Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натрия соединения, эквивалентная

    Пример. При соединении 1,50 г натрия с избытком хлора образовалось 3.81 1- хлорида натрия. Найти эквивалентную массу натрия (3Na) и его эквивалент. если известно, что эквивалентная масса хлора рав[1а 35.45 г/моль. [c.32]

    А - количество карбонильного соединения, эквивалентное I мл точно 0,1 к раствора едкого натра, мг  [c.497]

    Цинковая обманка и хлористый натрий — соединения с эквивалентными гранецентрированными кубическими решетками с взаимным проникновением, от- [c.96]


    В смеси, содержащей соединения трех- и пятивалентного мышьяка, можно определить каждый из них йодометрическим методом. В сильнокислой среде в присутствии йодистого калия пятивалентный мышьяк выделяет эквивалентное количество йода, который титруют рабочим раствором серноватистокислого натрия. В другой пробе раствора в нейтральной среде титруют трехвалентный мышьяк рабочим раствором йода. [c.402]

    Этот метод также пригоден для определения органических соединений, содержащих функциональные группы (альдегиды, кетоны, амины и др.). Точку эквивалентности фиксируют по появлению в титруемом растворе красновато-коричневой окраски, вызванной избытком иода. Выделившийся иод можно также оттитровать тиосульфатом натрия. [c.182]

    В настоящее время амальгаму разлагают водой и получают щелочь и ртуть. Можно осуществить возгонку ртути и получать металлический натрий. Имеются также предложения использовать амальгаму как восстановитель при синтезе органических соединений. Возможность получения хлора без эквивалентного количества щелочи является важной особенностью способа с ртутным катодом, так как рост потребления хлора превышает рост потребления щелочи. Поэтому может наступить такой момент, когда необходимо будет получать хлор без щелочи. [c.374]

    Ионные соединения обычно представляют собой твердые тела с высокими температурами плавления. В этих телах ионы занимают строго определенные положения, называемые узлами кристаллической решетки. Как показано на рис. 2-2, в ионных кристаллах ни один из катионов не принадлежит ни одному из анионов. Например, в кристалле хлорида натрия у каждого иона — шесть эквивалентных соседей (но нет молекул ). Более того, [c.28]

    Преимуществом тетрабората натрия перед другими первичными стандартами является его высокая эквивалентная масса, легкость получения в чистом виде, возможность проведения титрования в одну стадию. Основной недостаток применения заключается в необходимости соблюдения ряда предосторожностей для обеспечения точного состава этого соединения, зависящего от степени гидратации. [c.17]

    Количество вытесненного Ме(И) эквивалентно количеству Мп(П) и может быть определено титрованием комплексоном III [301]. В виде соединений металлов с комплексоном III для определения марганца используют комплексонаты кальция [1524], магния [975] и двойной соли церия и натрия. [c.47]


    Бор, как и кремний, существует в природе исключительно в виде кислородсодержащих соединений, в частности гидроксо-боратов кальция и натрия. В боратах, где единственной структурной единицей является группа ВО3, должна наблюдаться простая связь между отношением О В и числом атомов О, обобществляемых каждой группой ВОз (при условии что все такие атомы О эквивалентны и каждый связан с двумя атома-ми В)  [c.188]

    Из уравнения видно, что для уменьшения концентрации перекиси водорода, которую следует вводить в колориметрируемый раствор, необходимо понизить концентрацию ионов водорода. Это достигалось установлением в растворе pH 12,0 (IN по углекислому натрию и 0,5jV по едкому калию). Количество перекиси водорода, которое необходимо вводить для колориметрирования, состоит из эквивалентного определяемому количеству урана и избыточного, необходимого для смещения, равновесия на 99% в сторону образования окрашенного соединения. [c.116]

    Количество молей гидроксида натрия, необходимое для полного гидролиза смеси двух сложных эфиров (уравнения 1,2), равно сумме молярных долей этих эфиров в смеси и составляет= 8 г (0,2 моля). Предположим, что количество этилового эфира уксусной кислоты в смеои X молей, тогда количество этилового эфира пропионовой кислоты равно (0,2—х) молей. Поскольку число молей СОг, образующегося при сожжении органического соединения, эквивалентно числу атомов углерода п в молекуле этого соединения (уравнения 3,4), то х находим из следующего уравнения 4х+5(0,2—д ) =20,16 22,4, откуда х=0,1 моля. Таким образом, в смеси содержится этилового эфира уксусной кислоты 0,1 моля (8,8 г), этилового эфира пропионовой кислоты — 0,1 моля (10,2 г). Содержание этилового эфира уксусной кисло- [c.215]

