Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы натурных испытаний

    МЕТОДЫ НАТУРНЫХ ИСПЫТАНИЙ [1] [c.231]

    Методы натурных испытаний........ [c.8]

    Очевидно, что данные о горючести полимерных материалов, полученные при их испытаниях в лабораторных условиях, не могут в полной мере отражать поведение материалов в реальных условиях, однако имеется ряд работ, устанавливающих удовлетворительную корреляцию между поведением материалов при лабораторных испытаниях и их поведением в реальных условиях, которое может быть оценено с помощью методов натурных испытаний. [c.356]


    МЕТОДЫ НАТУРНЫХ ИСПЫТАНИЙ [c.358]

    Предложены и другие методы, позволяющие имитировать реальные условия горения. Так, Вильямсон и Барон [86] разработали метод оценки огнестойкости угла двух стен и потолка при действии малого источника огня. Роговский и Старк [87] рассматривают возможности методов натурных испытаний, разработанных научно-исследовательским отделом пожарной станции, для определения интенсивности дымовыделения и токсичности продуктов горения различных полимерных материалов. [c.358]

    Как следует из данных табл. 7.5, топлива существенно различаются по воздействию на резину. Между результатами натурных и лабораторных испытаний наблюдается хорошая корреляция [339]. Наименее агрессивны по отношению к резине топлива, содержащие ингибиторы окисления ТС-1 прямогонное, содержащее природные ингибиторы окисления (см. с. 184), и топлива с антиокислительной присадкой. При натурных испытаниях указанных топлив дефектов РТИ не обнаружено. При испытании по лабораторному методу понижения пределов прочности резин в этих топливах либо не наблюдается, либо они незначительны (не более 20% от исходных значений). [c.235]

    Предложенные методы базируются на современных достижениях механики разрушения и механохимии металлов, а также на большом объеме лабораторных и натурных испытаний напряженного состояния и долговечности сосудов и труб. [c.9]

    Методами механики разрушения установлены закономерности распределения упруго-пластических напряжений и деформаций в конструктивных элементах с технологическими дефектами, в том числе с угловыми переходами с нулевым и ненулевым радиусом сопряжения в вершине, а также их несущей способности и долговечности. Предложен метод расчета предельных состояний сварных сосудов с поверхностными дефектами. Произведена количественная оценка параметров диаграмм длительной статической и циклической трещиностойкости материала в условиях ВПМ. Объяснен механизм образования на диаграммах длительной статической трещиностойкости участков независимости скорости роста трещин от коэффициента интенсивности напряжений (плато). Теоретически и натурными испытаниями обоснованы методы обеспечения работоспособности сварных соединений со смещением кромок, основанные на регулировании свойств, размеров и формы зон с различным физико-механическим состоянием. Сформулированы закономерности накопления повреждений в материале в процессе гидравлических испытаний оборудования с целью выявления и устранения дефектов. [c.6]


    Все это ставит перед исследователями в качестве первоочередной задачи развитие научно обоснованных методов долгосрочного прогнозирования изменения защитных свойств покрытий во времени яа основе краткосрочных лабораторных и натурных испытаний. Решение этой серьезной научной задачи позволяет создать необходимые предпосылки для выбора из множества вновь разрабатываемых систем наиболее эффективных покрытий, обеспечить количественную оценку продолжительности защитного действия изоляционных покрытий уже на стадии проектирования предусмотреть рациональное планирование ввода мощностей электрохимической защиты. [c.86]

    Окрашенное техническое средство сдают в эксплуатацию после его выдержки при 18—23 С в течение 10— 12 сут. Для обеспечения необходимых сплошности и антикоррозионных свойств толщина покрытия должна составлять 80—100 мкм. После проведения лабораторных исследований и натурных испытаний было выяснено, что покрытие на основе эмали ЭП-140 обладает высокими физико-механическими свойствами, стойкостью к нефтепродуктам и нефти, к действию пресной и морской воды, атмосферному воздействию (см. Приложения 2 и 3). Материал покрытия наносят на металлическую поверхность, подготовленную механическими или химическими методами, а также на ржавую поверхность, предварительно обработанную преобразователями ржавчины. [c.68]

