Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействия ближнего и дальнего порядка

    Стекло представляет собой типичный пример так называемого аморфного состояния вещества, которое в отличие от кристаллического характеризуется двумя признаками изотропностью свойств и отсутствием температуры плавления. Аморфные тела встречаются обычно в виде двух форм компактной и дисперсной. Представителем компактной формы является стеклообразное состояние, в дисперсной форме находятся сажа, аморфный бор, аморфный кремний и т. п. Для аморфного состояния характерно наличие только ближнего порядка в расположении структурных единиц. Дальний порядок, свойственный кристаллам, отсутствует. Компактное аморфное состояние представляет собой сильно переохлажденную жидкость и отличается от последней только отсутствием лабильного обмена местами между отдельными структурными ассоциатами, что обусловлено высокой вязкостью. В дисперсном аморфном состоянии, представляющем собой тонкий порошок, состоящий из агрегатов, не имеющих упорядоченного строения, химическое взаимодействие между отдельными частицами полностью [c.306]


    Кристаллическое состояние вещества наступает тогда, когда реализуется как ближний, так и дальний порядок во взаимном расположении частиц. Звенья, сегменты макромолекул могут взаимодействовать как внутри-, так и межмолекулярно. Если интенсивность внутримолекулярного взаимодействия выше, чем межмолекулярного, то макромолекулы могут свернуться в более или менее плотную глобулу (случай, характерный для белков). [c.141]

    В силу специфического характера потенциала взаимодействия между мономерными единицами (яма с бесконечно высокими стенками), напоминающего распределение потенциала в кристалле, принцип ослабления корреляций Р -> Р,Р может не выполняться на всей длине молекулы или на значительном участке длины. Это может обеспечивать далекую упорядоченность структуры. Птицын и Шаронов сформулировали в 1957 г. следующую гипотезу 136] ближний одномерный порядок в большинстве случаев аналогичен дальнему одномерному порядку в кристаллическом состоянии)) Эта гипотеза подтверждается экспериментами (см. [15, 8]), однако еще не подтверждена теоретически. Было бы весьма интересно провести численные расчеты Р и определить дальность корреляции для различных потенциалов Ф (ж). [c.102]

    Принимается, что дальнодействующих сил нет и, следовательно, можно ограничиться учетом взаимодействия между молекулами, расположенными в непосредственной близости друг от друга. Среднее состояние каждой молекулы считается зависящим только от состояния ближайших ее соседей. Тем самым в известной мере снимается необходимость учета различий в распределениях молекул, удаленных друг от друга. Отличия кристалла (дальний порядок) от жидкости (ближний порядок) в этой модели сравнительно несущественны. [c.317]

    Существование тела в том или ином А. с. определяется соотношением энергий межмолекулярного взаимодействия и теплового движения. Если энергия межмолекулярного взаимодействия намного превышает энергию теплового движения молекул, то возникает твердое А. с. У низкомолекулярных тел в этом случае становится невозможным поступательное движение молекул, положения к-рых прочно фиксируются межмолекулярным взаимодействием. Если при этом взаимная упорядоченность молекул остается той же, что и при поступательном тепловом движении, т. е. соответствует ближнему порядку в жидкости, то образуется стеклообразное тело. Если и е образуется пространственная решетка, т. е. возникает дальний порядок в расноложении молекул, то создается кристаллич. тело, к-рое может быть монокристаллом или поликристаллическим. [c.10]

    Наиболее вероятное расположение частиц (из всех возможных) зависит от внешних сил, от сил взаимодействия частиц (атомов, молекул) и скорости их движения. При высоких температурах молекулы обладают большими скоростями, и силы взаимодействия не оказывают заметного влияния на их взаимное расположение. По мере понижения температуры скорости молекул падают и наступает, наконец, такой момент, когда силы сцепления начинают собирать атомы (молекулы) в капли. Наиболее вероятным при новых условиях оказывается, ближний порядок во взаимном расположении частиц. При дальнейшем понижении температуры может наступить момент, когда колебания атомов настолько замедлятся, что начнется образование правильной решетки. Б этих условиях наиболее вероятным является дальний порядок расположения частиц. [c.14]


