Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитическая активность ПСС окисления

    Катализаторы. Для окислительного дегидрирования олефиновых углеводородов предложено большое число катализаторов. Каталитически активными Б реакциях окисления олефинов в диеновые углеводороды оказались катализаторы на основе окислов, фосфатов, вольфраматов и молибдатов индия, олова, сурьмы, висмута, теллура, селена, мышьяка, титана и других металлов, а также на основе ферритов никеля, кобальта, марганца, магния, кальция цинка и некоторых других металлов. [c.682]


    Изучена активность 14 индивидуальных окислов в реакциях окисления н-бутана и н-бутенов [40, 41, 42]. По каталитической активности в реакции окислительного дегидрирования н-бутана в н-бутены и бутадиен исследованные окислы располагаются в ряд [c.692]

    Были попытки восстановления каталитической активности окисленного железа путем нагревания системы в N2 при 720" в течение 50 мин и постепенного повышения температуры до 850° во время окисления, но они не имели успеха. [c.187]

    При увеличении температуры обработки кислородом до 400° С интенсивность сигнала от ионов Сг + восстанавливается до первоначального значения, характерного для свежеприготовленного катализатора. Каталитическая активность окисленного вновь при различных температурах катализатора, в общем, ниже, чем свежеприготовленного, хотя сигнал с g = 1,987 и наблюдается (рис. 7, г). [c.181]

    В низкотемпературной зоне двигателя (коробка приводов агрегатов турбореактивного двигателя, картер поршневого двигателя) температура масла находится в пределах 50—120° С. Здесь масло имеет большую площадь контакта с каталитически активными цветными металлами (в том числе со взвешенными частицами от их износа). В связи с разбрызгиванием и вспениванием масло имеет большую площадь контакта с воздухом. Эти условия способствуют окислению масла и образованию липкой мазеобразной массы темного цвета — шлама, обнаруживаемому в поршневых двигателях в картере, на масляных фильтрах и в других зонах относительно невысокой температуры. [c.164]

    При температуре ниже 400 °С степень окисления диоксида серы близка к 100 %, однако при этом скорость реакции даже в присутствии катализатора очень мала. Температура, при которой начинается каталитическая реакция окисления диоксида серы в триоксид, это — температура зажигания контактной массы (для данного катализатора составляет 440 °С) при меньшей температуре активность катализатора резко падает. С увеличением кислорода в газе температура зажигания несколько снижается. В связи с обогащением газа кислородом по мере прохождения слоев катализатора (за счет подачи воздуха на охлаждение) температура газа на входе в IV слой может быть снижена до 425 °С. Максимальная температура газа на выходе из слоя контактной массы не должна превышать 580—600 °С во избежание спекания массы и потери ее активности. [c.114]

    Общий механизм каталитического действия координационных комплексов сводится к облегчению электронных переходов в общей системе электронов и ядер внутри комплекса по сравнению с переходами между отдельными молекулами. С этих позиций естественно считать, что стадия образования координационных комплексов может ускорять как реакции окисления—восстановления, так и реакции перераспределения валентных связей (ин-тра- и интермолекулярные), поскольку между различными молекулами, входящими в координационную сферу комплекса в качестве лигандов, взаимодействие облегчается 5, 61. В случае гетерогенного катализа через координационные комплексы можно рассматривать активный центр как металл (его ион) с незаполненной сферой лигандов и применять к нему уже известные общие и частные принципы связи между строением комплексообразующего иона или ненасыщенного комплекса с его каталитической активностью. Существенную роль в определении активности катализатора в координационном катализе играют стабильность первоначально образующегося комплекса в реакциях, протекающих по механизму замещения лигандов. В этом случае, как следует из общей теории катализа и принципа энергетического соответствия Баландина, должна наблюдаться экстремальная зависимость между активностью катализатора и стабильностью комплекса. [c.59]


    Изучена [101] каталитическая активность в реакциях гидрирования бензола и этилена граней монокристаллов никеля и кристаллографически хорошо определенных частиц нанесенного Ni-катализатора диаметром 5,0 нм. Химически полированные кристаллы никеля, ориентированные по граням (110), (111), (100) очищали последовательным окислением и восстановлением прн 495 и 439°С. Показано, что каталитическая активность грани (111) несколько выше, чем для других граней. Активность ориентированного по грани (111) нанесенного катализатора несколько меньше, чем для случайно ориентированного. Эффективная энергия активации равна 46 кДж/моль. На основании этих данных был сделан вывод [101], что реакция гидрирования этилена более [c.55]

