Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магния, определение гравиметрическое

    Для определения фосфора предварительно отделяют мышьяк (а также примеси Sb, Sn и Hg) осаждением в кислой среде с помощью сульфида натрия, из фильтрата выделяют фосфор осаждением в виде фосфата магния-аммония, заканчивают определение комплексонометрическим титрованием магния или гравиметрическим методом, прокаливая осадок до нирофосфата магния. [c.203]


    При гравиметрическом определении суммы ш елочных металлов в минералах и рудах микрохимическим методом навеску разлагают фтористоводородной кислотой для удаления кремневой кислоты [19]. Остаток фторидов нагревают с щавелевой кислотой, которая при высокой температуре вытесняет фтор. Образовавшиеся оксалаты металлов прокаливают при 800° С. При этом большинство металлов образует оксиды, а щелочноземельные элементы, магний и щелочные металлы — карбонаты. При обработке прокаленного остатка горячей водой в раствор переходят карбонаты щелочных металлов, гидроксид магния и небольшое количество карбонатов щелочноземельных элементов. Если образец содержит большие количества алюминия, железа и хрома, последние при прокаливании могут образовать алюминаты, ферраты и хромиты. Для их разложения раствор с осадком нагревают на водяной бане и после охлаждения обрабатывают насыщенным раствором карбоната аммония. Небольшое количество катионов, главным образом магния, оставшихся в растворе, осаждают 8-оксихинолином. Осадок отфильтровывают, раствор упаривают досуха и остаток прокаливают. Полученные карбонаты щелочных металлов переводят в сульфаты, которые взвешивают. Умножая на фактор пересчета, находят сумму оксидов лития, натрия, калия, рубидия и цезия. [c.57]

    Магнезиальная смесь — бесцветный прозрачный раствор магния хлорида, аммония хлорида и аммиака применяют при гравиметрическом определении фосфора и мышьяка. [c.52]

    Для гравиметрических определений калия, цезия, рубидия и др. готовят 3 %-ный раствор дипикриламината магния. Смешивают 12 г дипикриламина с 5 г оксида магния, добавляют 400 мл воды и хорошо перемешивают. Через 16—20 ч раствор фильтруют. [c.141]

    Сульфатный метод определения кальция в гравиметрическом варианте применялся при анализе магнезитов и окиси магния [108]. Для анализа магнезитов предложена следующая методика [108]. [c.34]

    За последние два десятилетия в аналитической химии магния достигнуты большие успехи. Наиболее суш ественным достижением явилось использование для определения магния нового метода титриметрического анализа — комплексонометрии. Благодаря комплексонометрии многие анализы, длившиеся раньше много часов, оказалось возможным выполнить за 10—20 мин. В аналитической химии магния произошел резкий качественный скачок. Многие классические методы, прежде всего гравиметрические и титриметрические, разработанные в свое время с большой тш а-тельностью и казавшиеся безупречными, потеряли свое значение и применяются в настояш ее время только в редких случаях. [c.5]


    Для определения магния гравиметрическим оксихинолиновым методом можно рекомендовать следующую методику [617, 965]. [c.64]

    Гравиметрические методы определения магния i [c.68]

    Гравиметрические методы определения магния. Для определения магния в железных рудах, концентратах и агломератах по ГОСТ предусмотрен гравиметрический фосфатный метод. Однако из-за длительности и трудоемкости определения этот метод можно рекомендовать лишь для арбитражных анализов, а для массовых анализов лучше применять комплексонометрический метод. [c.196]

    Гравиметрические методы. Для определения магния в чугунах предложен гравиметрический фосфатный метод [259, 477]. Этот метод, неудобный из-за большой продолжительности и трудоемкости для повседневной работы, может быть использован для контрольных и арбитражных анализов. [c.208]

    Гравиметрические методы. Предложенный для определения магния в алюминиевых сплавах гравиметрический фосфатный метод [57] очень длителен и может быть использован только для арбитражных анализов. [c.210]

    Известно большое число методов определения воды. Так, воду определяют гравиметрически косвенным или прямым методом. В косвенном методе о содержании воды судят по потере массы анализируемой пробы при ее высушивании или прокаливании. Этот метод часто не дает правильных результатов, что связано с трудностью определения температуры, необходимой для полного выделения воды, и потерей с водой лету чих компонентов образца. Прямой гравиметрический метод основан на поглощении выделившейся из образца воды подходящим поглотителем, чаще всего безводным перхлоратом магния. О содержании воды судят по увеличению массы предварительно взвешенного поглотителя. [c.44]

