Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизационные кривые

    Температура очень сильно влияет на скорость кристаллизации. Если температура процесса ниже нуля, то характерная форма кристаллизационной кривой останется неизменной, однако весь процесс кристаллизации требует меньше времени (рис. 6.2). В пределе можно достичь такой температуры, при которой скорость проходит [c.115]

    Линейная зависимость lg р от X позволяет использовать измерения электропроводности для изучения кинетики кристаллизации. Из приведенной на рис. 79 зависимости lg р от логарифма времени выдержки закаленных образцов ПЭТ и ПТ при температуре кристаллизации следует, что кривые lg Ро—lg т имеют типичный для кристаллизационных кривых 5-образный вид, причем значения индукционного периода и времени кристаллизации, полученные путем измерений р , совпадают с результатами изме- [c.101]


    Точки 2,4 данной кривой определяют соответственно максимальные размеры элементов структур, образуемых парафино-нафтено-выми углеводородами дистиллятных фракций и асфальто-смолисты-ми компонентами тяжелых остатков. С, и С - концентрация остатка компаундируемой НДС. Точка 3 - точка перехода от кристаллизационной надмолекулярной структуры к коагуляционной. [c.8]

    Возможны более сложные системы, в которых растворитель (вода) образует гидратированные соли (рис. У-26). В простейшем случае получаются как бы две соединенные диаграммы для систем вода — кристаллогидрат — безводная соль. Иногда соль образует несколько кристаллогидратов различной степени гидратации и на кривой растворимости в этом случае можно наблюдать несколько механизмов процесса. В зависимости от подбора начальной концентрации можно получить в такой системе кристаллы с различным содержанием кристаллизационной воды либо безводную соль. В пределах Хе, — Хе2 кристаллизуется водная соль, а в пределах А е, — 1 — безводная. [c.392]

    Сравним экспериментальные данные, полученные при очистке трихлорида мышьяка, и соответствуюш,ую кривую, рассчитанную по уравнению (111.62). Наблюдаемое на рис. 38 удовлетворительное согласие между результатами расчета и опыта позволяет положительно ответить на вопрос о правомочности использования понятия среднего размера кристаллов в кристаллизационной колонне и соответственно выражений (111.56) — (111.59) для описания процесса очистки. Это в равной степени будет относиться и к отборному режиму работы колонны. В этом случае под входящей в приведенный коэффициент диффузии О величиной в уравнении (П1.54) следует понимать средний по высоте колонны размер кристаллов и ср, а под величиной хг — среднюю величину доли твердой фазы Хср, если имеет место также и изменение доли твердой фазы по высоте колонны (рис. 39) .  [c.142]

Рис. 38. Распределение примеси по высоте кристаллизационной колонны [кривая рассчитана по уравнению (111.62)] Рис. 38. Распределение примеси по <a href="/info/1488799">высоте кристаллизационной колонны</a> [<a href="/info/1572952">кривая рассчитана</a> по уравнению (111.62)]

Рис. 39. Зависимость разделительной способности кристаллизационной колонны от скорости отбора продукта кривые I—4 рассчитаны по уравнению (111.54) с учетом выражений (11 .56) и (111.57) О, . X, Л — экспери.менталь-ные результаты по очистке бензола от тиофена (а-0,42) Рис. 39. <a href="/info/40388">Зависимость разделительной</a> <a href="/info/277149">способности кристаллизационной</a> колонны от <a href="/info/1488783">скорости отбора продукта</a> кривые I—4 рассчитаны по уравнению (111.54) с учетом выражений (11 .56) и (111.57) О, . X, Л — <a href="/info/1373234">экспери</a>.менталь-ные результаты по <a href="/info/139229">очистке бензола</a> от тиофена (а-0,42)
    VII.66, т. е. температура образца отстает от температуры эталона. Такой ход кривых вызван эндотермическим эффектом. В рассматриваемом случае это связано с потерей гигроскопической влаги, содержащейся в минерале. При более высокой температуре — около 700 °С — наблюдаются другие, также эндотермические изломы на кривых. Они указывают на удаление более прочно связанной, кристаллизационной воды. [c.95]