    Состав реактивных топлив зависит от способа их получения (та л. 2.5). Кинетика окисления реактивных топлив в зависимости от их группового углеводородного состава, наличия и структуры гетероорганических соединений, ингибиторов окисления, концентрации кислорода, температуры, контакта с каталитически активными металлами может иметь разный характер [46]. Главной отличительной чертой этого процесса является постоянство его скорости во времени, наличие автоускорения или замедления. [c.45]

    Катализаторами, ускоряющими окисление бензинов и дизельных топлив при хранении, могут быть металлические поверхности резервуаров и трубопроводов, а также оксиды и соли, покрывающие эти поверхности. Ускорение окисления вызывается, кроме того, оксидами и солями металлов, которые могут находиться в топливах в виде тонкодисперсной взвеси. Каталитическую активность в основном проявляют металлы переменной валентности— железо, медь, хром, марганец, кобальт [66]. [c.58]

    Наибольшей каталитической активностью при окислении масел обладают [c.77]

    Отсюда непосредственно вытекает, что в ряду однотипных катализаторов избирательность по продукту жесткого окисления должна изменяться симбатно с каталитической активностью для избирательности по продукту мягкого окис- [c.14]

    Магнетизм и структура каталитически активных твердых веществ. Каталитическое окисление ацетилена воздухом в производстве кислорода. Отравление металлических катализаторов. [c.418]

    В табл. 3 приведены данные, характеризующие каталитическую активность ряда металлов переменной валентности при окислении различных видов синтетических каучуков [33]. Однако в работе [33] дозировка примесей металлов была выбрана очень [c.629]

    Существенное влияние на каталитическую активность металлов переменной валентности в процессе окисления каучуков оказывает природа антиоксиданта, содержащегося в каучуке [32, 34]. Это иллюстрируется данными, приведенными в табл. 4. [c.630]

    Влияние соединений меди на окисление очищенных крекинг-бензинов исследовано Даунингом [84]. Вальтере [82] показал, что каталитическая активность медных сплавов пропорциональна содержанию в них меди. Педерсен [85].изучал влияние концентрации меди на химическую стабильность бензинов термического крекинга после сернокислотной очистки. Опубликованы результаты исследования влияния таких металлов, как сталь, медь, латунь, свинец, олово, алюминий и цинк, на бензины, различающиеся по химической стабильности [86, 87]. [c.243]

    В принципе для качественной оценки окисляемости топлив применение методов такого типа вполне приемлемо. Однако при этом требуется крайне осторожный подход к интерпретации экспериментальных результатов. В этих методах прямо или косвенно измеряют конечные продукты окисления, а склонность топлива к образованию этих продуктов зависит не только от окисляемости, но и от других факторов исходного химического состава, условий окисления, каталитической активности стенок реактора. [c.75]

    По-видимому, в результате адсорбции таких молекул повышается число активных центров с электродонорными свойствами, на которых происходит каталитический гомолиз О—0-связи с образованием радикалов. Адсорбция молекул с электроноакцепторными свойствами, таких, как кислород, диоксид углерода, тетрацианэтилен, снижает иногда до нуля каталитическую активность поверхности оксида металла [330]. Аналогичное действие предварительной адсорбции тех или иных молекул проявляется и при окислении углеводорода с гетерогенным катализатором. Каталитическая активность оксида металла повы- [c.205]

    Тогда кинетические кривые окисления топлив в присутствии каталитически активных материалов в координатах Д 02 2—t исходили бы не из начала координат, а отсекали бы на оси ординат отрезки, пропорциональные и,о (см. с. 79), что противоречит экспериментальным данным (см, рис. 6.1). [c.211]

    Известно, что начало образования углеродистых продуктов связано с окисляемостью масла. Не останавливаясь на основных закономерностях окисления масел (см. раздел 2.3), отметим лишь, что одним из наиболее важных моментов данного процесса является каталитическое действие металла [223, 224]. На интенсивность протекания противоокислительных процессов влияют также твердые продукты, диспергированные в объеме масла (рис. 4.7), причем каталитическая активность (резкое увеличение вязкости масла) отмечается в случае проявления ими электроноакцепторных свойств (графит, сажа), а ингибирующая способность характерна для (Мо52)[223]. [c.211]


    Метод потенциальных функций был применен для прогнозирования каталитической активности твердых тел на примере реакции окисления СО молекулярным кислородом над оксидами ме- [c.86]

