наложении электрического тока катионы и анионы двигаются в соответствующих направлениях вместе со своими атмосферами, которые в своем движении запаздывают за движением ионов и тем самым тормозят его. Кроме того, ионы испытывают тормозящее воздействие за счет притяжения между ионными атмосферами противоположных знаков. Эти тормозящие воздействия уменьшают подвижность ионов и, следовательно, уменьшают эквивалентную электрическую проводимость, что особенно заметно при увеличении концентрации. Указанные явления представляют собой физические причины существования коэффициента электрической проводимости [c.389]

    При допущении, что подвижность ионов слабого электролита не зависит от концентрации, следует учесть влияние степени диссоциации, которая увеличивается при разбавлении раствора. У сильных электролитов, которые можно считать всегда диссоциированными нацело, при разбавлении увеличиваются расстояния между ионами, уменьщаются силы взаимодействия и взаимное торможение ионов, отражаемые коэффициентом электрической проводимости /х- С ростом разбавления раствора и степень диссоциации слабого электролита, и коэффициент электрической проводимости сильного электролита возрастают до единицы при бесконечном разбавлении, что приводит к увеличению молярной (и эквивалентной) электрической проводимости до величины Х.°, хотя и вследствие различных причин [уравнения (11.34) и (11.35)]. Этим закономерностям отвечает характер кривых Я, изображенных на рис. 11.2. [c.221]

    Способность растворов электролитов проводить электрический ток зависит от подвижности ионов. Изучение этого явления позволяет получить информацию о многих важных свойствах раствора (о величинах степени диссоциации и константы диссоциации слабых электролитов, активности и коэффициента активности сильных электролитов) и определить изотонический коэффициент. Различия в подвижностях ионов используются для контроля за протеканием различных процессов. [c.181]

    Измерения на вращающемся дисковом электроде позволяют по предельному диффузионному току рассчитать коэффициенты диффузии отдельных ионов или молекул. Надежность этого метода была проверена измерением коэффициентов диффузии ионов в растворах различной концентрации. Последующая экстраполяция позволила получить величины О для бесконечно разбавленных растворов, которые можно независимым методом рассчитать из предельных подвижностей ионов [см. уравнение (30.10)]. Величины О совпали с точностью 1%. Таким образом, метод вращающегося дискового электрода является одним из наиболее точных методов определения коэффициентов диффузии. [c.171]

    При помощи уравнения Нернста — Эйнштейна (IV.13) можно связать коэффициент диффузии при с О с предельной подвижностью иона  [c.69]

    Формула (IV.13) называется уравнением Нернста — Эйнштейна. Она связывает коэффициент диффузии при бесконечном разведении с электрической подвижностью иона также при с->0. [c.63]

    Г. Льюис, учитывая близость свойств ионов и С1 (подвижность, ионный радиус, заряд и др.), принял, что к.+ = /сг-Отсюда следует, что /к+ = /с1- = /кс - Это допущение позволило рассчитать коэффициенты активности отдельных ионов. Например, зная /нсь можно найти коэффициент активности иона водорода по величине /с1- из соотношения /н+ = /нс1//с1--Таким путем были получены величины, приведенные в табл. IX.2. [c.169]


    В заключение следует заметить, что сопоставление температурных коэффициентов подвижности и вязкости является косвенным доказательством увеличения и уменьшения подвижности молекул воды вблизи иона по сравнению с подвижностью молекул воды в отсутствие ионов. [c.152]

    Различие в температурных коэффициентах подвижности может быть следствием и ряда других причин (например, изменение координационного числа с температурой). Однако различное влияние ионов на трансляционное движение, по-видимому, является фактом, установленным не только на основании сопоставления температурных коэффициентов, но и на основании прямых опытов по влиянию ионов на диффузию молекул воды различного изотопного состава на основании наблюдений иад особенностями изменения энтропии гидратации. Эти явления были объяснены на основании представлений о влиянии ионов на структуру воды вблизи сольватной оболочки. [c.152]

    ВОДНОСТЬ металлов, наоборот, уменьшается. Положительный температурный коэффициент подвижности ионов можно объяснить уменьшением вязкости электролита с температурой. Из таблицы видно также, что предельная подвижность 0Н и особенно Н3О+ аномально высока. Аномально высокая подвижность ионов гидроксония и гидроксила может быть объяснена эстафетным меха-лизмом переноса протона. [c.288]

    Температурный коэффициент подвижности l/ 29i ( UIAT) оказывается довольно большим ( 0,02) при нагревании раствора на 1 °С подвижность, а следовательно, и электропроводность возрастают примерно на 2%, что приводит к необходимости применять термостаты для точного измерения э-тектропроводности. Наибольший температурный коэффициент характерен для ионов с относительно малой подвижностью и наоборот. Наличие положительного температурного коэффициента подвижности ионов, по-видимому, объясняется уменьшением вязкости с температурой. [c.410]

