Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы также реакции эндотермические

    Эта реакция является эндотермической, и ее проводят в реакторе, показанном на рис. 2. Процесс происходит при температурах 400—500°С над металлическим катализатором, таким, как медь, серебро или сплав меди и серебра, содержащий обычно также кремний. Ниже в данной главе будет онисан процесс окислительного дегидрирования метанола, где показано, что обычное дегидрирование неосуществимо на практике и в настоящее время в промышленности не используется. Однако существует заманчивая идея дегидрирования метанола с образованием формальдегида, который в этом случае теоретически должен получаться почти безводным, а также водорода, который можно использовать различными способами. К сожалению, дегид- [c.150]


    При образовании кокса реакции разложения угля представляют собой лишь первую стадию. После того как вследствие выделения летучих твердая фаза приобрела пористую структуру, на внешней поверхности и на поверхности пор происходит поликонденсация и полимеризация части выделившихся углеводородов, которые также входят в состав кокса. Если процессы разложения являются эндотермическими (теплота реакции около 120 кДж/г), то процессы поликонденсации — экзотермическими. Наиболее наглядно процессы, происходящие в твердой фазе при пиролизе угля, можно проследить при нагревании цилиндрического образца угля с одного из торцов. [c.146]

    Сущность процесса пиролиза заключается в том, что нагретое до 500—600° С углеводородное сырье смешивается при движении со сверхзвуковой скоростью с парокислородной смесью в смесителе специальной конструкции. При этом кислород равномерно распределяется по всей массе углеводородных молекул, в результате чего не образуется зон с чрезмерно высокой температурой, с которыми связано глубокое расщепление углеводородных молекул до свободного углерода. За счет окислительных реакций выделяется тепло, которого достаточно для повышения температуры до реакционной, а также и на эндотермические реакции расщепления. Процесс характеризуется реакциями дегидрирования с образованием непредельных углеводородов и воды, и реакциями крекинга за счет выделившегося тепла. [c.156]

    В ряде процессов горения, прежде всего для смесей углеродсодержащих веществ при большом избытке горючего, температура продуктов адиабатической реакции может быть больше термодинамически равновесной. Это обусловлено торможением эндотермических реакций в пламени и в связи с этим дополнительным по сравнению с состоянием равновесия тепловыделением. Сверх-рав новесные температуры в пламени возможны также при горении некоторых бедных (по горючему) смесей водорода. При их поджигании образуются небольшие пламенные шарики и зона реакции обогащается недостающим горючим вследствие особенностей его диффузии. Соседние слои исходной смеси обедняются горючим и вовсе не горят. [c.15]

    О механизме гетерогенной рекомбинации в разреженном газе. На каталитической поверхности в диссоциированном воздухе возможны различные химические процессы (см. гл. 2). В частности, атомы кислорода и азота могут адсорбироваться на активных местах поверхности, которые могут быть затем освобождены за счет миграционных процессов или термической десорбции. Они могут быть также вовлечены в рекомбинационные процессы в соответствии с механизмами рекомбинации Или-Райдила или Ленгмюра-Хиншельвуда. Отметим, что в разреженном газе скачок между температурами поверхности и окружающей среды может быть значителен. Например, расчеты [133], проведенные для гиперболоида, моделирующего течение у Спейс Шаттла на высоте 92,35 км траектории второго полета, дают в точке торможения температуру в газе у поверхности около 1400-1500 К, в то время как температура поверхности только около 1000 К. В силу указанного скачка температуры сильно возбужденные и быстрые молекулы могут адсорбироваться диссоциативно, а при более сильном скачке температуры имеют место даже реакции диссоциации адсорбированных молекул. Если тепловая энергия в газовой фазе вблизи новерхности достаточно велика, то становится важным и диссоциативная адсорбция, обусловленная процессами, обратными реакциям Или-Райдила. В этом случае при ударе молекулы о поверхность возникают адсорбированный атом и атом в газовой фазе. Так как этот процесс сильно эндотермический, то он может произойти только в случае, когда температура в газовой фазе значительно выше той температуры поверхности, которая обычно наблюдается. В условиях режима с проскальзыванием, скачок температуры на поверхности может быть достаточно большим для осуществления этой реакции. Другим важным явлением, которое необходимо учитывать в этих условиях, является обсуждавшееся в предыдущем разделе явление неполной аккомодации химической энергии. [c.97]