    На участках аЬ (кривая ТГ) и а Ь (кривая ДТА) происходит удаление из соли гигроскопической влаги и восьми молекул кристаллизационной воды, Сопоставление кривых ТГ, ДТА и ДТГ [c.368]

    В настоящее время изданы обобщающие монографии, касающиеся физико-химической механики контактных взаимодействий металлов, дисперсий глин и глинистых минералов. Однако в области вяжущих веществ, в частном случае тампонажных растворов, такие обобщения практически отсутствуют. В этом направлении накоплен большой экспериментальный материал, который изложен в разрозненных статьях, в специальных журналах, информационных изданиях. Уже сейчас высказан ряд различных гипотез и предположений о механизме формирования дисперсных структур в твердеющих системах, которые требуют однозначной трактовки с позиций физико-химической механики с использованием данных об этих процессах, получаемых с помощью различных физических, физико-химических и других методов исследований. Поэтому, наряду с изданием монографии С. П. Ничипоренко с соавторами Физико-химическая механика дисперсных минералов , немаловажное значение имеет издание настоящей книги. Исходя из имеющихся экспериментальных данных в книге сформулированы некоторые принципы и закономерности формирования дисперсных структур на основе вяжущих веществ. Конечная задача физико-химической механики заключается в получении материалов с требуемыми свойствами и дисперсной структурой, с высокими прочностью, термостойкостью и долговечностью в реальных условиях их работь и в научном обосновании оптимизации технологических процессов получения тампонажных растворов и регулировании их эксплуатационных показателей. Для этих целей широко используется обнаруженный авторами в соответствии с кривой кинетики структурообразования цементных дисперсий способ их механической активации, который получил вполне определенную трактовку. В отношении цементирования нефтяных и газовых скважин разработаны глиноцементные композиции с применением различного рода поверхностно-активных веществ, влияющих на процессы возникновения единичных контактов и их прочность в пространственно-коагуляционной, коагуляционно-кристаллизационной и конденсационно-кристаллизационной структурах. [c.3]

    Судя по характеру кривых кинетики развития быстрой и медленной эластической деформации при наложении напряжения сдвига (рис. 45),—это структуры с преобладанием кристаллизационных (фазовых) контактов, мало эластичные, с хрупким характером разрушения. Прочность их невысока, после десяти часов гидратации модуль упругости аналогичных дисперсий СдЗ на порядок выше, хотя на начальном периоде гидратации соотношения обратны. [c.97]

    Произведя вибрацию, мы можем сблизить частицы и увеличить число коагуляционных контактов. Образовавшиеся агрегаты из коллоидных частиц к концу первой стадии уже не способны к интенсивному броуновскому движению и соединены между собой отдельными звеньями в пространственный коагуляционный каркас (максимум на кривой структурообразования). В этот момент естественно подготовлены условия для образования зародыша будущей кристаллизационной структуры. Именно в таком состоянии структуры наиболее рационально сообщить системе энергию для преодоления энергетического барьера в процессе коагуляции, что приведет к большему числу коагуляционных контактов и сблизит частицы. [c.194]

    В отличие от золы назаровских углей зола АШ из-за малого содержания основных окислов имеет меньшую кристаллизационную способность и эффект кристаллизации на кривой кажущейся вязкости отсутствует. Кристаллическая фаза (по рентгеноструктурному анализу) у закаленного уноса АШ появляется лишь после нагрева при температуре 1Ю0°С. [c.133]


