Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка щелочных металлов

    Очистка щелочных металлов путем их перегонки в вакууме с использованием этой установки сводится к следующему (рис. 45). В бункер заливают петролейный эфир и загружают кусочки очищенного с поверхности рубидия или цезия (в случае дистилляции лития необходимость в применении петролейного эфира отпадает)  [c.394]

    Очистка щелочных металлов [c.1014]

    Этот метод очистки основан на том, что дифенилолпропан хорошо растворяется в щелочах, образуя соответствующие металлические производные некоторые побочные продукты, содержащиеся в дифенилолпропане, растворяются плохо и могут быть отделены от раствора фильтрованием, а другие растворяются лучше дифенилолпропана и остаются в растЕоре при его осаждении. Добавляя затем к раствору точно рассчитанное количество кислоты, можно выделить дифенилолпропан в чистом виде. В качестве щелочного агента используют гидроокиси щелочных металлов, например ЫаОН. [c.164]


    Химические методы основаны на взаимодействии веществ, загрязняющих нефтяные масла, и реагентов, вводимых в эти масла. В результате протекающих реакций образуются соединения, легко удаляемые из масла. К химическим методам очистки относятся кислотная очистка, щелочная очистка, осушка с помощью соединений кальция, осушка и восстановление гидридами металлов. Применение химических методов очистки позволяет удалять из масел асфальто-смолистые, кислотные, некоторые гетероорганические соединения, а также воду. [c.111]

    После тщательного прогревания сосуда (и прежде всего тигля) в высоком вакууме в тигель описанным ранее способом (см. разд. Очистка щелочных металлов ) вносят в условиях исключения доступа воздуха необходимые-количества щелочного металла. Затем в медленном потоке аргона вносят рассчитанное количество висмута в внде кусочков размером с чечевичное зернышко при этом металл должен быть уже нагрет до температуры немного-выше температуры плавления. Каждую новую порцию висмута добавляют после прекращения реакции с уже внесенной порцией. В заключение содержимое тигля иагревают до полного плавления и хорошо перемешивают корундовой палочкой. Плавление, перемешивание н охлаждение надо проводить быстро, благодаря чему потери за счет испарения щелочного металла уменьшаются до пренебрежимо малых. (Обычно на холодных стенках не наблюдаете образования зеркала щелочного металла.) Охлажденный продукт реакции надо высверливать нз тигля в атмосфере хорошо очищенного защитного газа. [c.1041]

    ОЧИСТКА ЩЕЛОЧНЫХ МЕТАЛЛОВ ОТ ОКСИДНЫХ ПЛЕНОК (571 [c.246]

    Эффективный способ химической очистки изопрена от циклопентадиена состоит в обработке его карбонильными соединениями в присутствии алкоголятов щелочных металлов [40] по реакции  [c.678]

    Очистка щелочных металлов от оксидных пленок 246 [c.331]

    Электролиз используется для получения многих металлов — щелочных, щелочноземельных, алюминия, лантаноидов и др., а также для очистки некоторых металлов от примесей. [c.99]

    ОЧИСТКА ЩЕЛОЧНЫХ МЕТАЛЛОВ [c.110]

    Итак, если мы располагаем методами для всех металлов, те эти методы позволят нам получить достаточно чистый металл. Но ни один из этих металлов не получается в чистом компактном виде, и встает вопрос, каким образом можно полученное вещество перевести в компактный металл. Задача очень проста для легкоплавких металлов побочных групп, таких, как галлий, индий, таллий и свинец, которые уже при электролизе выделяются в очень чистом виде. Затем существует несколько легколетучих металлов, которые можно очистить фракционированной перегонкой. Кроме ртути, таким способом можно получить и чистый цинк. Очистка щелочных металлов перегонкой несколько труднее, вследствие их взаимодействия с материалом аппаратуры для перегонки. [c.343]