    Неоднократно отмечалось, что если в комплексы может входить металл разной степени окисления, то наибольшей активностью обладают комплексы с металлом в низшей степени окисления растворы комплексов Pt(II) каталитически активны, а комплексы Pt(IV) в аналогичных условиях не изомеризовали гептен-1. [c.114]

    Окись тория изучена как катализатор окисления СО несколько более подробно [30, 51—531. Установлено, что этот окисел заметно окисляет СО лишь при температуре выше 400° С и что добавка eOj (примерно 1 %) повышает его каталитическую активность. Окисление СО осуществляется хемосорбированным кислородом (ассоциативный механизм), а образующаяся СОг, хемосорбируясь на катализаторе, понижает его активность [54]. [c.222]

    Другая возможность состоит в том, что хемисорбированная окись углерода реагирует с кислородом поверхности, входящим в решетку. Тогда при десорбции углекислого газа поверхность остается в частично восстановленном состоянии. Кислород из газовой фазы поглощается и восстанавливает поверхность до начального состояния. При таком механизме поверхность твердого вещества активно участвует в реакции окисления. На новерхности непрерывно происходят окислительно-восстановительные циклы, и возможно, что вся она является каталитически активной. Окисление на окиси ванадия, вероятно, является одним из наглядных примеров механизма такого типа, как было показано Ньюджесом и Хиллом [59]. [c.322]

    На примере ряда реакций киолотноосновного типа (инверсия сахара, гидролиз уксусно-этилового эфира, пинаколиновая перегруппировка и др.) изучена зависимость между каталитическими и ионообменными свойствами активных углей в водных растворах для сравнения исследовано также каталитическое действие катионитов КУ-2 и КБ-4П-2 и гомогенного катализатора — соляной кислоты. Показано, что в отличие от обычного активного угля — электрохимического анионообменника, который не проявляет каталитической активности, окисленный уголь, являющийся полифункциональным катионитом, весьма эффективно катализирует реакции. [c.242]

    К такому же выводу приводят и результаты проведенного нами сравнительного изучения каталитического действия окисленного угля ОУ и синтетических катионитов КУ-2 и КБ-4П-2 в целом ряде протолитпче-ских реакций кислотного типа — инверсии сахарозы, гидролиза и образования уксусноэтилового эфира, пинаколиповой перегруппировки и др. Известно [11, 12], что в отличие от сильнокислотных сульфокатионитов типа КУ-2 карбоксильные смолы практически не катализируют подобные процессы. Окисленный уголь, напротив, оказался во всех случаях очень активным катализатором эффективность его действия, по Гаммету [13], по меньшей мере на два порядка превышала таковую карбоксильного катионита КБ-4П-2 и обычно превосходила даже эффективность сульфо-смолы КУ-2 (см. таблицу). Показано, что ярко выраженная каталитическая активность окисленных углей в реакциях рассматриваемого типа обусловлена находящимися на их поверхности сильнокислотными группировками [10]. [c.106]

    Молибден, вольфрам и их оксиды являются п-полупроводниками ( <ак и N1, Со, Р1 и Р(1). Их каталитическая активность по отношению к реакциям окисления —восстарювления обусловливается наличием на их поверхности свободных электронов, способствующих адсор — бции, хемосорбции, гомолитическому распаду органических молекул. Однако Мо и Ш значительно уступают по дегидро-гидрирующей активности N1, Со и особенно Р1 и Рс1. [c.208]

    Одним из путей подавления каталитической активности примесей металлов переменной валентности в процессах окисления является перевод их в неактивную форму за счет образования комплексов или хелатов. В качестве таких агентов могут применяться антиоксиданты, относящиеся к производным /г-фениленди-амина [30, 31], которые пассивируют каталитическое действие меди, марганца и железа в процессе окисления каучуков. Аналогичный эффект наблюдался при введении в высокомаслонапол-ненный бутадиен-стирольный каучук, содержащий повышенное количество меди и железа, таких антиоксидантов, как п-гидрокси- фенил-р-нафтиламин (параоксинеозон) или меркаптобензимидазол [31]. Достаточно эффективными пассиваторами меди в процессе окислительной деструкции каучуков является щавелевая кислота, аминобензойные кислоты, продукт конденсации бензальдегида с гидразином [41]. [c.631]

    Сигнализатор состоит из датчика ДТХ-103У4, блока питания и сигнализации БПС-103У4 и линии связи между ними, длина ко-тороц может достигать 500 м. Принцип действия сигнализатора основан на измерении теплового эффекта окисления горючих газов и паров на каталитически активной окиси алюминия. [c.262]