    Зависимость между давлениями набухания и уплотнения можно изучать экспериментально в специальной камере, показанной на рис. 8,25. На рис. 8,26 приведена зависимость массовой доли воды, удерживаемой сухой глиной в состоянии равновесия, для образцов натриевого и кальциевого бентонита, отобранных из обнажений этих глин. Образцы для испытаний были вырезаны перпендикулярно к плоскостям напластования. Поскольку для натриевого, монтмориллонита присуще осмотическое набухание, а для кальциевого монтмориллонита нет, кривые на рис. 8,26 свидетельствуют о том, что высокое содержание воды в натриевой глине при давлениях уплотнения менее 14 МПа обусловлено осмотическим набуханием. При более вы- / соких нагрузках в обеих глинах происходит десорбция кристаллизационной воды. [c.316]

    Кривая 1, соответствующая дистилляту вторичного происхождения (КГФЗК), отражает температурную зависимость, характерную для надмолекулярных структур кристаллизационного типа [17, 31,38]. [c.19]

    Используя кривую растворимости парафина, можно с оптимальной точностью рассчитать температ> рный режим в начальный период кристаллизации и по каждомч кристаллизатору кристаллизационного блока. Для расчетного анализа раствори юсти была разработана математическая модель з составе нескольких эмпирических уравнений. [c.237]

    Анализ многообразных свойств структур в дисперсных системах позволил П. А. Ребиндеру разделить их на два основных класса, различающихся по видам взаимодействия частиц дисперсной фазы. Исходя из того, что коагуляция соответствует первичному п вторичному минимуму потенциальной кривой взаимодействия частиц, он предложил различать конденсационно-кристаллизационные и коагуляционные структуры. Конденсациоиио-кри-сталлизацпонное структурообразование, отвечающее коагуляции в первичной потенциальной яме, происходит путем непосредственного химического взаимодействия между частицами и их срастания с образованием жесткой объемной структуры. Если частицы аморфные, то структуры, образующиеся в дисперсных системах, принято называть конденсационными, если часпщы кристаллические, то структуры являются кристаллизационными. При непосредственном срастании частиц механические свойства структур соответствуют свойствам самих частиц. Конденсационно-кристаллизаци-онные структуры типичны для связнодисперсных систем, т. е. систем с твердой дисперсионной средой. Такие структуры придают телам прочность, хрупкость и не восстанавливаются после разрушения. [c.365]

    Если течение не является типичным свойством твердообразных систем, что особенно характерно для конденсационно-кристаллизационных структур, то реологические зависимости строят по отношению к деформации, а не к ее скорости. Типичная кривая зависимости деформации от напряжения для твердых тел показана на рис. VII. 15. Прямолинейный участок кривой ОА отвечает пропорциональности деформации напряжению сдвига в соответствии с законом Гука (VII. 3). До напряжения Ри отвечающего точке А, размер и форма тела восстанавливаются после снятия нагрузки. Важными параметрами такой системы являются модуль упругости (модуль Юнга) и модуль эластической деформации. Считают, что в суспензиях с коагуляционной структурой модуль упругости (модуль быстрой эластической деформации) характеризует твердую фазу дисперсий, а модуль медленной эластической деформации — пространственную сетку с прослойками дисперсионной среды (возможно скольжение частиц относительно друг друга без разрыва связей). Напряжение Р соответствует пределу текучести (правильнее — пределу упругости). С увеличением напряжения проявляется пластичность, а после его снятия — остаточные деформации. При напряжении Рг (точка ) происходит течение твердообразной системы. При дальнейшем увеличении напряжения до величины Рз (точка В), соответствующей пределу прочности, обычно наблюдается нег<оторое упрочнение тела, затем наступает разрушение системы. [c.380]