    Признаком молекулярной решетки может служить между прочими свойствами и значение эквивалентной электрической проводимости расплавленной соли. У молекулярных соединений оно сравнительно очень мало. Так, для хлоридов бериллия (молекулярный тип решетки) и хлорида магния (ионный тип) имеем, соответственно, 0,086 и 28,8 Ом см2, для хлорида алюминия (молекулярный тип) и хлорида скандия (ионный тип) — 15-10 и 15 Ом см2. Типичные ионные соединения (например, хлорид натрия) имеют эквивалентную проводимость порядка 100 (для Na l). [c.282]

    Теплоты насыщения кислот основаниями в тех случаях, когда образовавшиеся соединения остаются в растворе, настолько близки для многих случаев, что термохимически невозможно определить распределение оснований и кислот между собой так, для группы трех галоидных кислот и азотной, с одной Сфороньг, и главных щелочных оснований КОН и NaOH, с другой, разница не превышает в среднем 0,5% всего количества теплоты, то есть совпадает с ошибками наблюдений. Следовательно, имея, например, омесь растворов едкого кали и едкого натра в эквивалентных количествах и насыщая его наполоннну какой-нибудь кислотой, нельзя судить по термическому действию, какое из оснований насыщено, то есть, какая соль образовалась и что находится в растворе, соль ли К, или соль Na, или обе вместе. Точно так же, насыщая наполовину едким натром смесь, например, соляной и бромистоводородной кислоты, нельзя также определить, какая из кислот насыщена в этом же случае это особенно важно, так как [c.217]

    Метод кондуктометрического титрования основан на том, что ионы, содержащиеся в прибавляемом растворе, соединяются с теми или другими ионами из находящихся в титруемом растворе, образуя молекулы слабо диссоциирующего соединения (например, H+-I-OH HjO) или малорастворимое вещество (например, Ag + l —> Ag l). В получаемом же растворе взамен удаленных ионов будут содержаться другие ионы в эквивалентном количестве. При различии в подвижности ионов такая замена приводит к изменению электропроводности раствора. Так, при титровании раствора гидроокиси натрия раствором соляной кислоты взамен ионов ОН" в раствор будут поступать ионы h, обладающие меньшей подвижностью, что вызовет уменьшение электропроводности. Например, эквивалентная электропроводность сильно разбавленного раствора гидроокиси натрия, равная сумме подвижностей ионов Na и ОН", составляет при 18° С  [c.412]

    При этом образуется йодноватистокислый натрий в количестве, эквивалентном йоду. Йодноватистокислый натрий является достаточно сильным окислителем, и его образование не мешает самой реакции йода с определяемым восстановителем . Однако крахмал не дает окрашивания с йодноиатистокислым натрием, поэтому образование этого соединения лишает возможности вести титрование. [c.403]

    Конечную точку осадительного титрования можно определить с помощью адсорбционных индикаторов, предложенных Фаянсом. Их действие основано на том, что малорастворимое соединение АХ, выпадающее из водного раствора, в первую очередь адсорбирует ионы, одноименные с осадком и находящиеся в избытке. Например, при титровании раствора иодида натрия раствором нитрата серебра до точки эквивалентности в растворе находятся в избытке иодид-ионы, которые и адсорбируются в первую ачередь поверхностью осадка осадок при этом приобретает от- [c.220]


    Растворимые в кетонах соли щелочных и щелочноземельных металлов можно титровать раствором хлорида лития в кетонах, при этом в осадок выпадают нерастворимые в кетонах хлориды щелочных или соответственно щелочноземельных металлов. Особенно хорошие результаты дает использование осциллометрии для индикации точки эквивалентности. Однако ход осциллограммы нельзя объяснить на основе различия в подвижностях ионов, как в случае водных растворов. Из-за низкого значения диэлектрической проницаемости растворителя растворы солей диссоциированы неполностью, и поэтому ход осциллограммы в значительной степени определяется различием степени диссоциации соединений. При титровании солей натрия электропроводность раствора до точки эквивалентности может уменьшаться или возрастать в зависимости от того, является ли образующееся соединение более электропроводным. Рис. Д. 147. Кривые осциллометриче- чем соответствующая соль лития, ского титрования 0,206 мг-экв КЗЬРв или менее электропроводным. При раствором ЬЮ1 в различных раство- титровании одной и той же соли в рителях различных растворителях это влия- [c.350]