    При проведении лабораторных исследований и натурных испытаний [3, с. 39] (см. Приложения 1 и 2) было установлено, что при нанесении материалов на ржавую поверхность, предварительно обработанную преобразователями ржавчины, а также на поверхность, очищенную с помощью металлических щеток, полученные покрытия обладают стойкостью к воздействию различных нефте- продуктов, к действию холодной воды и атмосферному воздуху. При воздействии водяного пара покрытие разрушается. Физико-механические показатели покрытия не очень высокие адгезия и эластичность по Эриксену составляют соответственно 2,2—3,2 и 2,4—3,4 мм ударная прочность по прибору У-1 равна 1,0 Н-м адгезия (по методу решетчатого надреза) достигает 2 баллов прочность при изгибе (по шкале НИИЛК) не превышает 20 мм. Необходимо отметить, что прочность при ударе и адгезия после воздействия на покрытие нефтепродуктов и воды снижаются. Однако при испытаниях покрытия на траншейных резервуарах емкостью по 5000 м с различными нефтепродуктами в течение 4 лет в различных климатических зонах было установлено, что покрытие находится в удовлетворительном состоянии. [c.70]

    Для оценки эффективности смазочного и противоизносного действия предложен ряд методов. Они сводятся к натурным испытаниям [c.306]

    Завершая обзор основных методов, полезно рассмотреть стандарт на методы определения жаростойкости. ГОСТ 6130 - 71 разработан на основе обобщения большого практического опыта и теоретических работ, поэтому ознакомление с ним может помочь при решении многих практических вопросов. Особенность стандарта заключается в том, что он хотя и регламентирует многие моменты методики, но не предписывает для всех случаев выбора режима испытаний. Авторы стандарта исходили из того, что наиболее надежные результаты можно получить в условиях натурных испытаний или в условиях, максимально приближенных к ним. Стандарт является своеобразной научно-прикладной рекомендацией для тех случаев, когда подобные испытания неприемлемы, например из-за чрезмерной длительности, или при разработке новых сплавов, когда необходимо определить их уровень в ряду существующих сплавов до того, как будет решен вопрос об опробовании их в конкретных изделиях. [c.19]

    При проектировании и расчете на прочность элементов нефтегазохимических аппаратов и трубопроводов важно знать действительное распределение напряжений и деформаций в штатных и аварийных ситуациях. Для многих элементов конструкций, имеющих сложную пространственную форму, трудно получить надежные данные о распределении и концентрации напряжений путем расчета даже с применением современных численных методов и ЭВМ. Широко используемый при натурных испытаниях метод тензометрии также не позволяет полностью решить эту задачу, так как с его помощью деформации и напряжения определяются лишь в точках непосредственной установки тензодатчиков, которые могут не совпадать с зонами наибольших напряжений. Поэтому при исследовании напряженно-деформированного состояния сложных натурных конструкций наряду с тензометрией целесообразно использовать методы, позволяющие определять поля деформаций и напряжений, такие как хрупкие тензочувствительные и фотоупругие покрытия, интерференционный муар, голографическую интерферометрию и термовидение. [c.479]

    Физическое моделирование заключается в замене изучения какого-либо объекта опытным изучением его модели, имеющей ту же физическую природу, но отличающейся масштабом или значениями характеристик. К физическому моделированию прибегают, когда натурные испытания трудно осуществить вследствие очень больших или очень малых размеров разрабатываемого объекта. При физическом моделировании используют описанные ниже теорию подобия и метод анализа размерностей. [c.11]


    Результаты натурных испытаний полевого метода очистки воды приведены в табл. 45. На рис. 249 представлена схема ионатора ЛК-26 в ком- [c.345]