    Размеры рассмотренных участков реологической кривой могут быть самыми различными в зависимости от природы системы и условий, при которых проводят испытания механических свойств (например, температуры). В коагуляционных структурах систем с твердой дисперсной фазой предел упругости растет с увеличением концентрации частиц и межчастичного взаимодействия. В этом же наиравлении уменьшается область текучести. Для материалов, имеющих кристаллизационную структуру, например для керамики и бетонов, характерны большая (по напряжениям) гуковская область деформаций и практическое отсутствие области текучести — раньше наступает разрушение материала (хрупкость). Поэтому им не свойственны ни ползучесть, ни тиксотропия. Для полимеров с конденсационной структурой наиболее типичны релаксационные явления, включая проявление эластичности, пластичности и текучести. Доля Гуковской упругости в них возрастает с ростом содержания кристаллической фазы. Наличие области текучести у полимеров объясняют разрушением первоначальной структуры и возникновением определенного ориентирования макромолекул, надмолекулярных образований и кристаллитов. По окончании такой переориентации наблюдается некоторое упрочнение материала, а затем с ростом напряжения материал разруилается. В какой-то степени промежуточными реологическими свойствами между свойствами керамики и полимеров обладают металлы и сплавы. У них меньше области гуковской упругости (по напряжениям), чем [c.380]

    Течение процесса структурообразования по кривой / наиболее характерно для портландцементных суспензий в той концентрации, в которой они обычно применяются при цементировании скважин. Однако могут быть и другие формы кривой структурообразова1шя. Если в структуре суспензии явно преобладают контакты конденсационно-кристаллизационного типа, то в процессе иеремешиваиия по мере разрущения контактов происходит снижение эффективной вязкости (кривая 2). [c.111]

    Наибольшее влияние на скорость структурообразования на ранних стадиях оказывает содержание алюминатных и алюмоферрит-пых минералов. Портлаидцементы с высоким содержанием трехкальциевого алюмината имеют более высокую скорость структурообразования. Продукты гидратации алюминатов и алюмоферритов дают четко выраженную картину конденсационно-кристаллизационного структурообразования с характерным для него необратимым разрушением структуры при перемешивании (см. рис. У.З, кривая 2) — при достаточно продолжительном перемешивании эффективная вязкость снижается, а после окончания перемешивания прочной структуры не образуется. Поскольку в составе портландцемента содержание этих минералов в сумме составляет менее 25 %, то разрушение первоначально образовавшейся конденсаци-онно-кристаллизационной структуры кристаллов фаз АР / и к т не оказывает вредного действия на последующий процесс структурообразования. При достаточно раннем прекращении разрушения первоначальной структуры ирочность конечной структуры может даже повыситься. [c.112]

    Вероятно, в течение первых 30 мин в дисперсии СзА создается большое количество таких сростков, упрочняющих дисперсную структуру. Затем на кривых структурообразования отмечается падение прочности примерно на половину достигнутой величины. На основании косвенных экспериментальных данных (укрупнение размера частиц и привлечения представлений о растворении термодинамически неравновесных контактов и мелких частиц, наличии кристаллизационного давления, образовании некоторого количества СзАНв, вследствие экзотермии гидратации) можно удовлетворительно объяснить происхождение таких спадов прочности. Позднее структура снова упрочняется и с тем большей интенсивностью и [c.96]

    Кривые кинетики структурообразования = aS04 1/2Н,,О приведены на рис. 46. На кривых можно различить четыре стадии структурообразования [2791. [Первая стадия продолжается 3 мин, в течение ее модуль возрастает до 2 X 10 дин/см , затем в течение 2 мин наблюдается небольшой спад достигнутой величины или плато. Пространственная структура дисперсии в течение этих стадий— коагуляционная. Затем начинается интенсивное повышение значений модуля быстрой эластической деформации, продолжающееся на протяжении 30 мин,— реализуется третья стадия формирования структуры. Позже структурообразование замедляется — четвертая стадия структурообразования. Величины модулей, достигнув некоторого предельного значения, меняются незначительно. Начиная с третьей стадии, в дисперсной системе преобладают кристаллизационные контакты между частицами. [c.98]

