Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гибкость макромолекул и энтропия растворов

    Для определения энтропии смешения линейного полимера с низкомолекулярным растворителем необходимо предположить, что разме ) сегментов макромолекулы (звенья) равен размеру молекулы растворителя. Иногда в качестве сегмента берут мономерную единицу, а за нх число г в цепи макромолекулы принимают степень полимеризации. Используя решеточную модель раствора, в которой отдельные узлы решетки заняты молекулами растворителя или сегментами макромолекулы, обладающей гибкостью, рассчитывают число возможных расположений микромолекул. Число частиц, принимающих участие в перестановках, равно = 1 22. После расчета полной статистической вероятности Я в соответствии с уравнением Больцмана (5 = й 1пй) определяют энтропию смеше- [c.322]


    Исследования растворов полимеров показали, что характерное для ннх сильное отрицательное отклонение от неидеальности связано с различием в размерах молекул ВМС и растворителя и особенно с гибкостью линейных макромолекул, которые сильно увеличивают энтропию смешения при растворении. Вклад конформаций макромолекул в энтропию смешения был учтен в теории растворов полимеров, в основе которой лежит уравнение Флори и Хаггинса, полученное с помощью статистической термодинамики. [c.321]

    Растворение неполярного поли-и.то-бутилена в неполярном же изо-октане идет только вследствие повышения энтропии без выделения тепла, т. е. смешение имеет здесь изотермический характер. Существенно, что при растворении поли-г(зо-бутилена в изо-октане, гидрированном димере зо-бутилена, энергетический барьер при враш,ении отдельных звеньев цепи молекулы не изменяется, так как действие межмолекулярных сил в растворе такое же, что и в самом поли-и.эо-бутилене. Иными словами, растворение в этом случае происходит без изменения гибкости макромолекул. [c.442]

    Термодинамические характеристики растворов полимеров, как было показано, тесно связаны с цепным строением, размерами и гибкостью макромолекул, а также с энергией их взаимодействия с растворителем. Эти основные параметры определяют также многие другие свойства растворов полимеров, по которым, в свою очередь, можно судить о строении и свойствах макромолекул. Так, например, гибкость цепей отражается не только на высоких значениях энтропии смешения, но и на условиях передвижения молекул в растворах при диффузии, течении и др. В этом отношении изучение разбавленных растворов полимеров представляет тем больший интерес, что оно выясняет строение и свойства индивидуальных макромолекул, лежащих в основе всех полимерных материалов. [c.188]

    Как изменяется энтропия смешения в растворах полимеров и как она зависит от гибкости макромолекул [c.197]

    Сказанное в полной мере относится и к теории Флори и Хаггинса. В 1942 г. Флори и Хаггинс независимо друг от друга объяснили необычное значение энтропии растворов полимеров с позиций статистической механики. Эти знаменитые работы, послужившие толчком для развития исследований термодинамических свойств полимерных растворов, составляют фундамент современных теорий растворов. Аномальные значения энтропии растворов в теории Флори — Хаггинса объясняются общим для всех полимеров свойством проявлять собственную гибкость, т. е. способностью полимерных цепочек достаточно большой длины легко приобретать множество различных конформаций. Теория была развита на основании чисто абстрактных общих представлений, однако она содержит так называемый параметр взаимодействия Флори — Хаггинса, учитывающий влияние межмолекулярных сил и, таким образом, отражающий индивидуальность и химическую природу макромолекул. [c.152]


    Из уравнения (12.69) следует, что размер реального клубка возрастает с увеличением молекулярной массы полимера. На размер клубка даже в очень разбавленных растворах значительное влияние оказывает энтропия смешения (член 1з1). Из уравнения (12.69) вытекает также, что при температуре, равной 0-температуре, — а == О, т. е. а = 1. Таким образом, для каждого разбавленного раствора полимера существует такая температура, при которой он ведет себя как идеальный, при этом множитель а равен единице, т. е. внутримолекулярное дальнодействующее взаимодействие с растворителем не влияет на размеры макромолекул— клубок находится в невозмущенном состоянии. В идеальном растворе размеры цепей определяются только их гибкостью. [c.354]

    В. А. Каргина и др. было показано, что эти растворы, в особенности при невысоких концентрациях полимера, должны рассматриваться как обычные растворы, отличающиеся от последних внутренним строением, термодинамическими и другими свойствами, что обусловлено лишь большой величиной и особенностями строения макромолекул полимеров и сильным различием в величине частиц полимера и растворителя. Наиболее отчетливо это проявляется для очень разбавленных растворов. Для этих растворов применимы обычные соотношения, характеризующие зависимость осмотического давления растворов и других свойств от их концентрации, однако все же следует учитывать очень большую величину макромолекул полимера и гибкость цепей. Подвижность отдельных звеньев цепей приводит к тому, что макромолекула может обладать очень большим числом конформаций. Вследствие этого соответственно увеличивается термодинамическая вероятность и, следовательно, энтропия системы. [c.617]