Таблица 45. Результаты натурных испытаний полевого метода очистки и обеззараживания воды Таблица 45. Результаты <a href="/info/1626935">натурных испытаний полевого метода</a> очистки и обеззараживания воды
    Ценность применения образцов малого размера лри испытаниях на удар возрастет, если имеется корреляция с поведением конструкций натурной величины. В большинстве случаев прямое соответствие не наблюдается, но тем не менее анализ большого числа эксплуатационных разрушений свидетельствует о возможности такой корреляции. Полученные соотношения, естественно, не могут быть непосредственно применены к реальным условиям эксплуатации, однако они позволяют всесторонне оценить факторы, определяюш,ие хрупкое разрушение. Это привело к разработке ряда методов испытаний и образцов различных по размерам (вплоть до натурной толщины промышленного листа), а также по форме и остроте надрезов (в том числе в виде искусственных трещин, имитирующих сварочные). Характеризовать сопротивление материала хрупкому разрушению можно по величине напряжения или энергии при разрушении, внешнему виду излома, пластичности или переходной температуре. Логическим развитием подобного рода испытаний было появление типовых (натурных) испытаний, в которых условия их проведения приближаются к предполагаемым эксплуатационным и обычно выполняются на натурных образцах. Широкое распространение получили испытания при деформировании образца энергией взрыва по возникновению, распространению и торможению трещин в сварных пластинах и т. п. Результаты подобных испытаний обычно сопоставляют с результатами серийных испытаний образцов малого размера (чаще всего на ударную вязкость по Шарпи). [c.146]

    Следует отметить, что испытания различными методами определенного материала дают разные значения переходных температур, поэтому при испытаниях стали располагают по характеристике вязкости. При отсутствии достаточного количества данных по разрушениям необходимо установленные характеристики вязкости материала сравнить с результатами натурных испытаний или испытаний, в которых имитируются реальные условия эксплуатации в конструкции. [c.153]

    После завершения натурных и ускоренных испытаний проводилась обработка статистического материала. Находилась парная корреляция между-данными, полученными в индивидуальных. методах испытаний и результатами натурных испытаний. Как известно [162], степень связи двух независимо измеренных величин (д ) и (у) определяется величиной коэффициента корреляции (г), который вычисляется из уравнения  [c.199]

    Для натурных испытаний летучих и водорастворимых ингибиторов были приняты металлические сварные емкости диаметром 800 мм и длиной 1700 мм, изготовленные из СтЗ и снабженные фланцем и заглушками из органического стекла. Внутренние поверхности емкостей, подлежащих консервации, подвергали дробеструйной обработке, а на период межоперационной защиты —3%-ным водным раствором нитрита натрия с добавкой 0,5% кальцинированной соды. Консервацию емкостей проводили через 3 сут. Внутренние поверхности емкостей перед консервацией смачивали водой, при этом количество воды, оставшейся в каждой емкости, составляло 0,1—0,15 кг. Водорастворимые консервационные составы наносили методом об-лива, после этого на емкости ставили заглушки из органического стекла. На емкости, подвергаемые консервации парами летучих ингибиторов, заглушки устанавливали до начала консервации, а пары вводили через вентили, установленные на корпусе. После ввода ингибиторов вентили сразу же перекрывали. При консервации емкостей порошкообразными ингибиторами последние засыпали из расчета 0,02 кг на 1 м консервируемой поверхности, затем устанавливали заглушки и распыляли порошок сжатым воздухом, подаваемым через вентили, установленные на корпусе. Емкости устанавливали на специальной опорной раме в горизонтальном положении. [c.220]

    Коррозионную стойкость металлических материалов и эффективность метода защиты можно определить в результате специально поставленных лабораторных опытов или натурных испытаний на коррозионных станциях, а также путем наблюдения за действующим оборудованием. Последнее, как правило, осуществляется путем визуального наблюдения. Визуальные методы исследования дают интересные результаты и часто позволяют разобраться в механизме коррозионного процесса. Эти методы используют, конечно, не только при проведении обследований промышленных объектов, но и при выполнении лабораторных исследований. Визуальное наблюдение позволяет фиксировать изменение внешнего вида поверхности металла, при этом обычно отмечают время появления продуктов коррозии, их распределение по поверхности, цвет, силу сцепления и другие характеристики. Изменение характера распределения продуктов коррозии во времени можно зафиксировать последовательным фотографированием. Визуальные наблюдения обычно дополняют измерением глубины проникновения коррозии, для чего используют такие широко распространенные приборы, как штангенциркуль, индика- [c.73]