    Эмульгаторами обычно являются полярные вещества нефти, такие, как смолы, асфальтены, асфальтогеновые кислоты и их ангидриды, соли нафтеновых кислот, а также различные органические примеси. Установлено, что в образовании стойких эмульсий принимают участие также различные твердые углеводороды, как парафины и церезины нефтей. Тип образующейся эмульсии в значительной степени зависит от свойств эмульгатора эмульгаторы, обладающие гидрофобными свойствами, образуют эмульсию типа В/Н, то есть гидрофобную, а эмульгаторы гидрофильные — гидрофильную эмульсию типа Н/В. Следовательно, эмульгаторы способствуют образованию эмульсии того же типа, что и тип эмульгатора. В промысловой практике чаще все1о образуется гидрофобная эмульсия, так как эмульгаторами в этом случае являются растворимые в нефти смолисто-асфальтеновые вещества, соли органических кислот, а также тонкоизмельченные частицы глины, окислов металлов и др. Эти вещества, адсорбируясь на поверхности раздела нефть—вода, попадают в поверхностный слой со стороны нефти и создают прочную оболочку вокруг частиц воды. Наоборот, хорошо растворимые в воде и хуже в углеводородах гидрофильные эмульгаторы типа щелочных металлов нефтяных кислот (продукт реакции при щелочной очистке) адсорбируются в поверхностном слое со стороны водной фазы, обволакивают капельки нефти и таким образом способствуют образованию гидрофильной нефтяной эмульсии. При на ичии эмульгаторов обоих тигюв возможно обращение эмульсий, то есть переход из одного типа в другой. Этим явлением пользуются иногда при разрушении эмульсий. [c.147]

    Первичная переработка нефти включает процессы ее очистки от солей и воды, испарения основных фракций в трубчатых печах и разделения на фракции в ректификационных колоннах. Наиболее часто крекингу подвергают фракции нефти, конденсирующиеся при 300—500 °С. Широко применяемый в крекинге алюмосиликатный катализатор (см. стр. 105) отравляется примесями, которые могут находиться в крекируемом нефтепродукте [19, 20, 21]. Сильное, но обратимое отравление алюмосиликатного катализатора происходит при наличии в сырье азотистых соединений. Необратимо отравляется катализатор соединениями щелочных металлов. Снижают активность катализатора соединения никеля, железа, ванадия и других тяжелых металлов. Нарущается работа катализатора при значительном содержании водяных паров. Для крекинга применяют дистиллаты нефти, не содержащей значительных количеств катализаторных ядов, или же подвергают нефть (или крекируемый дистиллат) очистке от сернистых соединений гидрированием. [c.15]

    Для разделения, очистки и осушки различных газовых и жидких смесей все более широкое применение находит адсорбция на молекулярных ситах (синтетических или природных цеолитах), т. е. кристаллических алюмосиликатах щелочных металлов. При дегидратации цеолитов в их кристаллах образуются полости с входными окнами строго определенных размеров для цеолита каждого типа. [c.408]

    Весьма важен вопрос удаления из ОСМ тяжелых металлов. Для очистки от свинца и железа предложена щелочная обработка (смесь гидроксида и карбоната натрия). Примеси ртути можно удалять с помощью термической обработки (50—400°С) при 0,15—3,6 МПа и объемной скорости 0,2—100 ч , с последующей очисткой модифицированным активированным углем, содержащим на поверхности металлы, их оксиды, хлориды и сульфиды. Также возможна очистка от следов ртути с помощью водного раствора сульфидов щелочных металлов. [c.364]

    Отравление катализатора крекинга весьма специфично. Если для подавляющего большинства катализаторов сернистые соединения, окись углерода, кислород и другие вещества являются ядами, то присутствие их почти не влияет на процесс крекинга. Но зато некоторые азотсодержащие соединения резко снижают активность катализатора, вызывая обратимое отравление его. Необратимо отравляютка-тализатор соединения щелочных металлов. Длительное воздействие паров воды при высокой температуре также приводит к необратимой потере активности катализатора в основном за счет уменьшения удельной поверхности его. Все технологические схемы крекинга предусматривают тщательную очистку исходного сырья от щелочных металлов. Замечено, что степень отравления различными азотсодержащими соединениями симбатна их основным свойствам. Повышение молекулярного веса азотсодержащего соединения увеличивает отравляющую способность его. Степень отравления понижается с повышением температуры. Так, присутствие 1% хинолина снижает скорость крекинга нри 575° С на 30%, а нри 500° С уже на 80%. При этом полная потеря активности катализатора наступает при содержании хинолина, покрывающего лишь 2% всей поверхности катализатора. [c.238]


    При химических методах очистки реагентами служат а) серная кислота б) щелочи — едкий натр, сода, известь, аммиак и др. в) различные соли — например плумбит натрия, гипохлорит, хлориды металлов и др. г) прочие реагенты. В этом смысле различают сернокислотную очистку, щелочную, плумбитную, гидрогенизационную и др. [c.287]

