Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка электрическая

    Для укрупненных расчетов можно пользоваться следующими ориентировочными показателями расхода энергоресурсов на 1000 дал спирта-ректификата высшей очистки электрическая энергия — 1700—1900 кВт-ч. тепловая энергия — 2,7—2,9 кДж. [c.159]

    Разборка и очистка электрических машин [c.212]

    Сжатый воздух в локомотивных депо используется для продувки и очистки электрических машин и аппаратов, проверки работы пневматических и электропневматических аппаратов и автотормозного оборудования, для работы различного пневматического инструмента и приспособлений, подачи песка на локомотивы и их обдувки, а также пожаротушения в емкостях топливохранилищ способом перемешивания топлива и на другие нужды. [c.225]


    Жидкость для очистки электрических контактов [c.145]

    Во-вторых, следует указать дополнительную возможность использования ароматических экстрактов из нефти. Как указывал докладчик, очистку ароматических экстрактов можно проводить серной кислотой и глиной. Такой очищенный экстракт пригоден для промывки и очистки электрических трансформаторов после слива старого масла и перед заливкой свежего. Изучение ароматических экстрактов нефти, получаемых при сольвентной очистке (жидким сернистым ангидридом) трансформаторного масла и подвергнутых последующей очистке 95%-ной серной кислотой (25% серной кислоты с дальнейшей очисткой известью и глиной), показывает, что по физическим свойствам этот материал, как и следовало ожидать, весьма близок к трансформаторному маслу. Его стойкость к окислению, разумеется, ниже, о чем свидетельствует значительно большее образование осадка при испытании стандартным (английским) методом. Обычно образуется 3,8% осадка против максимального, допускаемого стандартом количества 1,1%. Однако кислотность после образования осадка оказывается значительно ниже допускаемого продела (1,5 вместо 2,5 мг КОН/г) и материал обладает требуемой диэлектрической прочностью. Такое высокоароматическое масло (плотность 0,957 при 15° и вязкость 8 сст при 60°) должно обладать высокой растворяющей способностью по отношению к осадку и шламу, остающимся в трансформаторе. Применение подобного экстракта для промывки работающих трансформаторов позволит достигнуть значительно большей чистоты оборудования, чем возможно при практикуемой промывке свежим маслом. Следует подчеркнуть, что промывка свежим маслом приводит к загрязнению и порче этого ценного продукта. [c.272]

    А—приготовление угольной пасты Б—жидкофазная гидрогенизация В—предварительное гидрирование Г—бензинирование или расщепление Д—стабилизация Е—получение этана Ж—получение пропана 3—осушка газа И—получение бутана К—абсорбционная очистка газа (удаление аммиака) Л—производство газового бензина М—газоочистка (удаление СО и Н З) И—алкацидная очистка, молотковая дробилка 2—вращающаяся сушилка 3—бункер для сухого (4% НаО) угля с катализатором 4 —бак для затирочного масла 5—ластовый насос высокого давления 6—регенератор (теплообменник) / сепаратор Л—газоподогреватель 9—реактор 10—уровнемер 11—горячий сепаратор 12—центрифуга 3—печь полукоксования шлама 14—емкости для дросселирования 15—холодильник 16—продуктовый сепаратор 17—водоотделитель 18—циркуляционный насос 19—масляный абсорбер 20—детандер 21—алкацидный абсорбер 22—реактор с окисью железа (280°) для удаления сероокиси углерода 23—сборник среднего масла 24—дистилляционная колонна 25—водный абсорбер 26—бак для среднего масла 27—электрический подогреватель сборник бензина 29—емкости для среднего масла Б  [c.35]


    Причиной многих аварий, сопровождающихся взрывами и пожарами, являются разряды статического электричества. Зарегистрированы взрывы от разрядов статического электричества при транспортировании жидких углеводородов по трубопроводам, при операциях смешения, фильтрации, слива, налива, при очистке резервуаров и т. д. При движении жидких углеводородов относительно другого вещества (материала трубы, резервуара) образуются электростатические заряды, которые, накапливаясь, создают электрическое поле и являются причиной электрических разрядов. Взрыв происходит в том случае, если в электрическом поле, которое создается в газообразной воспламеняющейся смеси, происходит разряд, достаточный для подрыва смеси. [c.149]