    Величина Д ион зависит от радиуса иона и строения его электронной оболочки. На рис. III. 1 приведена зависимость Д ион, рассчитанной по коэффициентам подвижности ионов в предположении, что энергия активации самодиффузии Е составляет 4,28 ккал1моль [30], от кристаллического радиуса ионов щелочных [c.98]

    Интересный подход к проблеме связывания растворителя и процессу обмена между блоком жидкости и сольватной оболочкой был предложен Самойловым [71, 72]. Обозначим т среднее время контакта между двумя молекулами растворителя в блоке жидкости и т — то ж время вблизи иона. Отношение тг/т = ехр (АЕШТ), где Л — раз ность соответствующих энергий, необходимая для удаления молекуль растворителя на расстояние Аг от иона или удаления двух молеку растворителя на то же расстояние друг от друга. При таком крити ческом расстоянии молекулы могут свободно переходить из одногс окружения в другое. Расчеты АЕ были выполнены [71] с учетом коэф фициента самодиффузии растворителя и температурного коэффициент подвижности ионов. Для различных ионов в водных растворах был1 получены следующие величины А  [c.244]

    Повышение температуры увеличивает подвижность всех ионов, причем температурный коэффициент подвижности оказывается обычно тем меньше, чем выше ионная. 1роводимость. [c.115]

    Прочность связи иона с его окружением в мембране оказьшает прямо противоположное влияние на юзнстанту обмена и на величину подвижности. Если из двух участвующих в обмене ионов и первый связан прочнее, чем второй, то константа обмена Мл—будет больше единицы, но подвижность М1" меньше, чем М. Так, например, константа обмена иона Ыа+ на ион К+ для типичного К+-селективного стекла и сост.авляет примерно 100, а фактический коэффициент селективности не превышает 10, т. е. подвижность ионов К+ в мембране н 10 раз меньше подвижности ионов N3+. [c.177]

    Ионы Na" и 1 в реакции не участвуют. Распределение различных ионов в пленке показано на рис. V-8. Для каждого иона можно записать уравнение типа уравнения (1,31), выражающее скорость переноса этого иона как функцию от подвижностей и локальных концентраций и концентрационных градиентов всех присутствующих ионов. Для упрощения принято, что градиенты концентрации неизменны (например, для иона он равен р/б во всех точках), а значения концентрации каждого иона в уравнении (1,31) взяты усредненными в пленке, например р/2 — для Н +. Таким образом, можно записать четыре уравнения типа (1,31) для скоростей переноса всех четырех участвующих ионов, выраженных через концентрации т, п, р, q, S, толщины пленок б и б и подвижности ионов. Учитывая, что Ru+ = R - = —Roh- = (скорость абсорбции НС1) и i Na+ = о, можно избавиться от неизвестных т, s и б и получить выражение для Rb/p через подвижности ионов и qln и qlp. Скорость физической абсорбции хлористого водорода водой с той же толщиной пленки б была бы pDh i/6 отсюда коэффициент ускорения Е, показывающий, во сколько раз реакция ускоряет абсорбцию, выражается отношением R8Ip)IDh i- [c.143]

    Ионы в растворе находятся в состоянии хаотического теплового движения, пока на них не действует сила электрического поля. Под влиянием поля ионы приобретают направленное движение, скорость которого пропорциональна градиенту потенциала (катионы движутся к катоду, анионы — к аноду) Унапр = и-I7//. Коэффициент пропорциональности и называют электрической подвижностью иона она равна скорости движения иона при единичном, градиенте потенциала. [c.183]

    В соответствии с первым законом диффузии Фика (1885 г.) количество вещества, диффундирующего в единицу времени через единицу поверхности, пропорционально градиенту концентрации г = —0 -дС 1дх, где О,-— коэффициент диффузии ионов 1. Из сравнения двух последних уравнений для /,- видно, что /),= В то же время движение ионов со скоростью гу в электрическом поле с напряженностью Е определяется подвижностью ионов иг = Ш 1Е. Таким образом, движущая сила I для 1 моля ПОПОВ с зарядом 2, в поле Е равна 1 = 2гРЕ. Отсюда х0 ггРЕ=щ1г Р. Сравнение этих выражений показывает, что Ь1 = иг1ггР, т. е. между подвижностью и коэффициентом диффузии существует следующее соотнощение (В. Нернст, 1888 г.)  [c.329]

    Излагая тему электроцроводности растворов, следует уделить как можно больше внимания современным воззрениям на теорию сильных электролитов. Слушатели должны четко усвоить и широко применять на практике в будущем такие понятия, как активность ионов, коэффициент активности, ионная сила раствора, подвижность ионов и т. п. Особо следует подчеркнуть, что по современным воззрениям в более концентрированных растворах электролитов между заряженными ионами возникает взаимодействие не только электростатического, но и химического порядка, что приводит к возникновению так называемых ионных двойников и тройников, а также незаряженных ассоциированных соединений. В частности, все эти явления служат причиной особенности поведения [c.56]