    Остается, правда, открытым вопрос об определении бинарного потенциала 43 (г). Опыты по рассеянию гамма-лучей и нейтронов жидкими металлами (см. [17]), а также теоретические оценки (см., например, [36]) указывают, что потенциал эффективного взаимодействия ионов (г), вследствие экранирующего действия электронного газа может иметь характер затухающих осцилляций (рис. 5). Особенно трудно оценить его дальнюю часть. Последняя определяет главным образом дальний порядок расположения частиц [18]. В то же время многие свойства плазмы, в том числе кинетические, зависят главным образом от характера ближнего порядка. Исследования Паскина [18] показали, что ближний порядок структуры системы определяется только глубиной и расположением первого минимума функции ср(г) й слабо зависит от формы этой потенциальной ямы Этот факт существенно облегчает приближенное построение радиальной функции распределения. Например, Янг и др. [19—21] при оценке электропроводности литиевой плазмы с вырожденным электронным газом используют для описания эффективного взаимодействия ионов потенциал твердых сфер  [c.284]

    В газообразном состоянии вещества характеризуются значительными расстояниями между частицами и малыми силами взаимодействия между ними. Они способны занимать любой предоставленный объем, и их свойства в основном определяются поведением отдельных частиц. В жидком же состоянии частицы веществ сближены на расстояния, соизмеримые с их размерами, силы взаимодействия между частицами значительны. Частицы вещества объединяются в крупные агрегаты, в которых их взаимное расположение упорядочено и движение носит колебательный характер (ближний порядок). На значительных расстояниях от центров агрегатов (дальний порядок) эта упорядоченность нарушается. Прочность связей между агрегатами частиц в жидкости невелика, поэтому в жидком состоянии вещество занимает определенный объем, но способно изменять форму под действием силы тяжести. Поведение веществ в этом состоянии определяется как свойствами частиц и их агрегатов, так и взаимодействиями между ними. [c.52]

    Таким образом, растворы сильных электролитов даже при высоких разбавлениях представляют собой не идеальные, а реальные растворы, где каждый ион взаимодействует со всеми окружающими его ионами. В этом отношении такие растворы подобны твердым солям. Отличие заключается в том, что в первом случае имеет место лишь ближний порядок в расположении ионов, а во втором — дальний. [c.162]

    Термин структура жидкости весьма распространен. В отличие от кристаллической структуры твердого тела под структурой жидкости следует понимать статистическую закономерность межмолекулярных расстояний и ориентаций, характерную для любой плотноупакованной системы. Благодаря конечному размеру молекул силам межмолекулярного взаимодействия любой жидкости свойствен ближний порядок в расположении частиц и отсутствие дальнего порядка. Отсутствие дальнего порядка означает, что порядок в одном месте никак не действует на порядок в другом. [c.98]

    Влияние ионов на структуру воды связано с их гидратацией. Различают ближнюю гидратацию (взаимодействие иона с ближайшими к нему молекулами воды) и дальнюю гидратацию — поляризацию более отдаленных молекул воды. Основной вклад в теорию гидратации ионов сделан О. Я. Самойловым, развившим молекулярно-кинетическое представление о гидратации ионов [6]. Характеристикой ближней гидратации является отношение времени пребывания молекулы воды в ближайшем окружении иона ко времени нахождения ее в положении равновесия с другими молекулами в невозмущенной структуре воды. На основании данных о растворимости солей и теплотах гидратации ионов установлено, что на связь одной молекулы с катионом в зависимости от его заряда ( + 1, +2 или +3) приходится соответственно 42, 126 или 420 кДж/моль (10, 30 или 100 ккал/моль). В последнем случае гидратированный катион похож на химическое соединение. Вблизи одновалентных ионов время оседлого пребывания молекул воды имеет порядок 10- с. [c.13]

    Они получены на основе квазикристаллической модели жидкости, тогда как в жидкости в отличие от твердого тела существует лишь ближний порядок—об отсутствии дальнего порядка говорит размыв максимумов кривых рассеяния (см. рис. 4). Для квазикристаллической модели константа взаимодействия А12 пропорциональна только величине 0 [см. уравнение (1.22)]. Неидеальность положительна, если одинаковые молекулы связаны между собой сильнее, чем разные (м ) + > 2М 2, и наоборот. [c.15]