    Вследствие частичного растворения новообразований, их перекристаллизации или разрушения слоя гидрата на поверхности зерен негидратированного вяжущего кристаллизационным давлением [283] нарушаются возникшие ранее контакты в дисперсной структуре. Преобладание в системе деструктивных явлений над процессами создания новых, энергетически выгодных контактов выявляется на кривой кинетики структурообразования в виде спадов прочности (уменьшение значений и V). Спады прочности особенно заметны в ранних периодах твердения, когда весьма развиты [c.103]

    Благодаря созданию новых реологических приборов И. Г. Гран-ковскому удалось получить полную кривую кинетики структурообразования цементных дисперсий и установить четыре качественно отличающиеся стадии в этом процессе (рис. 21). При рассмотрении наиболее характерной ки/гетики структурообразования тампонаж-ной цементной дисперсии в аспекте деформационных процессов отмечено, что кривые в координатах е = / (т), полученные при постоянном напряжении сдвига, в первой и второй стадиях характеризуются развитием высокоэластических деформаций с большим периодом ретардации (до 10—15 мин). Модули быстрой эластической деформации в этих стадиях имеют порядок 10 —10 дин см , что характерно для коагуляционных структур. К концу второй стадии начинают преобладать кристаллизационные процессы, которые наиболее интенсивно развиваются в третьей стадии, что отражается на кривой увеличением модуля упругости, достигающего к концу третьей стадии 10 дин1см . [c.105]

    Такйм образом, первичный максимум на кривой структурообразования цементных дисперсий возникает вследствие того, что описанные микроагрегаты под действием гравитационных сил, дублирующих броуновское движение для очень крупных частиц, и такового движения высокодисперсных частиц вступают в коагуляционные контакты через прослойки дисперсионной среды, фиксируясь в зависимости от условий твердения во вторичном или первичном потенциальном минимуме. В результате продолжающегося осаждения гидратов из пересыщенных растворов в благоприятных стерических условиях могут возникнуть одиночные фазовые контакты между частицами, однако развитие в этот период сплошного рыхлого кристаллизационного каркаса, пронизывающего весь объем дисперсии [76—125], представляется маловероятным. К началу второй стадии происходит резкое замедление гидратации, сопровождающееся уменьшением температуры и концентрации раствора. [c.107]

    Установлено [290], что колебания температуры или концентрации дисперсионной среды способствуют перекристаллизации мелких частиц дисперсной фазы путем их растворения. Показано, что это явление имеет место при кристаллизационном структурообразова-нии вяжущих и обусловливает изменение прочности цементного камня. Учитывая, что интенсивность перекристаллизации увеличивается с уменьшением концентрации дисперсной фазы (в данном случае новообразований), можно полагать, что она имеет место и в указанном периоде твердения. Особенно сильно растворяются кристаллы эттрингита, которые соприкасаются с дисперсионной средой [207], кроме того, вследствие кристаллизационного давления и других факторов [133, 134] происходит отторжение гидратных гелевых слоев с некоторых частей поверхности негидратированных частиц. Происходит разрушение части старых контактов, образованных сцепленными микроагрегатами, и самих микроагрегатов, создание новых, энергетически более выгодных коагуляционных и фазовых контактов. Преобладание деструктивных явлений над структурообразованием наиболее четко выражено в начале второй стадии и проявляется на кривой кинетики структурообразования более или менее глубоким минимумом. [c.107]

    Частота сетки влияет на все механические свойства полимеров. Так, обычно (во всяком случае у аморфных полимеров) с увеличением частоты сетки эластические свойства ухудшаются. Температура стеклования при этом повышается, и полимеры с предель1Ю частыми сетками (эбопнт, резины и др.) при комнатной температуре находятся в стеклообразном состоянии. Изменение прочности аморфных полимеров в зависимости от частоты сетки описывается кривой с максимумом рис. 106). Это показано на примере вулканизатов натурального каучука, ряда некристаллизующихся синтетических каучуков, наполненных резин, полиуретанов. Экстремаль ПЫЙ характер зависимости прочности ог частоты сетки связан с тем, что последней определяется характер протекания ориентационных и Кристаллизационных процессов при деформации полимера. [c.237]