    Задание. Установите связь величины х и подвижностей ионов и и . Для этого рассчитайте плотность тока и найдите х, пользуясь дифференциальной формой закона Ома (см. ]тавнеиие (11.24)1. Определите количество зарядов дЪ и < Б) каждого знака в 1 см раствора с помощью коэффициентов г. . и V-, концентрации раствора, степени диссоциации а и зарядов ионов. Учтите, что произведение элементарного заряда е на постоянную Авогадро Д/д равно постоянной Фарадея eN/ =F. [c.217]

    Из уравнения (П1.84) можно получить выражение для коэффициента активности подвижных ионов в растворе полиэлектролита. Так как кТ п 1=пр д0 п1дп.1), то [c.52]

    Ина ге говоря, не изменяющееся во времени распределение данного сорта ионов в растворе не обязательно соответствует gradji, = 0 и grad ф=0, а может быть результатом взаимной компенсации градиентов химического и электрического потенциалов. Это позволяет установить связь между Электрической подвижностью иона и,- и коэффициентом диффузии Di. Из уравнений (IV.5) и (IV.9) при [c.62]

    В общем случае помимо доннановой разности потенциалов необходимо учитывать возникающий внутри мембраны диффузионный потенциал, обусловленный различием в подвижностях катиона и аниона. Для расчета диффузионного потенциала используют уравнение ( 1.27), интегрирование которого проводят при предположении о постоянстве чисел переноса и коэффициентов активностей ионов внутри мембраны. [c.153]

    Полученные на основании измерений величины X или а при разных концентрациях константы К несколько изменяются. Непостоянство констант является результатом того, что уравнение Оствальда не учитывает коэффициентов активности, а ими можно пренебречь только для очень разбавленных растворов. Кроме того, истинное значение величины а определяется отношением экспериментально наблюдаемой электропроводности к электропроводности полностью диссоциированного электролита при той концентрации, при которой измерена электропроводность. Для того чтобы определить величину а, нужно найти величину Vohob при данной концентрации по уравнению Кольрауша a q ob = — В /1. Эта поправка возникает в связи с изменением подвижности ионов при изменении ионной силы. [c.125]

    Исследования самодиффузии молекул воды и ионов в растворах солей показали, что находящиеся в растворе ионы не только гидратируются, но и изменяют структуру окружающих их молекул воды. Оказалось, что коэффициент самодиффузии водй в растворах солей выше, чем в чистой воде. Это является следствием того, что ион, образуя гидратную оболочку, разрушает структуру ближайших слоев воды. Происходит, с одной стороны, как бы замораживание молекул воды в гидратной оболочке, а с другой стороны, как бы плавление близлежащих слоев воды. Исследования показали, что у ионов с малыми радиусами, например у ионов Li , структура воды в гидратной оболочке более упорядочена, чем в свободной воде, и они в меньшей степени изменяют структуру близленгащих слоев воды наоборот, большие ионы, как ион Gs" , в меньшей степени изменяют структуру воды в гидратной оболочке, но зато в сильной степени изменяют структуру воды в прилегающих к гидратированному иону слоях. Благодаря нарушению структуры, плавлению воды вокруг иона ее вязкость падает, в результате чего подвижность иона Gs" становится больше подвижности иона Li , и са-модиффузия воды в растворах солей цезия больше, чем в растворах солей лития. [c.148]

    Первый случай соответствует связыванию близлежащих молекул воды во втором случае молекулы воды вокруг иона становятся более подвин ными. Последнее явление и названо Самойловым отрицательной гидратацией. Он считает, что представления об обмене в гидратной оболочке не противоречат тому факту, что гидратация ионов всегда сопровождается выделением большого количества энергии. По его мнению, большой эффект соответствует дальнейшей гидратации иона, хотя, как будет показано ниже, почти 70% энергии выделяется при гидратации за счет ион-дипольного взаимодействия. Самойлов считает, что установление отрицательной гидратации приводит к пебходимости отказаться от представлений о связывании молекул воды ионами. Он подчеркивает, что обмен молекул воды зависит не от полной гидратации, составляющей десятки килокалорий на моль воды, и полной энергии взаимодействия молекул воды со, также имеющей порядок (10 ккал/моль) 4186 10 Дж/моль, а изменения энергии на малых расстояниях Акя Аса, имеющих порядок (1 ккал/моль) 418 10 Дж/моль. За счет более быстрого падения энергии взаимодействия молекул при Я > со может иметь место соотношение Ак < Ао). Основываясь на развитых представлениях, Самойлов объясняет увеличение активности воды в растворах солей, ионы которых имеют отрицательную гидратацию, и рассматривает связь подвижности ионов с коэффициентами самодиффузии. [c.151]


Смотреть страницы где упоминается термин Коэффициент подвижности ионов: [c.438]    [c.315]    [c.142]    [c.178]    [c.428]    [c.347]    [c.75]    [c.79]   
Производство хлора и каустической соды (1966) -- [ c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная подвижность

Ионная подвижность Подвижность

Коэффициент ионита

Коэффициент подвижности

Подвижность иона

Подвижность ионов



© 2025 chem21.info Реклама на сайте