    Очистка газов. Газообразные примеси удаляют, пропуская газ через некоторые вещества (часто в виде растворов), вступающие в химические реакции с данной примесью и не реагирующие с основным газом. Например, если требуется из смеси газов СО и СОа удалить последний, то пропускают эту смесь через раствор щелочи или карбоната щелочного металла при этом двуокись углерода вступает в реакцию по уравнениям [c.27]

    Третий путь экстракционной очистки соединений рубидия и цезия предполагает использование сильноосновных растворителей, из-за значительной донорной способности которых растворитель присоединяется к катиону соли образуются устойчивые экстрагируемые соединения щелочных металлов [241]. Основность таких органических растворителей определяется функциональными группами типа Р -> О, полуполярные связи которых и стерическая доступность атома-до-нора электронов (0, N, S) обеспечивают высокую способность сольва-тировать, а значит, и экстрагировать щелочные металлы. [c.147]

    Без разложения окисление с фтало-цианином Си при 100—105 С, с фталоцианином Со при 80—85 °С, с фталоцианином N1 нри 85—90 °С Благоприятное действие, хороший эффект достигается при очистке фталоцианинов Исследования механизма реакции показывают, что радикалы, образующиеся при разложении КМГП, действуют как ускорители Добавка гидроокиси или карбоната щелочного металла ускоряет окисление [c.276]

    В отличие от описанного способа щелочно-кислотного переосаждения, когда дифенилолпропан растворяется в растворе гидроокиси щелочного металла и осаждается затем кислотой, известен способ, по которому из щелочи добавлением солей осаждают производное дифенилолпропана и отделяют его фильтpoвaниeм Этот процесс основан на понижении растворимости динатриевых производных дифенилолпропана в растворах щелочей при добавлении растворимых солей сильных минеральных кислот (Na l), как отмечалось выше. Осажденное таким образом динатриевое производное отфильтровывают , промывают насыщенным раствором Na l и растворяют в воде в четырехкратном количестве), после чего добавляют кислотный оса-дитель для выделения свободного дифенилолпропана. Концентрация используемой щелочи обычно составляет 20% весовое соотношение дифенилолпропана и раствора гидроокиси натрия равно 1 4. При таком способе очистки продукт получается окрашенным и для его обесцвечивания водный раствор производного дифенилолпропана обрабатывают активированным углем. [c.165]

    Некоторые новые способы очистки основаны на большой реакционной способности щелочных металлов и многих металлорганических соединений по отношению к ацетиленовым, а также к кислород-, серу- и азотсодержащим соединениям. Применяется суспензия щелочных металлов или алюминийорганические соединения. Глубокая очистка происходит при 70—80 °С за 1,5—2 ч и обеспечивает остаточное содержание перечисленных примесей не более 0,0001—0,0002 % при отсутствии потерь изопрена. Однако этими способами не удается удалить циклопентадиен, поэтому применять их следует в целях доочистки чистого изопрена. Принципиальная схема очистки изопрена от микропримесей с помощью триизобутилалюминия (ТИБА) приведена на рис. 48. Предлагается сочетать алюминийорганические соединения с некоторыми метал- [c.166]

    Промышленных методов очистки газов от H2S и Oj весьма много. Из них наибольший интерес представляет очистка этанол-аминами, позволяюп ая при некоторых условиях совместить удаление H2S, СО2 и Н2О. Кроме этаноламиновой очистки для этой цели применяется водная промывка и очистка водными растворами карбонатов щелочных металлов. Этаноламиновая очистка углеводородных газов от HjS и СО 2 была разработана еще в 1930 г. Сейчас этот метод широко применяется в разных вариантах при подготовке сырья для нефтехимического синтеза. При очистке природных газов применяется водный раствор моноэтаноламина концентрацией 15— 20%. Помимо низкой стоимости моноэтаполамин характеризуется высокой реакционной способностью, стабильностью и легкостью регенерации. Температура кипения моноэтаноламина 170° С, он неограниченно растворяется в воде. [c.161]

    Аналогично получают металлический Th. При восстановлении Thp4 кальцием металл выделяется в виде губчатой массы. Проводят также электролиз расплавов, содержащих Thp4 или К [ThFs] и хлориды щелочных металлов. Процесс ведут при 750—800 °С. Глубокую очистку Th осуществляют иодидным методом (см. разд. 8.2). Плутоний образуется в ядерных реакторах из при захвате им нейтронов  [c.608]