    Оксалат кальция осаждают, как и при гравиметрических определениях, промывают, растворяют в соляной или серной кислоте и титруют. При большом содержании магния в образце необходимо переосаждение. [c.411]

    Гравиметрические методы применяют редко. Недостатки их общеизвестны, однако основное их достоинство — исключается построение калибровочных графиков. Гравиметрические методы применяют в качестве арбитражных при определении магния, натрия, кремнекислоты, сульфат-ионов, суммарного содержания нефтепродуктов, жиров. [c.17]

    Са, Mg, Ка и К в различных сочетаниях определяли [195] после извлечения их из 10 г сухого почвенного образца в 200 мл 1 н. хлорида аммония. Образцы почвенной вытяжки разделяли на порции по 50 мл, помещали на 1 ч в водяной термостат с температурой 70° С, периодически перемешивая, а затем оставляли на ночь при комнатной температуре. Смесь отфильтровывали, а остаток промывали небольшими порциями 1 н. хлорида аммония до тех пор, пока общий объем фильтрата не становился равным 200 мл. Для определения кальция и магния аликвотную долю разбавляли I н. хлоридом аммония, в который было добавлено такое количество хлорида стронция, чтобы концентрация стронция в окончательном растворе составляла 1500 мкг/мл. Эталонные растворы содержали такое же количество стронция и хлорида аммония. При определении натрия и калия стронций в раствор не добавляли. Опыт показал, что этот метод позволяет устранить любые возможные помехи, которые могут встречаться при анализе почв. Наблюдалось хорошее соответствие результатов атомно-абсорбционного анализа образцов почв с данными гравиметрического, пламенного и объемного анализов, [c.166]

    Пример 2. При определении фосфора в сплаве гравиметрическим методом из навесок 2,0000 г были получены следующие количества пирофосфата магния (г) 0,0845 0,0866 0,0848 0,0862 0,0852 и 0,0864. Вычислите среднее арифметическое массы и обработайте полученные данные по правилам математической статистики. Рассчитайте процентное содержание фосфора в образце и доверительный интервал определения при вероятности а = 0,95. [c.10]

    Для определения фосфора гравиметрическим методом из навески 2,2200 г получили 0,1120 г пирофосфата магния. Вычислите процентное содержание фосфора в сплаве. [c.93]

    Другим примером катионного обмена является отделение сульфатов или фосфатов от различных катионов [30]. Самуэльсон предложил метод определения серы в пиритах, основанный на поглощении железа (П1) катионитом. Серную кислоту, проходящую через колонку, можно легко определить обычным гравиметрическим методом в виде сульфата бария. Аналогично, фосфат в фосфатных породах можно определять путем поглощения кальция, магния, железа и алюминия катионитом с последующим определением фосфата в виде пирофосфата магния. Ионы металлов можно элюировать из колонки раствором 4 М соляной кислоты. [c.539]


    Из сказанного следует, что даже если титрование раствором КВгОл ведется с точностью до 0,1 мл, это соответствует определению магния с точностью до 0,03 мг, что значительно превосходит точность гравиметрического определения. Кроме того, оксихинолиновый метод определения отнимает меньше времени, чем гравиметрический. Как уже указывалось выше, одним из очень важных преимуш,еств применения 8-оксихинолина для осаждения каких-либо катионов является почти полное отсутствие соосаждения посторонних примесей. В большинстве случаев здесь легко получить чистый осадок. [c.415]

    Однако гравиметрическую форму можно получить такисс другими способами. Так, например, при определении зольности твердого топлива навеску этого топлива сжигают и взвешиванием измеряют массу оставшейся золы. Для оцределения адсорбированной или кристаллизационной воды анализируемое вещество нагревают до температуры, при которой эта вода улетучивается. Гpaви Leтpи-ческой формой служит нелетучий остаток, массу воды находят по уменьшению массы вещества при нагревании. Можно также поглощать пары воды подходящим адсорбентом, например безводным перхлоратом магния. Гравиметрической формой тогда служит ал-сорбент с поглощенной водой, о массе воды судят по увеличению массы адсорбента. [c.140]

    Определение r(VI). Для гравиметрического определения Gr(VI) используют хроматы бария (ПР = 1,6-10 при 18° С), свинца (ПР = 1,8-10 при 20° С), серебра (ПР = 2-10" при 25° С), ртути(1) (ПР=2-10" при 25° С). Определению хрома в виде хромата ртути(1) мешают многие ионы [132]. Осаждение Ag2 r04 возможно в присутствии двукратных количеств магния и равных количеств Мп(П), Fe(IH), Си(П), Ti(IV), Zr, Ni, Со и больших количеств SO4 . Ионы AsO , W0 , VO3, С1 мешают определению [1100]. [c.31]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    Второй гравиметрический метод определения магния основан на образовании осадка оксихинолята магния [c.237]