    Условились знак плюс приписывать изменению энтальпии в эндотермических реакциях и знак минус — в экзотермических реакциях. Изменения AU и АН не зависят от пути протекания процесса, Qv и Qp также не зависят от пути протекания химического процесса, а зависят только от начального и конечного состояния веществ. Теплоты реакций зависят от физического состояния веществ и от условий проведения реакции. Для удобства сравнения теплот образования веществ и тепловых эффектов реакций было введено понятие стандартного состояния — это состояние вещества при давлении 1 атм (0,1013 МПа). Тем- [c.64]

    Следует отметить, что цепные реакции в известной степени характерны для кинетики экзотермических реакций, цепи образуются при хлорировании в газовой фазе (со взрывом), в процессах горения и т. д. Цепные реакции возможны также в эндотермических процессах, если непрерывно подается соответствующее количество тепла. Реакционные цепи, образующиеся при эндотермических реакциях, никогда не бывают очень длинными они ограничены и стационарны, так как. энергия, требуемая для распространения цепи, не получается в процессе самой реакции, а необходима подача ее извне. Промежуточное положение между эндотермическими и экзотермическими цепными реакциями занимает термо-нейтральное цепное пара-орто-превращение водорода, проходящее через атомы водорода  [c.181]

    Здесь мы имеем дело также с эндотермической реакцией, так что для получения заметных выходов требуется высокая температура. Более того, е чисто термическом процессе необходимо, повидимому, применять высокие температуры при коротком времени нагревания (точно так же, как и в случае получения ацетилена из метана путем пиролиза). [c.325]

    В нижних частях печи наряду с расплавлением шихты и перегревом расплава протекают процессы прямого восстановления, на развитие которых затрачивается значительное количество тепла. Так, для восстановления диоксида углерода коксом требуется 7090 кДж/м СО . Это приводит к трехкратному увеличению теплоемкости потока шихты. В результате этого процесса, а также других эндотермических процессов, величина отношения WJW с учетом затрат тепла на протекание химических реакций в нижней части печи увеличивается до трех и более. Отсюда можно сделать вывод, что теплообмен в доменной печи в принципе совершается по всем трем схемам, смещенным по высоте, каждая из которых характеризуется различным соотношением теплоемкостей потоков, а именно для верха печи для середины , и для [c.290]

    С. Однако при такой температуре скорость реакции окисления метана водяным паром очень мала. Реакция протекает с значительной скоростью лишь при температурах 1350 °С и выше. Из-за трудности ведения эндотермического процесса при столь высоких температурах в промышленных условиях процесс паровой конверсии метана ведут на катализаторе в присутствии избытка водяного пара по сравнению со стехиометрическим количеством. При этом протекает также реакция (3). [c.174]

    Устройство и работа коксовых печей. Коксование углей представляет собой высокотемпературный химический процесс. Химические реакции протекают сначала только в твердой фазе. По мере повышения температуры происходит образование газо- и парообразных продуктов, протекают сложные реакции внутри твердой и газовой фаз, а также происходит взаимодействие между ними. В связи с этим трудно использовать закономерности, присущие гетерогенным процессам при определении оптимальных условий процесса коксования. Основным фактором, определяющим протекание процесса коксования, является повышение температуры, которое необходимо для нагрева шихты до температуры сухой перегонки и проведения эндотермических реакций коксования. [c.460]

    Поскольку в настоящее время отсутствует стройная классификация органических реакций, трудно также классифицировать и реакции, лежащие в основе поликонденсационных процессов. И совершенно очевидно, что очень трудно подобрать какой-то единый признак, который можно было бы положить в основу классификации всех реакций поликонденсационных процессов. Так, по формально-кинетическим признакам реакции поликонденсации бывают первого, второго, третьего и дробного порядков (каталитическая полиэтерификация — второго порядка, некаталитическая полиэтерификация — третьего порядка). Они могут быть самой различной кинетической сложности обратимые и необратимые, последовательные и параллельные. По механизму элементарного акта они делятся на гомолитические и гетеролитические. В зависимости от того, протекают ли эти реакции с выделением или поглощением тепла, различают процессы экзотермические и эндотермические. Поликонденсационные процессы могут протекать в различных конденсированных средах в жидкой и твердой фазах — гомогенные и гетерогенные и т. д. [c.29]


    Из перечисленных процессов в промышленности в широком масштабе реализован только окислительный пиролиз. Этот процесс основан на подаче в зону реакции регулируемого количества кислорода для сжигания части сырья. Выделяющееся тепло расходуется на нагрев сырья до температуры реакции и на эндотермическую реакцию расщепления углеводородов. Следовательно, в реакторе наряду с реакциями распада и уплотнения исходных углеводородов идут также реакции окисления. [c.53]