    Оценку защитных свойств смазок, как правило, проводят визуально по изменению поверхности металла под смазкой после различных испытаний. Наиболее надежным методом определения защитных свойств смазок являются натурные испытания [2 ]. Однако этот способ очень длителен и поэтому им не всегда удобно пользоваться. Чаще всего для определения защитных свойств смазок применяют различные ускоренные методы испытания. Таким наиболее распространенным ускоренным методом является [c.237]

    Натурные методы — испытания реальных деталей в естественных условиях, в том числе проведение наблюдений за нормально эксплуатирующимися или находящимися на длительном хранении изделиями. Натурные испытания базируются на результатах лабораторных и полевых исследований. Полезные для практики результаты могут быть получены только длительными испытаниями. [c.199]

    Необходимая аппаратура определяется характером испытания на стенде, на макете, натурное). Можно тем не менее указать определенный минимум измерительной аппаратуры, который требуется при любых методах испытаний. При всех стендовых и натурных испытаниях возникает необходимость автоматического измерения и записи небольших линейных размеров элементов конструкции (деформации, зазоры), температур и сил (давления жидкости). [c.302]

    Описание методов стендовых и натурных испытаний, к которому прилагаются рабочие чертежи испытательного стенда и схема его работы, режимы испытаний (рабочие температуры, среды, величины нагрузок и скорости их приложения, продолжительность испытаний), схема монтажа контрольной аппаратуры и точный перечень аппаратуры с указанием организации-изготовителя и номера прибора в соответству-юш,ем каталоге. [c.304]

    В последнее время предложен новый метод прогнозирования, совмещающий в себе достоинства ускоренных и натурных испытаний быстроту определения и точный учет всех особенностей условий хранения и эксплуатации [214]. Этот метод прогнозирования авторы назвали комбинированным, так как он сочетает эксплуатационные испытания материала с ускоренными изделие на основе полимера эксплуатируется (хранится) в течение времени tl, составляющего небольшую, но представительную часть от полного срока службы Ть В этом цикле комбинированный метод автоматически учитывает все особенности эксплуатационного старения полимерного материала, что делает прогноз более точным и надежным. [c.83]

    При полевых испытаниях исследованию подвергаются также специальные образцы, однако коррозионная среда и условия испытания в данном случае являются естественными эксплуатационными. Эти испытания часто проводятся для проверки н уточнения результатов лабораторных исследований. Достоинством методов полевых испытаний является большая достоверность получаемых данных по сравнению с лабораторными испытаниями к недостаткам можно отнести их продолжительность. Методы натурных испытаний отличаются от предыдущих прежде всего тем, что исследуются реальные детали, машины, агрегаты или полупроизводствшные опытные установки в естественных экспериментальных условиях. Эти испытания являются наиболее точным видом коррозионных испытаний, однако имеют ряд недостатков во-первых, они, так же как и полевые испытания, продолжительны, во-вторых, дороги, громоздки, требуют большой тщательности, ибо повторение испытаний при допущении ошибок значительно удорожает их. Методы таких испытаний до 8 [c.8]

    Ответ докладчика. Я полностью согласен с утвернадением Дж. Витерса о желательности разработки метода натурных испытаний масел. Дальнейшие опытные данные для различных типов трансмиссионных смазочных масел, вероятно, покажут, что среднее давление по Герцу может служить приближенным и легко определяемым критерием для предварительной оценки поведения этих масе.л при скоростном режиме. [c.368]

    В последние годы среди основных факторов, которые необходимо учитывать нри расчете кожухотрубных теплообменников, наряду с интенсивпостью теплоотдачи и потерями давления заняла место вибрация. Трубы вибрируют с собственными частотами в ре.зультате протекания жидкости в межтрубном пространстве. Когда скорость потока становится достаточно бoльuioй для того, чтобы вибрирующие трубы ударялись о перегородки, кожух теплообменника или друг о друга, в трубах или трубных соединениях могут появиться утечки. При этом необходимо прекращать экеплуатацию теплообменника для ремонта и устранения конструктивных недостатков. Здесь рассматриваются проблемы, связанные с возникновением вибраций, методы расчета их появления вибраций, сравнение расчетоп с результатами натурных испытаний и некоторые способы предотвращения вибраций. [c.321]