    Явление релаксации тесно связано с молекулярным строением тел. В зависимости от плотности и упорядоченности молекулярной упаковки, которые определяются силой взаимодействия между молекулами, различают твердое, жидкое и газообразное состояние веществ. Так как вещества в газообразном состоянии характеризуются отсутствием какого бы то ни было порядка в расположении молекул, они не могут испытывать напряжения, деформации и релаксировать. Эти понятия имеют смысл только применительно к твердым и жидким веществам, которые представляют собой два крайних случая так называемого конденсированного состояния, при котором молекулы сохраняют определенный (дальний или ближний) порядок в расположении. Самопроизвольное развитие процесса релаксации связано с тепловым движением молекул, сопутствующим любому агрегатному состоянию вещества. Между твердыми и жидкими веществами по времени релаксации наблюдается наиболее резкая разница. Однако на практике наблюдается непрерывный переход от одних к другим. [c.88]

    Иногда аморфным называют такое состояние, которое характеризуется обрывками структуры твердого тела и весьма развитой поверхностью [49, стр. 21 ]. Если же считать аморфным состояние, аналогичное переохлажденной жидкости, то в аморфных телах, надо полагать, расположение частиц такое же беспорядочное, как и в переохлажденной жидкости. Дальний порядок (о чем см. ниже), характерный для кристаллических тел, в них отсутствует, а ближний, если и образуется, )аспространяется только на ближайшую координационную сферу. 1од ближним порядком мы понимаем расположение вокруг данного атома (или иона) его ближайших соседей. Взаимным расположением атомов и расстоянием между ними определяются силы взаимодействия — их величина и направление, а также перекрытие электронных облаков (волновых функций) [48, стр. 182]. [c.114]

    Г. Унгар и Н. Масик [399] предположили, что уменьшение расщепления (величина Ау) полос, соответствующих колебаниям мепи-леновых СН2-групп, может быть обусловлено, по данным ИК- и рамановской спектроскопии (рис. 17 и 18 соответственно), уменьшением межмолекулярного взаимодействия вследствие расширения кристаллической структуры, а также изменением угла молекулярного зигзага в плоскости цепи и нарушением ориентационных связей дальнего порядка. Они пришли к заключению, что в ротационной фазе Ы отсутствует дальний порядок, а ближний порядок, вероятно, есть и проявляется в пределах доменов, каждый из которых включает примерно 20-30 молекул, причем усредненная молекула имеет симметрию ттт, и для нее [c.80]

    Расчет гибкости основывается на химическом строении макромолекул. Мы все время говорили о полиэтилене. Однако многие макромолекулы содержат в своих звеньях массивные привески, например, полистирол (— СНа— HR—) , где R есть eHs. Вэтих случаях конформации определяются преимущественно взаимодействиями привесков. Сведения о конформациях цепи можно получить методом рентгеноструктурного анализа — если полимер кристаллизуется. При кристаллизации фиксируются определенные ротамеры для всех звеньев цепи и возникает дальний порядок зная положение атомов в данном мономерном звене, мы знаем их для сколь угодно удаленных звеньев, так как расположение атомов строго периодично. Вместе с тем, в кристалле имеется, конечно, и ближний порядок — определенное расположение соседних звеньев. Кристаллический ближний порядок сохраняется при плавлении и растворении полимера, так как кристаллическая структура полимера отвечает минимуму потенциальной энергии. Можно предположить, что ближний одномерный порядок в свободной макромолекуле, образующей статистический клубок, аналогичен дальнему одномерному порядку в кристалле. Эта идея получила подтверждение в расчетах конформаций и в результатах экспериментальных исследований. [c.71]