    Повышение температуры реакции также ускоряет процесс поликонденсации. Что касается достижения равновесия, то это зависит от теплового эффекта реакции. Если реакция эндотермическая (протекает с поглощением тепла), то с повышением температуры молекулярная масса возрастает. Если реакция экзотермическая (протекает с выделением тепла), то с повышением температуры молекулярная масса уменьшается. Поскольку тепловые эффекты реакций поликонденсации обычно невелики, то и температура реакции мало влияет на молекулярную массу полимера. [c.32]

    Наиболее эффективным динамическим методом определения термических эффектов в реагирующих смесях твердых веществ служит метод элементарных кривых нагревания (см. В. I, 2 и ниже, 94 и ниже). Наиболее важное применение этот метод получил, например, при изучении реакций, протекающих в керамических изделиях из глины (см. В. И, 1), при плавлении стекольных шихт (см. Е. I, 1,4) или в шихте портланд-цемента (см. П. III, 5) этих процессов мы коснемся ниже. Тамман и Эльсен определяли начало и конец реакций этого типа путем построения кривых нагревания в зависимости от времени. На этих кривых виден интервал реакции в твердом состоянии при развитии положительного /(экзотермического) теплового эффекта (фиг. 759), а также реакций, протекающих с поглощением тепла в первую очередь к ним относится дегидратация гидросиликатов. Потеря углекислого газа при диссоциаций карбонатов или полиморфные превращения характеризуются отрицательными (эндотермическими) эффектами. Площадь между кривой нагревания образца и одновременно фиксируемой кривой печи , которая показывает температуру инертного эталона, прямо пропорциональна теплоте реатщии, при условии, если нагревание происходит при неизменных внешних условиях, и главное—с постоянной скоростью. [c.718]

    Вместо разбавленного кислорода иногда для окисления используют водяной пар. Это значительно более безопасная процедура, потому что водяной пар вызывает эндотермическую реакцию образования диоксида и монооксида углерода, а также водорода. С точки зрения безопасности процесса необходимо указать на чрезвычайную токсичность монооксида углерода. Пар в смеси с диоксидом углерода или чистый диоксид углерода также могут выполнять роль окислителя углистых веществ. [c.135]

    В горючих системах обычно различают горючее и окислитель. Возможны также процессы горения, в которых участвует только одно исходное вещество, способное к взрывному распаду, например озон, ацетилен, взрывчатые вещества и пороха. Такое соединение всегда бывает эндотермическим, горение происходит за счет теплового эффекта реакции его разложения или внутреннего самоокисления сложной молекулы (у взрывчатых веществ). [c.5]

    Сильная зависимость Ф от температуры приводит к локализации реакции в узкой зоне пространства вблизи плоскости, соответствующей Фтах. в той части объема, заполненного горячей смесью, по которой прошло пламя, большинство реакций полностью завершается. Неравновесное состояние продуктов сгорания возможно в связи с упоминавшимся торможением эндотермических процессов. Равновесие не достигается также при сгорании некоторых смесей, имеющем двухстадийный механизм, например смесей двуокиси азота и горючего, для которых реакция может останавливаться на стадии образования окиси азота. В большинстве случаев неполнота реакции в продуктах сгорания свидетельствует о затухании пламепи. [c.22]

    Простейшим типом реактора является пустотелый цилиндрический аппарат, в котором реакция протекает в адиабатических условиях без использования катализатора или с небольшим его количеством, поступающим в реактор вместе с исходным сырьем в виде суспензии, эмульсии или в газовой фазе. Такие реакционные аппараты используются для химических процессов, при осуществлении которых допустимо изменение (повышение или понижение) температуры в зоне реакции, обусловливаемое тепловым эффектом реакции (изотермической или эндотермической), без теплообмена с внешней средой (потерями тепла пренебрегаем). Подобные условия имеют место при малом тепловом эффекте реакции и при сравнительно небольшой глубине превращения, когда температура также мало изменяется или когда наблюдаемое изменение температуры не приводит к значительному изменению скорости основной реакции и усилению побочных нежелательных реакций. [c.631]

    Было Предложено также использовать кислород для процесса конверсии метана с водяным паром, чтобы компенсировать частично эндотермическую теплоту реакции. В другом методе проблему подвода тепла решили проведением операций по принципу регенеративной печи. Конверсию метана с водяным паром проводили в присутствии контактной массы, действовавшей как аккумулятор тепла. Периодически эту массу нагревали до высокой температуры, пропуская через печь газы, полученные от сожжения углеводорода в кислороде или воздухе. [c.50]