    Количество ежегодно испытываемых дефектных труб должно составлять 5% от числа ремонтируемых участков трубопровода. Необходимо проводить не менее одного гидроиспытания в год при осуществлении за этот период более десяти вырезок дефектных труб одного типоразмера и из одной марки стали. Для испытаний сосудов или участков трубопровода на герметичность и прочность, а также для гидроиспытаний поврежденных труб применяют неразрушающие методы контроля развития дефектов УЗК, метод натурной тензометрии с использованием отечественной и импортной (например, прибор типа 8ТКЕ55САЫ 500 С) аппаратуры. В случае обнаружения дефектов, повреждений элементов конструкций, которые требуют проведения дополнительных исследований методом акустической эмиссии (АЭК), диагностику технического состояния объекта осуществляют методом АЭК в соответствии с нормативно-техническими документами [83, 121]. [c.165]

    Поведение прогнозируемых объектов существенно зависит от их взаимодействия с окружающей средой, а также характера и интенсивности процессов эксплуатации. Для оредсказания поведения составных частей оборудования и элементов конструкций необходимо рассматривать процессы деформирования, изнашивания, накопления повреждений и разрушения при переменных нагрузках, температурах и других внешних воздействиях. Чтобы судить о показателях безотказности и долговечности объекта в целом, недостаточно знать только показатели отдельных элементов. К тому же, многие конструкции уникальны или малосерийны, их блоки и агрегаты слишком громоздки или дороги, поэтому нельзя рассчитывать на накопление статгистической информации на основе их стендовых или натурных испытаний. В связи с этим для опенки показателей безотказности и долговечности механических систем применяют в основном расчетно-теоретический метод, основанный на статистических данных относительно свойств материалов, нагрузок н воздействий. [c.92]

    Покрытие на основе шпатлевки ЭП-00-10. Покрытие состоит из трех слоев шпатлевки ЭП-00-10. Материал перед нанесением разбавляют ацетоном до рабочей вязкости 22—26 с (по ВЗ-4 при 18—23 °С) и наносят на окрашиваемую поверхность методом пневматического распыления. Каждый слой покрытия сушат при 80 °С в течение 1,5 ч. Оптимальная толщина покрытия. 80—100 мкм. Покрытие испытывалось на бочках емкостью 200 л в следующих средах авиационном бензине Б-70, автомобильном бензине А-66, дизельном топливе, маслах МС-14, МК-8, ДСп-11, трансформаторном масле и автоле АКП-10. После 12 месяцев натурных испытаний покрытие находилось в хорошем состоянии качество нефтепродуктов соответстэовало требованиям ГОСТов и ТУ. [c.78]

    Нанесение полиэтилена методом газопламенного напыления производят по поверхности, подготовленной пескоструйной обработкой. При проведении лабораторных исследований и натурных испытаний было установлено, что полиэтиленовое покрытие, нанесенное методом газопламенного напыления ио теплоизоляционному лаку 135Т, обладает высокой стойкостью к нефтепродуктам в течение 3 лет при 18—23 °С и в течение 3 месяцев при температуре от —50 до - -50°С. Покрытие стойко также к действию холодной и горячей воды в течение 10 ч при 70—80°С, водяного пара в течение [c.88]

    В лабораторных условиях исследуют биостойкость компонентов отдельных материалов и покрытий и образцы этих материалов и покрытий. При наличии математических моделей кинетики процесса биоповреждений и известности значимых факторов испытания могут быть интенсифицированы (ускоренные испытания, экспресс-методы). При натурных испытаниях исследуют биозащищенность узлов машин и сооружений, а при эксплуатационных— оценивают биозащищенность конструкций в целом. [c.59]

    Образующиеся в процессе испытания коррозионные язвы аналогичны наблюдаемым при эксплуатации. Время их проникновения в основной слой соответствует характеристикам испытания ASS и, следовательно, натурным испытаниям в районе Детройта. По некоторым данным испытание стальных деталей с покрытиями в течение 2,4 мин по методу ЕС приравнивается к испытаниям по методу ASS в течение 16 ч (или к году натурных испытаний в районе Детройта). Степень проникновения язв в основной слой определяют путем использования индикаторных растворов. [c.164]