    С целью увеличения степени очистки газов смачивают поверхности осаждения, вводят в газ жидкость, чем достигают увлажнения и укрупнения частиц. Укрупнение частиц достигается также обработкой газа ультразвуком [5.2, 5.58] или воздействием электрического и магнитного полей [5.64]. Гидравлическое сопротивление электрофильтров 150—200 Па. Расход электроэнергии на 1000 очищаемого газа от 0,12 до 0,20 кВт-ч. В электрофильтрах улавливается пыль с диаметром частиц более 5 мкм. В результате разделения системы Г — Т образуется газ и твердый остаток, содержащий за счет сорбции на поверхности своих частиц молекулы газообразных соединений. Санитарная очистка газов от пыли данным методом, как правило, не обеспечивается. Уловленные частицы подлежат использованию либо дополнительной переработке. [c.471]

    Электрохимическая очистка [5.18, 5.24, 5.36, 5.45, 5.55]. Метод основан на электролизе промышленных сточных вод путем пропускания через них постоянного электрического тока. В настоящее время существуют следующие основные направления электрохимической очистки сточных вод разложение примесей за счет анодного окисления и катодного восстановления удаление растворенных неорганических соединений с использованием полупроницаемых мембран (электродиализ) разложение примесей путем электролиза с использованием растворимых анодов и получением нерастворимых соединений, выпадающих в осадок. [c.495]

    Вместо антикоррозионной эмали следует применять футеровки из металлов, следует строго соблюдать сроки очистки аппарата. Во избежание накопления статического электричества необходимо заземлять все металлические конструкции машин и аппаратов, резервуары, закрытые и открытые, транспортеры, сливоналивные устройства, трубопроводы и др. Трубопроводы наружных установок, системы оборудования и трубопроводов в технологических схемах представляют собой непрерывную электрическую цепь, поэтому их присоединяют к заземляющим устройствам. [c.340]

    Эффективность щелочной очистки зависит от интенсивности перемешивания и полноты осаждения продуктов реакции в растворе щелочи. При интенсивном перемешивании топливных дистиллятов с растворами щелочей, несмотря на довольно высокие температуры и низкие концентрации растворов, образуются эмульсии, для разделения которых требуется дополнительное время отстоя. В последнее время начали широко использовать электроразделители, в которых нефтепродукт отделяется от реагента в электрическом поле постоянного тока напряжением [c.117]

    В производстве ацетилена методом электрокрекинга метана и на стадии очистки газа от сажи используются аппараты, работающие под напряжением до 8 кв (ртутные выпрямители, повышающие трансформаторы, реакторы для электрокрекинга, электрофильтры), а также имеются кабели и щины высокого напряжения. На стадии компримирования применяются электродвигатели, питаемые током на напряжение до 6 кв. Эти аппараты и устройства могут быть источником поражения обслуживающего персонала электрическим током высокого напряжения. [c.138]

    Сухой электрофильтр. Запыленность обжигового газа при сжигании колчедана в печах КС ( кипящего слоя ) составляет 50— 200 г/м . Для удаления пыли применяют механическую и электрическую очистку. Механическая очистка основана на действии центробежных сил. Ее используют на первой ступени очистки обжи-го юго газа в циклонах. [c.88]

    Электрометаллургия — это общее название процессов переработки руды и металлов, основанный на использовании электричества. Сюда относится выплавка стали в электродуговых печах, покрытие одних металлов тонким слоем других, а также их очистка до высокой степени чистоты. Электрические методы используются в случаях, когда нет других подходящих восстановителей и если требуются особо чистые металлы. В этих процессах источником электронов, как правило, является электрический ток, который восстанавливает ионы металлов. [c.153]


    Для исследования характеристик полупроницаемых мембран может быть использована установка (рис. 111-1) с циркуляцией раствора в системе с помощью плунжерного насоса 1. Раствор из расходной емкости 3 проходит через фильтр предварительной очистки 2 в гидроаккумулятор 5 для сглаживания колебаний давления, предварительно заполненный инертным газом (азотом) до давления, составляющего 30—40% от рабочего. Рабочее давление регулируется с помощью дроссельного вентиля 8 и контролируется по показаниям манометра 6. Далее раствор поступает в разделительную ячейку 9, пройдя которую возвращается в расходную емкость 3. Фильтрат собирается в сборник 10. Байпасная линия 4 предусматривается для удобства обслуживания установки промывки насоса и системы, смены раствора и т. п. Для проведения опытов по изучению влияния температуры раствора на характеристики процесса поверхность гидроаккумулятора 5 покрывают нагревательной электрической спиралью, а регистрирующий термометр помещают на выходной линии после дроссельного вентиля 8. Разделительная ячейка может быть различной конструкции, но обязательным ее элементом является пористая подложка под мембрану, которая воспринимает рабочее давление, но должна свободно пропускать к сливному отверстию проникающую через мембрану жидкость. [c.110]