    При проведении экзотермических процессов, как адиабатических, так и с внутренним теплообменом, иногда применяют автотермиче-ские реакционные узлы, конструкция которых позволяет осуществлять охлаждение реагирующей смеси в промежуточных теплообменниках или в зоне реакции с помощью теплообмена с холодной исходной смесью, одновременно нагревающейся до температуры реакции. Теплообмен между входящим и выходящим из реактора потоками может быть осуществлен и в емкостных (одностадийных) адиабатических реакторах. В отдельных случаях, когда допустим значительный перегрев хотя бы одного из реагентов (например, водяного пара), подобный принцип применим и при проведении эндотермических нроцессов. Преимуществом автотермических реакционных узлов является уменьшение затрат на теплообмен, а также определенные конструктивные удобства, особенно важные при проведении реакций под давлением. Основным недостатком этих схем является возникновение явлений неустойчивости и скачкообразного перехода между различными режимами процесса. [c.268]

    Процесс гидрокрекинга сопровождается эндотермической реакцией расщепления у1леводородов, а также экзотермической реакцией гидрирования ароматических углеводородов, гетероатомных соединений и образующихся в процессе ненасыщенных радикалов. Результирующий тепловой эффект является положительным. Его величина в существенной степени определяется характером перерабатываемого сырья и глубиной процесса. [c.272]

    Для того чтобы процесс был спонтанным, т. е. чтобы соответствующая константа равновесия была велика (отвечая почти завершению реакции) или составляла около единицы (так чтобы получить удовлетворительный выход продуктов), AG должна иметь либо отрицательное, либо небольшое положительное значение. Для многих реакций при комнатной температуре TAS мало по сравнению с АН, и возможность или невозможность спонтанной реакции определяется величиной изменения теплосодержания. Именно поэтому, например, теплоты образования окислов металлов являются довольно падежной мерой их стабильности. Но большое увеличение энтропии при реакции (положительное Д5) может превышать большое увеличение теплосодержания (положительное АН — эндотермическая реакция) и приводить к отрицательному AG и, следовательно, вызывать спонтанный процесс. Более того, роль второго члена возрастает при повышении температуры. Так, при достаточно высокой температуре все химические соединения разлагаются на составляющие их элементы, несмотря на то что такие процессы обычно эндотермичны. Основная причина этого заключается в том, что такой процесс означает переход от более упорядоченного к менее упорядоченному состоянию AS положительно, и при достаточно высокой температуре TAS становится численно больше, чем АН. Дальнейшими примерами спонтанных процессов, которые являются эндотермическими, но связаны с увеличением неупорядоченности, оказываются также разложение твердого вещества на газообразные продукты, плавление твердого вещества и испарение жидкости. 3 качестве последнего примера можно указать на спонтанное эндотермическое растворение хлористого аммония в воде при растворении сильно упорядоченногс [c.186]

    Влияние изменения температуры. Процесс синтеза аммиака экзотермический, а процесс диссоциации аммиака эндотермический. Повышение температуры можно осуществить, только подводя к системе теплоту. Из изложенного следует, что нагревание сдвигает химическое равновесие в сторону процесса, который сопровождается поглощением теплоты, т. е. идущего эндотермически, и это ослабит влияние воздействия извне. Понижение температуры сдвигает химическое равновесие в сторону процесса, идущего с выделением теплоты (экзотермически), что в свою очередь также как бы противодействует охлаждению. Таким образом, повышение температуры благоприятствует эндотермическим реакциям, а понижение — экзотермическим, что можно представить схемой экзотермический процесс N2 + ЗН2 2КТНз + 92 кдж эндотермический процесс [c.83]

    Здесь В скобках указаны интервалы температур, благоприятные для протекания реакций. Эти и другие эндотермические.процессы, идущие при понышенной температуре, показали, что принцип Бертло имеет ограниченный характер и не является всеобъемлющим. Известно также, что ряд самопроизвольно протекающих экзотермических реакций, например [c.78]