    В уксусном ангидриде бензоат натрия подвергается сольволизу практически полностью. Бензойная кислота, как и другие органические кислоты, не проявляет кислотных свойств в этом растворителе. Образуется эквивалентное бензоату количество ацетата натрия, который является одним из наиболее сильных оснований (Ксв= = 10-2). Сила слабого основания кофеина значительно увеличивается в уксусном ангидриде (/Ссв= 10 ), поэтому становится возможным его титрование. Отношение констант диссоциации ацетата натрия и кофеина (Ксв,/Ксв,), характеризующее различие в силе этих двух соединений, равно 10 . В связи с достаточно большой величиной Ксв,1Ксп, в уксусном ангидриде становится возможным дифференцированное титрование смеси бензоата натрия и кофеина. В первую очередь титруется хлорной кислотой бензоат натрия, во вторую очередь — кофеин. На кривой титрования обнаруживаются два скачка потенциала. [c.115]

    В титриметрических окислительно-восстановительных методах используют индикаторы двух типов. Индикаторы первого типа образуют окрашенные соединения с определяемым веществом или титрантом. Точку эквивалентности с помощью индикаторов этого типа определяют по исчезновению окраски раствора, если окрашенное соединение было образовано определяемым веществом с индикатором, или по появлению окраски, если окрашенное соединение возникает при взаимодействии индикатора с титрантом. Например, при различных иодометрических определениях, когда в качестве титранта используют раствор иода, точку эквивалентности определяют по появлению синей окраски иодкрах-мала. Если иод титруют тиосульфатом натрия, то точку эквивалентности фиксируют по исчезновению синей окраски. К этому же типу индикаторов можно отнести и интенсивно окрашенные титранты, например КМПО4. В этом случае конец титрования определяют по неисчезающему красному окрашиванию раствора, вызванному добавлением избыточной капли перманганата. [c.272]

    Когда продуктом окислительно-восстановительного процесса является не осадок, а растворимое соединение, и объем, в котором оно заключено, ограничен, также может наблюдаться изменение высоты зоны от концентрации хроматографируемого иона. Примером может служить хроматограмма ионов на биохромате калия. После диффузии раствора сульфида натрия сразу образуется в верхней части хроматограммы белая узкая полоска 5 , которая постепенно перемещается вниз по колонке, увеличиваясь в размерах. В то же время выше этой зоны образуется серая зона восстановленных ионов Сг (III). Величина этой зоны изменяется в соответствии с изменением концентрации сульфид-ионов. Поскольку зона ионов Сг (III) ограничена снизу зоной 8 , можно говорить о зависимости ее величины от концентрации ионов Сг (III), которая эквивалентна концентрации хроматографируемых сульфид-ионов. [c.224]

    Основу этого метода заложил Полинг. Сущность его можно понять, рассмотрев мысленно переход газообразной молекулы N301 в кристаллическое состояние. Поскольку натрий и хлор — одновалентные элементы, то можно считать, что и в газообразном, и в кристаллическом состоянии между Ыа и С1 будет существовать только одна нормальная связь. Но в кристалле ЫаС1 КЧ = 6 к каждый атом N3 (или С1) соединен с 6 партнерами. Полинг предположил, что ири переходе от молекулы к кристаллу наряду с одной нормальной связью Na—С1 возникает чисто электростатическое взаимодействие иона Ыа+ с 5С1 . Но так как все атомы натрия и хлора в координационном многограннике ЫаС1 эквивалентны, то нормальная химическая связь должна осциллировать (Полинг говорил резонировать) между всеми 6 положениями, т. е. облако валентных электронов должно быть равномерно размазано между 6 атомами Ыа или С1. [c.109]

    Что называется химическим эквивалентом ф2. Сформулируйте закон эквивалентов. фЗ. Как вычисляют эквиваленты элементов оксидов кислот оснований солей Привести примеры. ф4. Определите валентность и эквивалент отдельных элементов, входящих в соединения ЫаСгОг, Na2 r04, Na- raO . ф5. Определите число молей и эквивалентную массу элемента в 35 г натрия, 35 г кальция, 35 г алюминия. ф6. Как определить атомную массу трехвалентного элемента, зная, что эквивалент его равен 9 7. Определите эквивалент металла, если 0,1953 г его вытесняют 56 мл водорода при н. у. На сжигание 1 г металла требуется 462 мл кислорода при н. у. Найдите эквивалент металла. [c.51]

    Из образовавшегося при омылении этилмалоновокислого калия выделяют свободную этилмалоновую кислоту, прибавляя соляную кислоту (концентрированную кислоту разбавляют равным объемом воды) в количестве, эквивалентном взятому количеству едкого кали. Кислый раствор три раза экстрагируют эфиром первый раз 20 мл ц. затем два раза по Ъ мл эфира. Соединенные эфирные вытяжки сушат безводным сернокислым натрием. Высушенный раствор фильтруют и отгоняют эфир на водяной бане остаток перекристаллизовывают из бензола. [c.188]