    Для высокоэластичных полимеров характерно растворение, сопровождающееся поглощением тепла извне. Такое отступление от теоретически выведенной закономерности объясняется высокой гибкостью полимерных цепей этих полимеров. Благодаря высокой гибкости длинная молекула полимера может расположиться среди маленьких молекул растворителя различными способами, число которых намного превышает число возможных конформаций жестких. макромолекул в тех же условиях. Вследствие такого многообразия конформаций гибких цепей в растворе энтропия смешения в сотни, а иногда и тысячи раз превосходит теоретически вычисленную энтропию смешения. Большие значения энтропии смешения полимеров с гибкими цепями делают несущественным знак теплового эффекта при растворении, так как основной вклад в изменение свободной энергии вносит энтропийный член уравнения. [c.83]

    В отличие от лиофобных золей, растворы высокомолекулярных веществ являются термодинамически устойчивыми обратимыми истинными растворами. Они подчиняются правилу фаз и их устойчивость определяется соотношением энергетического (ДЯ) и энтропийного (ТД5) членов в уравнении (VIII. 1). Для растворов полярных полимеров, обычно обладающих жесткими цепями, основное значение имеют изменения ДЯ, в значительной мере зависящие от сольватации. Тепловые эффекты, изменения упругости пара, сжимаемости и других свойств растворов при сольватации указывают, что наиболее прочно связанная часть растворителя составляет около одного слоя молекул вокруг полярных групп полимера (табл. 15). Для растворов неполярных полимеров с гибкими цепями основное значение имеют изменения энтропии смешения, во много раз превышающие идеальные значения, и непосредственно связанные с гибкостью макромолекул в растворах. Различные соотношения ДЯ и Д5, приводящие к возможности самопроизвольного растворения полимеров (Д2<0) приведены в табл. 16. Нарушение устойчивости растворов полимеров при понижении температуры, добавлении нерастворяющей жидкости или высоких концентраций солей приводит к различным случаям расслоения на две фазы, выпадения полимеров, высаливания белков и др. Зависимость растворимости полимеров от молекулярного [c.196]

    Для растворов неполярных полимеров с гибкими цепями основное значение имеют изменения энтропии смешения, во много раз превышающие идеальные значения и непосредственно связанные с гибкостью макромолекул в растворах. Различные соотношения АН и AS, приводящие к возможности самопроизвольного растворения полимеров (AZ O) приведены в табл. 16. [c.175]

    Так как гибкость и число конформаций макромолекул в растворе значительно больше, чем в сухом образце полимера (Шр-р > >Шобр), то 5р-р>5обр- Поэтому для гибких неполярных молекул полимеров главную роль в энергетическом балансе играет увеличение конформационной энтропии, обеспечивающей соблюдение условия Д/ <0. [c.195]


    С января 1944 г. В. А. Каргин снова начинает заниматься термодинамикой растворов полимеров и теперь в качестве объекта исследования впервые использует системы полимер—гидрированный мономер. Идея подбора таких систем заключается в том, что полимер и растворитель имеют идентичное химическое строение, и, следовательно, можно ожидать их атермическое смешение. Поэтому, как казалось первоначально, взаимодействие полимера и растворителя должно быть обусловлено только изменением энтропии. Действительно, было показано, что огромные энтропии смешения, наблюдающиеся для раствора полиизобутилена в изооктане, обусловлены большой гибкостью цепи этого полимера [37]. В этой же работе был предложен метод оценки термодинамического сегмента, впоследствии широко использованный, и впервые высказано соображение о том, что растворитель, меняя потенциальный барьер в молекуле полимера, меняет ее гибкость [37]. Идея о влиянии термодинамического сродства растворителя на гибкость макромолекулы, неоднократно высказываемая В. А. Каргиным и его учениками, долгое время не получала должного признания. И только в самое последнее время она нашла всеобщее признание, чему в большой степени способствовали работы Э. В. Фрисман и А. К. Да-диваняна [38]. [c.199]

    В результате смешения полимеров обычно не возникает никаких новых конформаций макромолекул, так как при этом не появляется маловязкая прослойка ( свободный объем) между цепями и, следовательно, не устраняются пространственные препятствия. Поэтому одпадает слагаемое энтропии, Рис. 156. Изменение раствори обусловленное изменением гибкости мости полистирола (в граммах цепи при растворении полимеров в низ-иа 100 г второго полимера) в комолекулярных пластификаторах. Мо- [c.516]