    Новая дуплексная нержавеющая сталь (26Сг — 6Ni — 0,4 u — ЗМо с добавками вольфрама и азота), обладающая повышенной стойкостью к щелевой коррозии в морской воде, разработана в Японии [158]. В этой же работе применен рювый метод лабораторных испытаний на щелевую коррозию, заключающийся в погружении образцов в раствор, содержащий 3 7о Na l, 0,5 М Маг804 и активированный уголь. Результаты ускоренных лабораторных испытаний хорошо согласуются с натурными испытаниями. [c.183]

    Как и следовало ожидать, двухслойные и особенно трехслойные покрытия показывают очень хорошие результаты при испытаниях по методу ТОНЭР происходит значительное облагораживание стандартного потенциала в стационарном и динамическом режимах, сдвиг потенциалов достигает значительной величины, в том числе после абразивного износа (эффект последействия). Трехслойные покрытия, отвечающие реальной модели защиты днищ автомобилей АвтоВАЗ, выдерживают испытания на абразивостойкость. Последнее подтверждается другими лабораторными методами (метод АУСМ , см. гл. 3) и результатами натурных испытаний автомобилей Жигули . [c.192]

    Подземное хозяйство промышленных площадок и городов представляет собой сложную и многообразную по видам сооружений сеть металлических коммуникаций, которая характеризуется большой насыщенностью подземными металлическими сооружениями, среди которых имеются газовые и водопроводные сети, мощные водоводы, теплопроводы, кабели электроснабжения и связи и др. Применение в подобных условиях существующих аналитических методов и методов моделирования весьма ограничено. Но в то же время обеспечение защиты особенно в зоне действия блуждающих токов необходимо сразу же после укладки сооружения в грунт. Это означает, что проектные решения требуют уточнения натурными испытаниями на реальных сооружениях в реальных условиях. Работа по наладке запроектированных и построенных средств защиты, определению и выбору оптимальных параметрёЪ и схем электрохимической защиты, а также, в случае необ1одимости, определения количества и мест размещения дополнительных средств защиты требует силового оборудования, разнообразной аппаратуры и измерительной техники, кабелей, материалов, инструмента. Выполнение работ в связи со срочностью решения вопросов защиты от коррозии не может осуществляться длительное время из-за опасности сквозных коррозионных повреждений, особенно в зоне действия блуждающих токов. [c.196]

    Стендовые испытания проводят на переоборудованных станках или специальных установках, что значительно сокращает стоимость определения технологических свойств СОТС. Стендовые испытания являются, как правило, ускоренными и материалосберегающими. Все известные методы стендовых испытаний можно условно разделить на две группы натурные и модельные. [c.45]

    Гарантированный срок службы детали до замены должен быть указан в разделе VI технических условий в категорической форме, например Деталь подлежит замене через 1500 ч работы независимо от состояния, в котором она находится по истечеипи этого срока . Основанием для назначения этого срока не могут быть гипотезы и нредположенпя. Он должен всегда определяться предварительными расчетами, ироверен-ными прп испытаниях образцов-свидетелей, при стендовых, а во многих случаях — при натурных испытаниях. Следует учитывать, что назначение предельных сроков службы деталп не должно являться выводом из случайных результатов испытаний. Результаты испытаний образцов-свидетелей должны носить статистический характер (необходимо определять величину ошибки и коэффициент отклонения от средней величины). Стендовые испытания должны быть организованы так, чтобы по крайней мере два независимых метода испытаний показывали одинаковый результат (в пределах коэффициента отклонения результатов испытаний образцов-свидетелей). Тогда срок службы назначается по минимальному статистическому показателю. 1т этом случае, как п в случае складского хранения, потребитель изделий из полимерных [c.309]


Смотреть страницы где упоминается термин Методы натурных испытаний: [c.158]    [c.87]    [c.76]    [c.8]    [c.564]    [c.222]    [c.358]   
Смотреть главы в:

Методы исследования коррозии металлов -> Методы натурных испытаний


Промышленные полимерные композиционные материалы (1980) -- [ c.443 ]




ПОИСК





Смотрите так же термины и статьи:

Методы испытания на модельных установках и натурных стендах

Методы полевых и натурных испытаний



© 2025 chem21.info Реклама на сайте