    В первые часы фильтрования раствора, содержащего дисперсные частицы, на активных центрах поверхности подложки и в ее порах происходит сорбция частиц. Сорбированный слой прочно связан с материалом подложки электрическими силами и силами Ван-дер-Ваальса, практически не разрушается при механической очистке поверхности и не удаляется при промывании водой. Этот слой не обладает селективностью по отношению к ионами. Однако он перекрывает поры подложки, и она начинает задерживать дисперсные частицы. Это приводит к [c.215]

    Вт/см используются частоты колебаний от сотен герц до десятков килогерц, рациональная исходная концентрация должна быть больше 1 г/мЗ. Целесообразно сочетать акустическую коагуляцию с другими методами инерционными и электрическими. Степень очистки газов электрофильтрами зависит от скорости дрейфа частиц  [c.135]

    Скорость дрейфа субмикронных частиц практически не зависит от их размера и имеет порядок нескольких см/с, с увеличением размера на порядок (10 мкм) заряд частиц становится пропорциональным квадрату радиуса. Поэтому целесообразна двухступенчатая схема предварительная акустическая коагуляция субмикронных частиц и окончательная электрическая очистка. Такой подход был развит в работах Таганрогского радиотехнического института (Тимошенко В. И. и др.). [c.135]

    После специальной обработки (вакуумная сушка и дополнительная очистка) электрические свойства полиэтилсилоксанов не уступают свойствам трансформаторного масла. Влияние очистки на электропроводность жидкости можно проиллюстрировать приведенными на рис. 24 зависимостями. Как показывают зависимости диэлектрической проницаемости и тангенса угла диэлектрических потерь oi температуры для жидкости ПЭС-5 с вязкостью 290 мм /с и жидкости ПЭС-3 с вязкостью 17 мм7с, область стеклования для первой находится при —135 °С и для второй — при —155 °С (рис. 25). Обе жидкости обладают релаксационным характером изменения диэлектрической проницаемости и тангенса уг.ча потерь. Потери при температурах выше 100—150 °С заметно возрастают. [c.118]

    У съемных деталей можно улучшить фреоновую очистку электрических контактов окунанием всей детали с контактами в горячую фреоновую ванну (используется фрсон-113), иногда в комбинации с ультразвуковым излучателем для более легкого и быстрого удаления загрязнений. На основе этого принципа можно оборудовать довольно производительные установки, особенно выгодные тогда, когда необходима очистка большого количества деталей небольших размеров. Такие технологические процессы становятся возможными только благодаря уже упо.мянуты.м выгодным свойствам, так как во время процесса очистки не повреждаются не только пластмассы, но и лаковые слои и большинство изоляционных материалов. [c.143]

    Ассистент Сведберга Арие Вильгельм Каурин Тиселиус (1902— 1971), также швед, в 1923 г. разработал более совершенный метод разделения гигантских молекул, основанный на характере распределения электрического заряда по поверхности молекулы. Этот способ — электрофорез — оказался особенно важным при разделении и очистке белков. [c.129]

    Как уже указывалось, на установке сочетаются процессы обессоливания нефти электрическим методом и атмосферно-вакуумной ее перегонки. Установка рассчитана на перёработку сернистой нефти, из которой получают компоненты моторных топлив, масляные дистилляты и остаток — гудрон. Электрообессоливание нефти производится в три ступени в шаровых электрогидраторах емкостью 600 с предварительным термохимическим обессоливанием. В зависимости от качества сырых нефтей число ступеней обессоливания может быть сокращено до двух и даже до одной. По фактическим данным работы установки обессоливания, достигалась следующая степень очистки (термохимическое обессоливание) по ступеням сырых нефтей восточных месторождений первая ступень 33,3—33,8%, вторая 68,8—72%, третья 96,7—98%. Материальный баланс (проектный) установки при переработке сырой ромашкинской нефти (325 дней в году) приведен в табл. 12. [c.94]

    Электрофильтры обеспечивают высокую степень очистки газов при сравнительио низких энергозатратах. Эффективность очистки газов достигает 99%, а в ряде случаев — 99,9%. Электрофильтр— аппарат или установка, в которых для отделения взвешенных частиц от газов используют электрические силы. [c.46]