    На рис. 1 представлены кривые ДТА стеклопорошков. Как видно, кристаллизационная способность стекол находится в прямой зависимости от дисперсности порошка. Об этом свидетельствуют два экзотермических пика в интервале температур 705—720 и 815—850° С, интенсивность которых возрастает по мере увеличения дисперсности. Это также подтверждается электронномикроскопическими снимками спеченных образцов, предварительно изготовленных полусухим прессованием (рис. 2, см. вклейку). Образец из порошка зернистостью 100—200 мкм представляет собой стекло с единичными замкнутыми порами, тогда как из порошков зернистостью менее 100 и менее 40 мкм получены при тех же условиях образцы в закристаллизованном виде с довольно значительной степенью кристаллизации. По технологическим соображениям [c.117]

    До недавнего времени исследования вязкости шлака в зависимости от их химического состава относились к истинно жидкому состояник> раоплава, подчиняющегося закону течения Ньютона. Однако исследования [Л. 118, 120, 122 и др.] показали, что расплавы золы, характеризующиеся наличием основных окислов, способны частично кристаллизоваться и переходить в структурированное состояние. В таком слу-ч ае течение щлака описывается не уравнением Ньютона, а уравнением Бингема — Шведова [Л. 122], которое содержит независящий от градиента скорости деформации член. Поэтому в качестве основной характеристики вытекания шлака принято состояние перехода шлака из структурированного в истинно жидкое состояние. В качестве основного расчетного параметра принимается температура истинно жидкого состояния /о, определяемая по точке расхождения кривых вязкости шлака при нагреве и охлаждении. Расхождение между кривыми нагревания и охлаждения вызвано растворением твердой фазы в расплаве при подъеме температуры и кристаллизации жидкой фазы при охлаждении. Температура нормального жид-fOQ кого шлакоудаления н,ж определяется по температуре о, если вязкость шлака не превышает 200 П. Если вязкость при и более 200 П, то за н.ж принимается температура, соответствующая вязкости 200 П [Л. 122]. Определение н.ж по температуре вязкости при 200 П вызвано тем, что кислые золы и шлаки (с высоким содержанием ЗЮа + АЬОз) имеют низкую кристаллизационную-способность и могут застывать в стекловидном состоянии. Для таких расплавов характерны относительно низкие температуры истинно жидкого состояния при высоких значениях вязкостей. [c.92]

    Замечательной чертой коагуляционных структур является тиксотропия. Последняя понимается как полностью обратимый изотермический процесс разрушения контактов под действием внешних усилий и восстановления их, когда они устранены. Таким образом, тиксотропные структуры характеризуются двумя величинами прочностью и темпом ее восстановления. Обе обусловлены ван-дер-ваальсовыми когезионными силами, на один-три порядка более слабыми, чем у необратимых конденсационно-кристаллизационных структур, скрепляемых силами химической связи. Тиксотропию объясняют также наличием на потенциальных кривых, результиру-юш их силы молекулярного притяжения и электрического отталкивания, второго неглубокого минимума па расстояниях порядка нескольких двойных слоев. У обычных гидрофобных золей значение его невелико, но у крупных асимметричных частиц энергия взаимодействия достаточна, чтобы противостоять дезориентиру-юш ему тепловому движению и обеспечить существование рыхлых тиксотропных структур [32]. [c.86]


Смотреть страницы где упоминается термин Кристаллизационные кривые: [c.106]    [c.481]    [c.497]    [c.497]    [c.98]    [c.282]    [c.109]    [c.83]    [c.144]    [c.365]    [c.74]    [c.128]    [c.369]    [c.97]    [c.358]    [c.118]    [c.551]   
Методы количественного анализа (1989) -- [ c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллизационная



© 2025 chem21.info Реклама на сайте