    Значительное увеличение скорости поглощения кислорода дизельным топливом в контакте с различными горными породами было установлено экспериментально при окислении на газометрической установке [74]. Приведенные на рис. 2.10 кинетические кривые окисления дизельного топлива указывают на увеличение в десятки раз скорости поглощения кислорода в контакте с некоторыми горными породами. Каталитическая активность горных пород связана с наличием в них активных микропримесей. Для практических целей склонность горных пород к гетерогенному активированию окисления топлив предложено определять методом сравнения, основанным на непосредственном-определении скорости окисления топлива в контакте с испытуемой горной породой и эталонным катализатором, например со сталью Ст. 3. В качестве критерия такой оценки предложен коэффициент каталитической активности [74], определяемый по выражению [c.59]

    Авторы [104,105] делают вывод, что в сильнощелочных средах каталитическая активность металлофталоцианинов в реакции окисления тиолов молекулярным кислородом значительно возрастает при введении в молекулу фталоцианина кобальта как электронодонорных, так и электроноакцепторных заместителей. [c.24]

    Каталитическая активность металлов переменной валентности в процессах окисления и старения синтетических каучуков зависит от следующих факторов природы металла переменной валентности валентного состояния металла химической структуры каучука содержания металла переменной валентности природы ан-тиокспданта, применяемого для стабилизации каучука наличия в каучуке веществ, способных связывать металлы переменной валентности в соединения (комплексы или хелаты), которые являются неактивными в процессах окисления или других превращениях каучуков. [c.629]

    В таблице 3.1. приведены результаты сравнения каталитической активности указанных фталоцианинов по наблюдаемой константе скорости окисления (Кнаб.) и относительной каталитической активности [c.50]

    Из металлов наиболее характерными каталитическими свой-стнами обладают элементы VUl группы периодической системы элементов Д. И. Менделеева. Для ряда процессов катализаторами являются железо (синтез аммиака) кобальт, никель, иридий, платина, палладий (гидрирование и для последних — окисление двуокиси серы). Кроме того, металлы VUl группы являются катализаторами и других процессов разложени.я перекиси водорода, получения гремучего газа, окислеиия аммиака, метанола, метана, окиси углерода, дегидрирования спиртов и т. д. Каталитической активностью обладают и соседние (в периодической системе) элементы медь, серебро, отчасти золото, возможно цинк и кадмий. [c.363]

    При таком механизме действия катализатора всегда наблюдается симбатность между скоростью каталитического окисления RH и скоростью распада ROOH в этих условиях в отсутствие кислорода [330]. Среди оксидов металлов наиболее активны по отношению к гидропероксиду кумила оксиды Мп и Ni, на -оболочках которых находится соответственно 3 и 7 электронов [330]. На поверхности оксидов металлов существуют активные центры двух типов с электродонорными и электроакцепторны-ми свойствами. Поверхность катализатора можно модифицировать предварительной адсорбцией на ней молекул с электродонорными или электроакцепторными свойствами. Предварительная адсорбция на AgO (РЬОг, NiO, СггОз) молекул с электродонорными свойствами, таких, как NH3, Нг, СО заметно повышает каталитическую активность поверхности оксида. [c.205]

    Обычно в гетерогенном катализе каталитическую активность характеризуют относительным увеличением скорости реакции в расчете на единицу поверхности катализатора. Спецификой окисления является его автоускоренный характер. Поэтому кинетику автоокисления удобнее характеризовать не скоростью, которая меняется во времени, а ускорением, т. е. коэффициентом Ь в уравнении А[02] 2 = Ь . При гетерогенном катализе или ингибировании окисления количественной характеристикой удельной активности материалов служат отношения Ъ—bo)lboS — для материалов, обладающих каталитическим действием, и (Ьо—b) boS — для материалов, обладающих ингибирующим действием, где Ьо — коэффициент для топлива без металлов S — поверхность металла, см /л топлива. Значения (6—ba)fboS и (Ьо—b)/boS для различных материалов в топливе Т-6 при 125 °С представлены в табл. 6.3. [c.207]

    В таком случае отклонение от стехиометрии в окиси, вызванное восстановлением (/г-тип, избыток металла) или окислением (р-тип, избыгок кислорода) или присутствием примесей, должно изменять как плотность активных центров обоих типов, так и каталитическую активность в ожидаемых направлениях . Например  [c.28]