    Проблема определения больших количеств кальция была успешно решена введением в аналитическую практику комплексоно-метрии. Не преувеличивая, можно сказать, что комплексономет-рия произвела революционный переворот в аналитической химии кальция. Точность этого метода превосходит точность всех титри-метрических методов определения кальция, а в ряде случаев — и гравиметрических. Кроме того, исключительно важное значение имеет возможность селективного определения кальция на фоне больших количеств магния. [c.5]

    Было проведено сравнительное изучение различных реагентов-осадителей (вольфрамат оксалат в присутствии глицерина, муравьиной, уксусной кислот, пиридина, анилина, мочевины, антипирина, уротропина сульфат молибдат) для гравиметрического определения кальция на смесях, содержащих 20-кратный избыток магния [1338]. Исследовалась возможность предварительного выделения магния оксихинолином, а также осаждение гекса-нитроникелата калия и кальция, осаждение кальция в виде тартрата, иодата и пикролоната. Лучшим оказался вольфраматный метод. [c.35]

    О гравиметрическом фосфатном лштоде определения магния в хромомагнезитовых огнеупорах см. в [2С0]. [c.203]

    Для определепия магния в металлическом титане и его сплавах предложены так ке фотометрические методы с солохром-цианином R [610], пикраминазо [104] и магнезоном [58]. Гравиметрический фосфатный [598] и комплексонометрический [955, 1101] методы определения магния малочувствительны и к образцам с малым содержанием магния неприменимы. [c.215]

    В классическом гравиметрическом методе определения кальция осаждением его в виде оксалата в присутствии магния обычно рекомендуют прибавлять такое количество оксалата, которого будет достаточно для его соединения с кальцием и магнием, чтобы избежать недо-осаждения оксалата кальция. При этом всегда имеется некоторый риск загрязнения осадка оксалата кальция в результате соосаждения, а также последующего осаждения малорастворимого дигидрата оксалата магния. Механизм осаждения оксалата магния из пересыщенных растворов изучили Пейсач и Бриская [13]. Они показали, что скорость осаждения оксалата магния из пересыщенного раствора после образования центров кристаллизации является скоростью первого порядка и зависит от концентрации оксалата магния, но скорость образования центров кристаллизации очень низкая и является скоростью третьего порядка. [c.76]

    Для микроанализа силикатных и карбонатных минералов Рили и Виллиаме [297 ] нагревали пробы массой 10 мг при 1100— 1200 °С в токе чистого азота. Освобождающаяся вода поглощалась в тарированной поглотительной трубке перхлоратом магния и пентоксидом фосфора на пемзе. Авторы сообщают, что при анализе проб, содержащих 4,1% воды, стандартное отклонение составило =t0,05%. Присутствие серы (в виде сульфидов) не мешало определению. Тот же общий метод Рили [297] применял и при макро-аналитическом определении воды и карбонатов в горных породах. Для этого 0,5—1,5 г образца измельчали, фракцию 80 меш нагревали при 1100—1200 °С в течение 30—40 мин в токе сухого азота, пропускаемого со скоростью 3 л/ч. Выделяющуюся влагу поглощали перхлоратом магния и определяли гравиметрически. При высоком содержании фтора или серы пробу покрывали слоем свежепрокаленного оксида магния. В холостых пробах масса поглотителей увеличивалась всего на 0,1—0,2 мг за 1 ч. Полученные результаты для некоторых минералов приведены в табл. 3-21. Как видно из таблицы, эти данные хорошо согласуются с результатами метода Пенфилда (сплавление с оксидом свинца). Для полного удаления воды из таких минералов, как ставролит, тальк, топаз и эпидот, требуется нагревание до температуры 1200 °С [296, 371]. При этих условиях результаты хорошо согласуются с результатами модифицированного метода [c.172]

    Сущность распространенного метода гравиметрического определения фосфат-иона состоит в том, что на раствор фосфата действуют хлоридом магния Mg l2 в присутствии аммиака и NH4 I хлорид аммония добавляют, чтобы не выпал осадок гидроксида магния Mg(OH)2  [c.220]

    В гравиметрическом анализе наиболее часто применяют диметилглиоксим для определения никеля, а-нит,р0 ЗО- р-нафтол для определения кобальта, 8-оксихинолин (оксип) для определения алюминия и магния, купферон для определения титана, железа и ряда других элементов цинк осаждают антранилатом натрия молибден осаждают а-бензоиноксимом рений — нитроном галлий и цирконий — купфероном. [c.86]