    При очистке сточных вод широко применяют компрессионную (напорную) флотацию. Для повышения эффективности флотационной очистки тонкодиспергированные примеси удаляют из воды с помощью различных коагулянтов (водные растворы глинозема, хлорного железа и др.). Продолжительность нахож-леиня сточной воды во флотаторах 10—20 мин. Содержание нефтепродуктов после флотации не должно превышать 20— 50 мг/л, а после флотации с коагуляцией—15—20 мг/л. Для очистки сильно эмульгированных стоков с содержанием нефтепродуктов до 100—150 тыс. мг/л применяют электрофлотаторы — радиальные отстойники с встроенной внутри подвесной электрофлота[шонной камерой. В центре камеры проходит вал для привода вращающегося водораспределителя и донных скребков. В нижней части камеры расположены два электрода из листового алюминия, к которым подведен постоянный электрический ток. В результате электролиза сточной воды под действием постоянного электрического тока очищаемая вода насыщается микропузырьками. [c.205]

    Сорбционную очистку сточных вод от ПАВ с помощью ионообменных смол широко применяют для очистки промышленных сточных вод. Р1онообменные материалы — твердые, не растворимые в воде вещества, в структуру которых входят группы атомов, песуииш электрический заряд, скомпенсированный подвижными ионами иротивополож1юго знака. Эти противоионы способны замещаться поиамп того же знака, находящимися в растворе. Ионообменные процессы с участием ПАВ отличаются рядом специфических свойств, не характерных для ионного обмена неорганических веществ  [c.219]

    Так как коллоидные частицы имеют слабый отрицательный заряд, хлопья коагулянтов — слабый положительный заряд, то между ними возникает взаимное притяжение, способствующее формированию крупных частиц. В процессе коагуляционной очистки сточных вод происходит соосаждение с минеральными примесями за счет адсорбции последних на поверхности оседающих частиц. Из воды удаляются соединения железа (на 78—89 %), фосфора (на 80—90 %), мышьяка, цинка, меди, фтора и других. Снижение по ХПК составляет 90—93 %, а по БПКб —80—85 % Степень очистки зависит от условий воздействия на коагуляцию дисперсной системы радиации, магнитного и электрического полей, введения частиц, взаихмодействующих с системой и стабилизирующих ее. Воздействие излучения, как и окисление органических соединений озоном способствует разрушению поверхностно-активных веществ (ПАВ), являющихся стабилизаторами твердых и жидких частиц, загрязняющих сточные воды. Под воздействием электрического поля происходит образование агрегатов размером до 500—1000 мкм в системах Ж — Т, Ж] — Ж2 и Г — Т. [c.479]

    Электрофильтры обычно рекомендуются для очистки воздуха, ле сильно загрязненного пылью при больших концентрациях пыли целесообразно устанавливать предварительно сухой пылеосади-тель или пылевую камеру. В электрофильтрах твердым частицам пыли сообщается отрицательный электрический заряд, что обусловливает их осаждение на положительном электроде. [c.280]

    Эта лекция была прочитана автором 16—17 октября 1959 г. в университете штата Техас и представляла собой четвертую лекцию ежегодного Шо-ховского симпозиума по химической технологии. Симпозиум организован в честь доктора Евгения П. Шоха, профессора, основавшего департамент химической технологии в штате Техас. Доктор Шох известен в США своими исследованиями по очистке воды, использованию бурого угля и больше всего прославившим его имя процессом конверсии окнсн углерода в ацетилен в электрическом разряде. [c.9]

    Более тонкую очистку обжигового газа производят в сухих электрофильтрах. При этом запыленный газ пропускают между двумя электродами осадительным и коронирующим. Осадительный электрод заземляют, а ко-ронирующий соединяют с отрицательным полюсом источника постоянного юка высокого напряжения. Между электродами иод действием электрического поля газ ионизируется. Взвешенные частицы пыли заряжаются ионами и притягиваются к осадительному электроду. [c.89]

    Таким образом, на установке используются три газа— гелий, кислород и водород. Для подачи их в адсорбер с катализатором имеются регулирующие редукторы 2, вентили 3, фильтры 4 и реометры 5. Контактирующие с катализатором газы должны быть хорошо очищены и осушены. Для этого газ пропускают через поглотители колонки с никельхромовым катализатором 6 для до-жига кислорода в потоках гелия и водорода, адсорберы с окисью алюминия 7 и молекулярными ситами 8 для улавливания воды, колонку с платиновым катализатором 9 для очистки водорода от кислорода, адсорберы с аскаритом 10 и пятиокисью фосфора 11. Для периодической регенерации катализаторов и адсорбентов колонки 6—9 имеют электрический обогрев. На линии подачи газа носителя перед адсорбером установлены ртутный манометр 12 и четырехходовой кран 13. [c.91]