    При добавлении Ь120 к N 0 на каждый ион замещающий появляется 1 ион и дырочная проводимость (т. е. проводимость р-типа) возрастает (стрелка 1), при добавлении к N10 ОагОз число ионов (осуществляющих проводимость р-типа) уменьшается и проводимость р-типа падает (стрелка ). С работах ряда авторов [см., например Рогинский С. 3., Хим. наука и промышленность, 2, 138 (1957)] были изучены каталитические свойства окислов-полупроводников (N 0, 2пО,ХггОз и др.) и показано существование корреляции между их электронными свойствами и каталитической активностью, а также возможность путем соответствующих добавок изменять в заданном направлении каталитические свойства этих окислов для определенных реакций. Так, например, при окислении СО на N 0 введение в N 0 даже нескольких сотых процента заметно снижает каталитическую активность N 0 (повышает энергию активации изучаемой реакции) 2п0 с добавками, понижающими ее активность по отношению к окислению СО и распаду МгО, имеет повышенную активность для реакции изотопного обмена молекулярного водорода. — Прим. перев. [c.28]

    Растворы Rh ia активируют изомеризацию бутена-1, но при этом наблюдается длительный (30—60 мин) индукционный период, в то время как при использовании комплексов Rh(I) реакция начинается сразу. Кроме того, сравнение каталитической активности комплексов Rh(I) и Rh(ni) показывает, что константа скорости изомеризации в первом случае почти на порядок выше. Известно также, что комплексы НЬ(П1) требуется предварительно восстанавливать водородом можно еще отметить, что каталитические свойства Pd(ll) связывают с его переходом в состояние с мeпЬiUeй степенью окисления [27]. Это предположение косвенно подтверждается тем, что соединения, окисляющие палладий (бензохинон, хлорная медь, бихромат калия, перекись водорода, перекиси олефинов), деза ктивируют катализатор.- [c.114]

    Для подтверждения последнего вывода была изучена каталитическая активность полифталоцианина кобальта и ДСФК при окислении в одинаковых условиях различных меркаптидов. Окисление меркаптидов проводили техническим кислородом, при атмосферном давлении на установке периодического действия по методике, описанной в главе 2 (см. рис. 2.1.). Опыты проводили в 10%-ном водном растворе едкого натра при температуре 30"С, скорости подачи кислорода 0,3 л/мин концентрациях, моль/л [К8Ыа]=0,40 [ДСФК]=[полифталоцианин кобальта]= 2,58. 10 . [c.49]

    Экстракция большего количества меркаптанов, естественно, приводит к ускорению процесса окисления RSH в водной фазе (в экстракте). По данным 86, 88] механизм активирования гомогенного катализа при введении растворителей, вероятно, объясняется образованием координационноненасыщенных комплексов между растворителем и катализатором, приводящим к увеличению каталитической активности. Данные о влиянии ДЭГ на экстракцию н-пентантиола не опровергают гипотезу активирования гомогенного катализа при добавлении спиртов и гликолей (такое действие тоже возможно), но показывают также влияние экстракции на этот процесс. [c.53]

    Для последующих опытов все катализаторы были изготовлены путем нанесения фталоцианинов кобальта ич О %-ного водного раствора едкого натра на активированные угли. Для выбора марки угля, наиболее полно удовлетворяющего требованиям технологии по адсорбционной способности и активности в реакции окисления меркаптанов, были проведены исследования процесса насыщения ИВКАЗом и по.чифталоцианином кобальта различных углей. На рис.3.6 приведены кинетические кривые насын ения фталоцианином кобальта различных углей. В таблице 3.7 представлены результаты исследования каталитической активности гетерогенных катализаторов в реакции окисления н-додецилмеркаптана молекулярным кислородом. [c.67]

    Как видно из таблицы 3.7, наибольшую степень окисления н-додецилмеркаптана обеспечиваЮ Т катализаторы на основе углей марок АГ-3 и АГ-5. Активированный уголь АГ-5 без катализатора проявляет низкую каталитическую активность. Наибольшей удельной каталитической активностью обладает катализатор на угле СКТ. Однако с этим катализатором не достигается необходимая степень очистки. Таким образом, катализаторы, приготовленные нанесением фтгиюцианина кобальта на ак1 ивированные угли АГ-3 и АГ -5, являются р(аиболее активными катализаторами для окисления меркаптанов. [c.68]


Смотреть страницы где упоминается термин Каталитическая активность ПСС окисления: [c.11]    [c.160]    [c.244]    [c.250]    [c.250]    [c.252]    [c.38]    [c.48]   
Химия полисопряженных систем (1972) -- [ c.226 , c.227 , c.229 , c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Активность каталитическая

Каталитическое окислени



© 2024 chem21.info Реклама на сайте