    Полнота осаждения компонента обычно определяется его растворимостью как во время осаждения, так и во время последующего фильтрования и пр01мыва ния осадка. При гравиметрических определениях возможно в результате пересыщения раствора неполное осаждение определяемого вещества. Для умеренно растворимых веществ, таких как двойной фосфат магния и аммония, ощутимая неполнота осаждения будет наблюдаться, если осадок фильтровать сразу же после его образования. Обычно пересыщение уменьшается в присутствии некоторых осадков, при перемешивании раствора, в результате существования тонких царапин на внутренних стенках сосуда, в котором проводят осаждение. [c.214]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    При тетриметрическом определении сульфатов по ГОСТ 26426 — 85 осадок сульфата бария отфильтровывают, промывают, растворяют в щелочном растворе трилона Б и титруют избыток последнего хлоридом магния. Метод применяется при содержании сульфат-ионов от 5 до 25 мг/л. Гравиметрическое определение основано на взвешивании отмытого и прокаленного при температуре не выше 800 °С осадка сульфата бария. Оба метода трудоемки, длительны. Определений мешают взвешенные вещества, кремниевая кислота, ионы железа (Ш) и бихроматы. В комплексонометрическом методе к перечисленным, мешающим определению веществам добавляются еще все катионы, реагирующие с трилоном Б. Поэтому Необходим комплекс мероприятий (фильтрование, прибавление активированного угля, пропускание раствора через колонку с катионитом и др.) для устранения влияния примесей. [c.150]

    Почти все методы, применяемые для определения калия, могут быть использованы и в данном случае. Для определения цезия, в отличие от рубидия, известно лишь несколько специфических методов. Один из них — гравиметрический или колориметрический метод с применением комплекса иодида висмута и калия (К2В1219). Сухой хлорид обрабатывают небольшим количеством уксусной кислоты или воды и добавляют реагент, содержащий 5 г В10з и 17 г иодида калия в 50 мл уксусной кислоты. Отфильтрованный осадок взвешивают в виде иодидного комплекса цезия и висмута (08361219). Свинец, натрий, калий, магний, литий, кальций, железо, алюминий, аммоний, сульфит- или сульфат-ионы на реакцию не влияют [54]. Более точное определение осадка может быть выполнено колориметрически при использовании дитизона [33]. [c.148]

    Дитиофосфаты пригодны для открытия, отделения, гравиметрического и титриметрнческого определений кадмия, в присутствии больших количеств цинка, алюминия, магния, щелочных и щелочноземельных металлов. Разработан простой метод количественного отделения кадмия от цинка, гравиметрический и тптриметрический методы определения кадмия [18]. Удовлетворхгтельные ро "льтаты были получены прт определе-нип кадмия в современных магниевых сплавах [28]. [c.176]

    Для определения отдельных компонентов в смеси большой интерес представляют термогравиметрические методы, поскольку они обеспечивают быстрый контроль с автоматическим взвешиванием. Точность метода до 1 300. Метод позволяет анализировать смеси веществ. Так, пользуясь термогравиметрическим методом, можно с успехом проанализировать смесь оксалатов кальция и магния путем прокаливания при 500° С СаСОз + MgO и СаО+ + MgO при 900 °С с последующим взвешиванием [33]. Точно так же смесь нитратов серебра и меди (И) анализируют путем прокаливания AgNOa + uO при температуре 280—400 °С и Ag -f uO при температуре выше 529 °С и взвешивания. Хоган, Гордон и Кемпбелл [34] определяли перхлорат калия в присутствии нитрата бария, используя катализирующее действие последнего на термическое разложение перхлората калия. Важно, что данные, представленные Дювалем [32], позволяют сделать правильный выбор температуры сушки или прокаливания осадков. Обычно условия могут варьироваться. Так, хлорид серебра легко высушивается в интервале температур от 70 до 600 °С [32]. Для точного проведения гравиметрического определения обычно рекомендуется нагревание до 130—150°С. При этом остается только около 0,01% адсорбированной воды оставшиеся следы воды удаляются только при плавлении вещества, которое наступает при 455 °С. [c.204]


Смотреть страницы где упоминается термин Магния, определение гравиметрическое: [c.154]    [c.168]    [c.237]    [c.32]    [c.6]    [c.61]    [c.63]    [c.67]    [c.67]    [c.30]    [c.36]    [c.267]   
Аналитическая химия Часть 1 (1989) -- [ c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Магний гравиметрическое определение с оксином, методика

Магний определение

Определение гравиметрически



© 2025 chem21.info Реклама на сайте