    Рассмотрим теперь изменения, происходящие при плавлении подобной кристаллической решетки или при растворении макромолекул. При плавлении обычных низкомолекулярных веществ исчезает дальний порядок, характеризующий кристаллическую решетку, а ближний порядок — расположение ближайших соседей вокруг данной молекулы— остается в жидкости практически тем же, что и в кристалле. Это и естественно, так как плотность жидкости мало отличается от плотности кристалла. При плавлении или растворении кристаллического полимера дальний порядок, очевидно, исчезает. Тело становится аморфным. Однако ближний порядок, определяемый взаимодействием ближайших соседей, сохраняется. Причем, что особенно интересно, в изолированной цепочке, окруженной растворителем, сохраняется тот же ближний порядок, что и в полимерном кристалле. Это означает, что соседние звенья одной цепи образуют как бы витки спирали той же структуры, которая была свойственна данному полимеру в кристаллической решетке. Правда, если мы попытаемся продолжить подобные отдельные витки дальше и отыс1 ать в макромолекуле структуру спирали, мы увидим, что это невозможно, так как регулярность структуры вдоль цепочки быстро нарушается и сходит на нет. [c.76]

    Одним из нас совместно с Шароновым [3] было высказано предположение, что кристаллическая структура макромолекул определяется внутримолекулярными взаимодействиями, вследствие чего ближний одномерный порядок в статистически свернутых макромолекулах аналогичен дальнему одномерному порядку в кристалле. Впоследствии было показано [4, 5], что кристаллические конформации цепей типа (—СНа — HR—) , действительно, отвечают минимальному перекрыванию ван-дер-ваальсовых сфер валентно не связанных атомов. Конформации мономерных единиц при изотактическом присоединении характеризуются углами внутреннего вращения (0°, 4-120°) или [c.388]

    Следует заметить, что в нодрешетке, содержащей различные ионы, всегда существует ближний порядок, даже в тех случаях, когда дальний порядок и не обнаруживается. Поэтому энергия кулоновского взаимодействия и борновская энергия отталкивания должны оцениваться с учетом энергии упорядочения. [c.21]

    Область химической кинетики, посвященная взаимодействию между веществом и излучением, соответствующим переходам между различными энергетическими состояниями внешних электронов атомов и молекул, называется в классической химии фотохимией. Длины волн фотонов этих излучений лежат в пределах от ближней инфракрасной области для некоторых фотографических процессов (т. е. 10000 А) до дальней ультрафиолетовой области (порядка 1000 А), с которой приходится иметь дело при исследовании некоторых спектров поглощения, а также ионных кристаллов. Соответствующий интервал энергий составляет примерно от 1,2 до 12 eV. Происходящие при этом первичные процессы весьма просты, хотя их детальный механизм хорошо изучен лишь для немногих реакций. Молекула, поглощающая фотон, переходит в возбужденное состояние, после чего в течение известного промеж ггка времени могут происходить различные процессы, причем длительность этого промежутка имеет порядок одного периода колебания (10" сек.) или значительно больше. В зависимости от свойств молекул происходят те или иные процессы, которые отличаются друг от друга, в частности, своими скоростями. Такими процессами являются флуоресценция, простой распад, передача энергии другой молекуле или атому физическим или химическим путем (например, фотосенсибилизация), а также внутренние превращения, связанные с [c.55]

    По вопросу о строении стекол имеется обширная литература, многолетняя полемика специалистов. Сейчас общее мнение сводится к тому, что стекла — переохлажденные жидкости — имеют строение, сочетающее ближний порядок в небольших элементах объема (линейные размеры порядка 10 А) с хаотическим расположением регулярных элементов в пространстве. Основная дискуссия идет в направлении определения величины упорядоченных кусков кристаллической решетки и степени хаотичности расположения последних в пространстве. Поскольку рентгеновские методы не могут с большой точностью определить границы ближнего и дальнего порядка, важное значение приобретают оптические методы. Из общих соображений также следует, что размеры правильных колоний атомов будут зависеть от конкретного состава стекла и сил межатомного взаимодействия — ку-лоновские силы обладают большим дальнодействием, чем ковалентные, и поэтому по мере увеличения ионности связи можно ожидать и изменения границ ближнего порядка в стекле. [c.210]