    В термических, а также каталитических процессах нефтепе — реработки одновременно и совместно протекают как эндотермические реакции крекинга (распад, дегидрирование, деалкилирова— ние, деполимеризация, дегидроциклизация), так и экзотермические реакции синтеза (гидрирование, алкилирование, полимеризация, конденсация) и частично реакции изомеризации с малым тепловым эффектом. Об этом свидетельствует то обстоятельство, что в про — дуктах термолиза (и катализа) нефтяного сырья всегда содержатся углеводороды от низкомолекулярных до самых высокомолекуляр — ных от водорода и сухих газов до смолы пиролиза, крекинг — остатка и кокса или дисперсного углерода (сажи). В зависимости от температуры, давления процесса, химического состава и молекулярной массы сырья возможен термолиз с преобладанием или реакций крекинга, как, например, при газофазном пиролизе низкомолеку — лярных углеводородов, или реакций синтеза как в жидкофазном процессе коксования тяжелых нефтяных остатков. Часто термические и каталитические процессы в нефте— и газопереработке проводят с подавлением нежелательных реакций, осложняющих нормальное и длительное функционирование технологического процесса. Так, гидрогенизационные процессы проводят в среде избытка водорода с целью подавления реакций коксообразования. [c.9]

    Тенло, кроме затрачиваемого на подогрев и испарение сырья, расходуется также иа осуществление самого (собственно) процесса крекинга. Крекинг нефтяного сырья, проводимый с не-чрезмерноп глубиной, протекает с поглощением тепла, называемым теплотой эндотермической реакции крекинга. Считая на 1 кг сырьн, теплота реакции каталитического крекинга равна 40— 65 ккал. [c.11]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    Равнопесие гидролиза может быть смеш,ено также изменением температуры. Поскольку обратный гидролизу процесс — реакция нейтрализации — протекает с выделением теплоты, то реакция гидролиза представляет собой эндотермический процесс. Поэтому повышение температуры ведет к усилению гидролиза, а понижение температуры — к его ослаблению. [c.153]

    Для реакций в конденсированной фазе АУ л О и QpЛi Qv. Химические реакции чаще проводятся при постоянном давлении, чем при постоянном объеме. В связи с этим при рассмотрении различных термодинамических закономерностей и при проведении расчетов обычно используется тепловой эффект при постоянном давлении Qp, Тепловой эффект считают положительным для эндотермических процессов и отрицательным для экзотермических процессов. Условимся также записывать тепловой эффект реакции при постоянном давлении символом А Н. [c.207]

    Реакция окисления высокоэкзотермична и, поскольку последующая обработка полученного газа, например метанизация его, также экзотермичн1а, эффективного способа использования всей тепловой энергии, выделившейся при частичном окислении, нет. Единственным решением этой дилеммы могло бы быть комбинирование цикла частичного окисления с каким-нибудь другим, эндотермическим процессом газификации, например паровым риформингом. Этот способ нашел практическое применение в промышленных установках суммарную реакцию в газогенераторе частичного окисления можно записать как [c.94]

    СО + НаО СОа + На Для того, чтобы процесс окислительного пиролиза протекал в автотермическом режиме, необходимо обеспечить оптимальное соотношение количества метана, сгораюп его с выделением тепла по реакции (д) и количества его, подвергающегося эндотермической реакции пиролиза по реакции (а). Для этого устанавливают соотношение начальных объемов метана и кислорода в газовой смеси 1 0,65, что также лежит за пределами взры-ваемости метан-кислородных смесей. В этих условиях при установившемся режиме процесса на горение (реакция д) расходуется 55% метана, на образование ацетилена (реакция а) 23—25% и на образование сажи (реакция в) около 4%. Скорость подвода газа должна быть выше скорости распространения пламени, чтобы оно не распространялось в обратном направлении. [c.254]

    Стационарный процесс приближается к изотермическому, если тепло, поглощенное эндотермической реакцией (Оп), полностью компенсируется теплом, подводимым газовым потоком, а также внешним обогревом (( в), т. е. соблюдается неравенство Первые систематические исследования карбореакционной (по отношению к СОг), гидрореакцпопной (по отношению к НгО), окси-реакционной (по отношению к Ог) способности углеродов проведены в работах [7, 133]. В зависимости от цели эксперимента реакционную способность нефтяных углеродов определяли либо проточным, либо импульсным методом. Импульсным методом можно значительно быстрее (в 3—4 раза) п с более высокой точностью исследовать начальную химическую активность образцов углерода. Метод можно применять и для определения интегральной реакционной способности углеродных веществ. [c.127]


Смотреть страницы где упоминается термин Процессы также реакции эндотермические: [c.432]    [c.19]    [c.97]    [c.729]    [c.78]    [c.341]    [c.33]    [c.221]    [c.114]    [c.83]    [c.45]    [c.5]    [c.619]    [c.463]    [c.65]   
Введение в термографию Издание 2 (1969) -- [ c.12 , c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Процесс эндотермические

Реакции эндотермические



© 2025 chem21.info Реклама на сайте