    Путем добавления воды фильтрат доводят точно до объема 2 л 50 мл этого раствора титруют раствором едкого натра определенной концентрации (35—40%). При титровании отмечают количество щелочи, вызывающей образование небольшого неисчезаюи1его осадка, т, е. отвечающее свободной кислоте (обычно требуется б—8 мл 40%-ной щелочи) затем прибавление щелочи продолжают до тех пор, пока жидкость не станет нейтральной на лакмусов то бумагу количество вновь прибавленной щелочи эквивалентно кислоте связанной с ОЛОВОЛ1. К фильтрату, помещенному в 5-литровую колбу, прибавляют 1 кг колотого льда, а затем такое количество щелочн, которое оказывается достаточным для нейтрализации всей свободной кислоты и 60% кислоты, связанной с оловом (обычно — около 800 мл 40%-ного едкого натра). Полученную смесь разбавляют (без фильтрования) до объема в 6 л и кипятят в 12-литровой колбе с обратным холодильником 20 час. в атмосфере светильного газа (примечание 4). Затем осадок отсасывают и очень тщательно промывают кипящей водой (2—3 л), а соединенные фильтраты упаривают до объема 3 л. Раствор слегка подкисляют соляной кислотой на лакмус, охлаждают до 0° и отсасывают выпавший флороглюцин. Полученные таким образом 70—80 г сырого продукта растворяют [c.446]

    Сольватация катионов служит основной причиной растворимости электролитов в полярных апротонных растворителях. Заугг [14] показал, что катионы сильно сольватированы в таких высокополярных растворителях со значительной электронной плотностью, локализованной на атоме кислорода, как ДМСО, ДМФА, ЗОг, ДМАА, 2-пиридоны, 2-пирролидоны, Ы-окиси пиридинов, окиси фосфорных соединений, тетраметилмочевина и другие замещенные амиды. Сирс и сотр. [47] показали, что ионы натрия и калия сольватируются в ДМФА и ДМСО в сольводинамические комплексы, эквивалентные по размерам иону тетрапропиламмония следовательно, наблюдается сильное взаимодействие ионов натрия и калия с растворителем. [c.11]

    Титрование Мп(П) раствором перманганата калия до Мп(П1) наиболее удобно проводить при потенциале платинового электрода -f-0,4 в (отн. МИЭ) [154, 594, 595, 661, 1022]. При этом полностью исключается как анодный ток окисления Mn(II), так и катодный ток, образующ ийся при титровании Мл(П1). Кривые титрования получаются отчетливыми. Ионы Fe(III), Al(III), Ti(IV), a(II), Mg(II), Ni(II), o(II) в присутствии пирофосфата не мешают титрованию, так как образуют с пирофосфатом натрия комплексные соединения, не окисляюш иеся КМПО4 при указанном значении потенциала. Сг(П1) дает комплексное соединение с пирофосфатом натрия, состав и прочность которого изменяются во времени и поэтому в его присутствии необходимо выдержать раствор 15— 20 мин. перед титрованием. Восстановители должны отсутствовать. Обычно титрование проводят с одним или двумя платиновыми индикаторными электродами. Использование амперометрической установки с двумя индикаторными электродами обеспечивает резкое возрастание величины тока вблизи точки эквивалентности, что позволяет заканчивать определение без построения графиков. Амперометрическое титрование Ми(II) по катодной волне перманганата с применением медного и графитового электродов дает удовлетворительные результаты. Недостаток графитового электрода — довольно медленное установление величины тока. Медные и молибденовые электроды не пригодны для проведения анодных процессов на фоне раствора пирофосфата натрия. Ниобий-танта-ловый электрод не может служить индикаторным электродом при амперометрическом титровании перманганатом [153]. Были применены серебряные и другие электроды [1006, 1489]. Титрованием Мп(П) перманганатом калия до Мп(1П) определяют марганец в стали, чугуне [661, 1084, 1489] и цинковых электролитах [154]. [c.50]


Смотреть страницы где упоминается термин Натрия соединения, эквивалентная: [c.54]    [c.256]    [c.258]    [c.37]    [c.98]    [c.178]    [c.117]    [c.139]    [c.335]    [c.181]    [c.395]    [c.143]    [c.206]    [c.368]    [c.194]    [c.53]    [c.176]    [c.919]   
Химия гидразина (1954) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Натрий соединения



© 2025 chem21.info Реклама на сайте