    Как отмечено в предыдущем разделе, спектр ПМР имеет второй порядок в том случае, если отношение /г /АУгз>-0,15, где 1ц — константа спин-спинового взаимодействия, а Ау — разность химических сдвигов протоно1в I и у. При работе со спектрами второго порядка предъявляются повышенные требования к качеству спектра. Все муль-типлетные сигналы следует записывать при сканировании с малой скоростью 0,3 — 1 Гц/с и с большой разверткой 0,3—1 Гц/мм. Особое внимание уделяется определению интенсивностей сигналов в спектре. Это связано с тем, что при анализе спектров второго порядка учитываются не только частоты линий, но и их интенсивности. Полученные при расшифровке данные могут быть использованы для определения более тонких особенностей строения, чем при анализе спектров первого порядка. В данном случае становится возможным устанавливать неэквивалентность протонов, имеющих одинаковое ближнее, но различное дальнее окружение, а по константе спин-спинового взаимодействия определять геометрическую конфигурацию соединения. Нередко для подтверждения правильности расшифровки спектра второго порядка проводят сравнение экспериментального и ожидаемого спектров путем сопоставления частот и интенсивностей линий. В рассматриваемых ниже примерах приводятся лишь упрощенные способы анализа сиектров двух- и трехспиновУх систем типа АВ, АВг и АВХ. Подробное изложение этих вопросов дано в монографиях, указанных в списке литера-туры. [c.112]

    Образование ЖК фаз определяется взаимодействием мезогенных групп. Более того, именно в мезогенных группах в основном локализованы постоянные электрические диполи, особенно если в качестве заместителя с ядром связана полярная группа. Структура мезогенной группы задает не только дальний нематический или смектический порядок, но в некоторой степени, определяет и корреляции ближнего порядка. Так, например, для низкомолекулярных жидких кристаллов хорошо известны антипараллельные корреляции цианобифенильных мезогенных трупп, проявляющиеся в уменьшении молекулярного дипольно-го момента и, как обсуждалось в гл. 7.2, в характерной температурной зависимости средней проницаемости. Сообщалось [50, 51], что подобные эффекты наблюдаются и в полиакрилатах. Авторы работы [40] обратили внимание на то, что перекрывание ядер цианобифенильных групп в ЖК полисилоксанах носит такой же характер, как и в низкомолекулярных нематиках, и что эффект связывания цепей или различных участков одной и той же цепи может вызывать меж- и внутрицепные корреляции. [c.281]

    Теория Бете [19] основана на предположении, что порядок обусловливается главным образом взаимодействием между атомами, которые являются ближайшими соседями. Если имеется два сорта атомов А я В, должно быть три вида энергии взаимодействия, обозначаемых Уаа> Увв и Уав, и вероятность того, что данный атом имеет правильных или неправильных соседей, содержит выражения этих энергий. При таком приближенном рассмотрении явления б1ыстрое разрушение дальнего порядка происходит в сравнительно узком интервале температур. В противоположность теории Брегга и Вильямса, теория Бете требует сохранения некоторой степени порядка выше критической точки в том смысле, что при высоких температурах еще существует некоторая вероятность того, что атом А имеет соседями атомы В и эта вероятность больше, чем следовало бы ожидать для вполне неупорядоченного расположения. Таким образом, согласно теории, ближний порядок продолжает существовать при высоких температурах и действительно можно показать, что это обнаруживается на рентгенограммах, на которых наряду с нормальными линиями или пятнами, характеризующими решетку, наблюдаются аномальные изменения общего фона рассеяния. Этот эффект наблюдал Вильчинский [20] на СизАи и Норман и Варрен [21] на АдАи. [c.43]


Смотреть страницы где упоминается термин Взаимодействия ближнего и дальнего порядка: [c.17]    [c.231]    [c.57]    [c.352]    [c.6]    [c.130]    [c.64]    [c.61]    [c.42]   
Физико-химия полимеров 1978 (1978) -- [ c.60 , c.61 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия ближнего порядка

Взаимодействия ближние

Взаимодействия дальнего порядка

Дальнее взаимодействие

Порядок ближний

Порядок дальний

взаимодействие взаимодействия дальнего порядка



© 2025 chem21.info Реклама на сайте