    В промышленных масштабах из химических абсорбентов нашли широкое применение алканоламины первичные - моно-этаноламин (МЭА), вторичные - диэтаноламин (ДЭА) и третичные - метилдиэтаноламин, диизопропаноламин (МДЭА, ДИПА), а также растворы щелочи, растворы солей щелочных металлов (поташная очистка - 25-30 %-ный водный раствор К2СО3 или МазСОз) и очистка раствором гидроксида железа Ре(ОН)з. [c.13]

    Ионообменной очистке от органических электролитов поддаются преимущественно маломинерализованные сточные воды. При извлечении органических оснований или их солей (алифатических или ароматических аминов, азотистых гетероциклов и т. п.), образующих одновалентные катионы, важно, чтобы минеральный состав сточных вод определялся солями щелочных металлов, поскольку двухвалентные катионы кальция, магния и тем более трехвалентные катиоь ы, например железа, поглощаются катионитами настолько сильнее органических катионов, что вытесняют последние в раствор в широком интервале соотношения концентраций. [c.347]

    Кобальто-молибденовьп катализатор применяется для гидро-очистки газойлей [142]. Если исходные нефтепродукты содержат олефины, то катализатор предварительно обрабатывают солями щелочных металлов, при этом оп теряет способность гидрировать олефины, сохраняя активность в отношении гидрогенолиза сераорганических соединений [220]. Катализатор такого типа был применен для установления природы сернистых соединений, содержащихся во фракциях 250—300° С нефтей Среднего Востока [69, 221 ]. Предварительно был проведен гидрогенолиз индивидуальных сераорганических соединений для выяснения направления превращения их при температуре 375° С и давлении 50 кг см (табл. 83). [c.386]

    Эта реакция позволяет выделить кислоты из нефтяных фракций. Соли щелочных металлов этих кислот, хорошо растворимые в воде, полностью переходят в водно-щелочной слой. При подкис-лении этого раствора слабой серной кислотой нефтяные кислоты регенерируются, ваплывают и таким образом могут быть отделены. Однако при этом в большом количестве захватываются и нейтральные масла (от 10 до 60%). Для выделения нефтяных кислот в чистом виде применяются различные методы очистки. Многие соли нафтеновых кислот ярко окрашены. Все они обладают бактерицидным действием. [c.34]

    Образовавшиеся частицы оксида магния осаждаются на поверхности мелких капель металла и увлекают их в гялам. Попадание оксида магния на катод вызывает его пассивацию. На количестве осаждаемого металла сказывается состояние стальной поверхности катода. Чистая поверхность катода хорошо смачивается магнием и на ней образуются крупные капли осажденного металла. Образование пассивирующей пленки на катоде, состоящей в основном из оксида магния и дисперсного железа, способствует образованию мелких корольков металла. Покрытые оксидом магния корольки уносятся в анодную зону, где постепенно окисляются хлором. Добавки фторидов кальция и натрия благоприятствуют образованию более крупных капель магния за счет десорбции оксида магния с мелких частиц металла. Пассивную пленку очищают механически или посредством выделения щелочного металла на катоде при электролизе обедненного электролита. После очистки катода и добавки свежей порции хорошо обезвоженного электролита выделяющийся магний вновь смачивает поверхность катода. [c.146]

    Трехкамерная ячейка не пригодна для очистки жестких вод, так как диафрагмы забиваются карбонатом кальция, что приводит к закупорке пор, которые приходится часто очищать кислотой. Наи более сильное загрязнение диафрагм наблюдается в первой ячеЙ ., Для устранения этого затруднения предложено раздельное выделение двухвалентных и одновалентных ионов. В первых ячейках удаляются из воды лишь анионы, а двухвалентные катионы выпадают в виде труднорастворимых солей в связи с происходящим уменьпге-нием концентрации водородных ионов. В этом случае ячейки состоят из двух камер, разделенных лишь одной диафрагмой. Подача поды производится в катодное пространство, где выпадают в осадок многовалентные катионы. Затем освобождаются от щелочных металлов в трехкамерных ячейках. Установленные в них диафрагмы загрязняются значительно меньше. [c.202]


Смотреть страницы где упоминается термин Очистка щелочных металлов: [c.1490]    [c.28]    [c.39]    [c.339]    [c.245]    [c.206]    [c.238]    [c.131]    [c.262]    [c.161]    [c.17]    [c.326]    [c.140]    [c.146]   
Работа со ртутью в лабораторных и производственных условиях (1972) -- [ c.95 ]

Работа со ртутью в лабораторных и производственных условиях (1972) -- [ c.95 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы очистка

Очистка щелочных металлов меры безопасности

Процессы очистки растворами солей щелочных металлов



© 2025 chem21.info Реклама на сайте