    При исследовании прочности межфазных адсорбционных слоев полимеров на границе водный раствор/углеводород нами было обнаружено новое свойство этих слоев, заключающееся в повышении прочности слоя на границе с углеводородом по сравнению с прочностью слоя на границе с воздухом. Для низкомолекулярных же ПАВ органическая жидкость (масло) сильно ослабляет когезию между углеводородными частями молекул в адсорбционном слое [156, 157], что вызывает обратное явление. Повышенное на 2—3 порядка значение прочности на границе с углеводородом можно рассматривать как результат более полной развернутости макромолекул полимеров и образования большего числа межмолекулярных связей. Известно [130, 131, 158, 159], что энтропия поверхностной денатурации, гибкость, поверхностная вязкость и скачок потенциала (поверхностный дипольный момент) на границе с маслом на порядок больше, чем на границе с воздухом. Эти данные являются дополнительными доказательствами соответствующих раз- [c.214]

    Взаимное перемешивание. молекул полимера и растворителя всегда протекает с уменьшением свободной энергии и термодинамически не отличается от процесса растворения любого низкомолекулярного вещества. Необходимо только учитывать, что энтропия смешения длинных гибких молекул полимера с малыми молекулами растворителя отличается от идеальной энтропии смешения и тем больше, чем более гибкой является молекула полимера. Причина этого различия состоит в том, что вследствие гибкости отдельные части цепных. молекул движутся в растворе с известной независимостью и поэтому каждая длинная макромолекула эквивалентна нескольким малым. Этим вы-званьп повышенные значения осмотического давления, пониженная упругость пара растворителя над раствором и другие отклонения термодинамических свойств растворов полпмеров от свойств идеальных растворов. [c.206]

    При перемещении цепной молекулы из идеального кристалла в разбавленный раствор устраняются ограничения, налагаемые на ее форму факторами, обусловливающими эффективность упаковки в кристаллической решетке. Это даст внутренним углам вращения возможность изменить свою величину до значений, приводящих к иррациональному числу мономерных звеньев в витке спирали. В растворе нет необходимости в том, чтобы валентный угол 0 или внутренний угол вращения ф имел строго определенное значение. Однако они могут изменяться в широких пределах, обеспечивая гибкость конформации макромолекулы. Наконец, вследствие тенденции системы к увеличению энтропии ряд звеньев цепи главных валентностей принимает конформации с более высокой энергией, что приводит к образованию изгибов в регулярном расположении, характерном для макромолекулы в кристаллическом состоянии. На рис. 30 изображен такой изгиб, возникший в полностью тракс-полиэтиленовой цени за счет введения одной скошенной связи. При анализе конформационных соотношений в виниловых или винилиденовых полимерах в растворе Волькенштейн [234] считает удобным подразделить цепь таким образом, чтобы участок цепи главных валентностей между двумя заместителями принадлежал к одному мономерному остатку. На рис. 31 изображен участок винилиденовой цепи со связями, пронумерованными таким образом, что символы 2/ и 2/ +1 относятся к связям /-Г0 мономерного звена. В таком случае можно легко убедиться в том, что взаимное сближение соседних заместителей цепи будет определяться внутренними углами вращения ф2J и ф2Л-1 вокруг 2/-Й и 2 (/ + 1)-й связей. В простейшем случае винилиденового полимера [c.100]

    Хотя жесткоцепные полимеры, для которых значение параметра гибкости / заведомо меньше критического, должны спонтанно переходить в упорядоченную фазу, достижение гомогенной области ЖК (см. рис. 1.2) в растворах жесткоцепных полимеров затруднено не только в силу кинетических, но и в силу термодинамических причин. Согласно классической теории растворов [2], в соотношение для избыточного химического потенциала растворителя входит энтропия разупорядочения. Эта же величина входит в выражение для температур плавления жидкокристаллической фазы и растворения, как это следует из формулы (1.1). В случае жесткоцепных макромолекул А5ц=0, а АЯи, пропорциональная е, стремится к бесконечности. Поэтому граница широкой части фазовой диаграммы, показанной на рис. 1.2, стремится в область высоких температур и может оказаться вообще недостижимой из-за испарения растворителя или даже термического разложения полимера. В ряде систем (типа алкилполиизоцианатов) удается попасть только в область слева от коридора , но не более того, однако при добавлении второго полимера (например, того же ПБГ) их можно вовлечь в тактоидную фазу. [c.19]


Смотреть страницы где упоминается термин Гибкость макромолекул и энтропия растворов: [c.282]    [c.88]    [c.397]    [c.593]    [c.369]    [c.278]    [c.29]    [c.291]    [c.319]   
Химия высокомолекулярных соединений Издание 2 (1966) -- [ c.277 ]




ПОИСК





Смотрите так же термины и статьи:

Гибкость макромолекул

Макромолекула в растворе

Энтропия растворов



© 2025 chem21.info Реклама на сайте