    Часто оба эти процесса (процесс электрокристаллизации и процесс анодного растворения металла) протекают достаточно быстро и не сопровождаются заметными перенапряжениями. Например, если опустить две медные пластинки в раствор медного купороса и включить электрический ток, то уже при малом напряжении происходит элeктp0литичe к0li растворение анода и осаждение меди на катоде. Как известно, на этом основано электрорафинирование (очистка меди электро-лизом). [c.635]

    В химической промышленности платина применяется для изго-топления коррозиониостойких детален аппаратуры. Платиновые аноды используются в ряде электрохимических производств (производство надсерной кислоты, перхлоратов, перборатов). Широко применяется платина как катализатор, особенно при проведении окислительно-восстановительных реакций. Она представляет собой первый, известный еще с начала XIX века гетерогенный катализатор. В настоящее время платиновые катализаторы применяются в производстве серной и азотной кислот, при очистке водорода от нрнмссей кислорода и в ряде других процессов. Из платины изготовляют нагревательные элементы электрических печей и приборы для измерения температуры (термометры сопротивления и термопары). В высокодисперспом состоянии платина растворяет значительные количества водорода и кислорода. На ее способности растворять водород основано применение платины для изготовления водородного электрода (см. стр. 281). [c.698]

    Электростатическое осаждение. Сейчас — это наиболее важная методика для очистки выбросои от пыли. Продукты сгорания проходят сквозь мощное электрическое поле и приобретают заряд. Далее заряженные частицы осаждаются на пластинах с прт ивоположным зарядом. Таким способом удаляют до 99% пыли, оставляя топы (1 частицы диаметром менее 0,1 мкм (1 мкм = 10 м). Пылеуловители в к мaтныx кондиционерах часто работают именно по этому принципу. [c.415]

    Каждая секция включает топливный бачок, тоиливоподкачивающую помпу типа БНК-12ТК, фильтр тонкой очистки, одну секцию шестиплунжерного насоса НК-6, две топливные форсунки, две камеры распыливания и холодильник. Форсунки устанавливают в гнезда с электрическими нагревательными элементами мощностью 300 В. Для каждого испытания форсунки собирают с новыми распылителями, регулируют и проверяют их на контрольном стенде на начальное давление впрыска, равное 21 + 0,5 МПа. [c.113]

    При указанных условиях входа в электрофильтр определяли также и коэффициент очистки т]. В этом случае средняя скорость газового потока в рабочем сечении электрофильтра са,. = пу, 2 м с, а электрический режим поддерживался близким к постоянному. Полученные значения М подставляли в ([юрмулу (2.13) для подсчега величины i). Коэффициент ky определяли один раз (для варианте 1) с наиболее равномерным распределением скоросте.й по значению и соогвегствующему ему опытному значению 1) Мк = 1,008 97,0 % ky 0,14. Расчетные значения для других степеней неравномерности распределения скоростей определяли ио формуле, вытекающей из выражения (2.13)  [c.76]

    Все перечисленные обстоятельства приводят в итоге к существенному снижению эффективности очистки дымовых газов, как это было показано в перном примере. Кроме того, неравномерность распределения пыли по сечеиию ухудшает работу электрофильтров вообще, увеличивая неустойчивость их электрических характеристик и возможность залипания пылью поверхностей в тех зонах, через которые проходит газ, содержащий более мелкие фракции. [c.265]

    Электрические методй очистки и разделения систем становятся эффективными при различии диэлектрических.свойств частиц и среды. 138 [c.138]

    При очистке газовых выбросов от пылей и туманов, подготовке воды и очистке сточных вод обычно используют следующие гидродинамические процессы очистку под действием силы тяжести в отстойниках и флотаторах очистку под действием центробежной силы в центрифугах и циклонах очистку под действием разности давлений через фильтрующую перегородку в различного рода фильтрах очистку под действием электрического поля электрофильтрами. [c.46]


Библиография для Очистка электрическая: [c.203]    [c.266]   
Смотреть страницы где упоминается термин Очистка электрическая: [c.15]    [c.188]    [c.67]    [c.480]    [c.117]    [c.217]    [c.342]    [c.380]   
Технология серной кислоты (1956) -- [ c.89 ]

Производство серной кислоты (1956) -- [ c.89 ]




ПОИСК







© 2025 chem21.info Реклама на сайте