Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода гидратационная свободная

    Стабильность эмульсий и сроки их хранения зависят от типа кремнийорганической жидкости и типа эмульгатора, концентрации эмульсии и условий хранения. Под влиянием этих факторов может происходить коалесценция капелек, т. е. слияние отдельных капель эмульсии, или коагуляция эмульсии, т. е. слипание капелек. Последнее возможно и без разрушения эмульсии капли эмульсии остаются разделенными прослойками дисперсионной среды (раствором эмульгатора) и существуют раздельно. Коалесценция же вследствие нарушения прочности адсорбционных защитных слоев стабилизатора в результате укрупнения капель приводит к изменению дисперсности эмульсии в целом она необратимо разрушает эмульсию. Такое разрушение эмульсии происходит при низких температурах [71, при которых вначале замерзает свободная вода и затем гидратационная оболочка защитных слоев. Устойчивость системы изменяется и от того, что уменьшаются тепловое движение и взаимное отталкивание частиц. [c.216]


    Это можно объяснить тем, что с повышением гидратационного числа катиона уменьшается концентрация свободной воды. [c.262]

    Состояние воды в организме. В зависимости от степени связанности выделяют следующие три состояния воды свободная, гидратационная и иммобилизованная. [c.63]

    Исследованиям процессов кинетики гидратационного твердения цементов с применением рН-метрии были посвящены работы [1—2]. В работе [11 о кинетике твердения цементов, судили по изменению величины потенциала во времени, связанной с поверхностной свободной энергией цементных частиц. Автор работы [21 полагал, что, измеряя методом рН-метрии концентрацию активных водородных ионов, можно судить об изменении щелочности в жидкой фазе смеси цемента с водой это отражает процессы гидратационного твердения цементов. [c.181]

    Существенное влияние на кислотно-основное равновесие оказывает пористость К. с. Значительно большее содержание в пористых и макропористых К. с. свободной воды по сравнению с гидратационной повышает активность ионов в фазе геля и увеличивает скорость сорбции и установления равновесия. [c.495]

    Это уравнение показывает, что, по крайней мере в принципе, время корреляции можно определить, если известны q и / (Тс) для свободных ионов, а 6), рассчитано, исходя из s. Полученное таким путем время корреляции отражает взаимодействие между ионами металла и водой в некоторых случаях его можно использовать и применительно к другим лигандам. Величина Sb может зависеть от окружения металла, поскольку на эту величину могут влиять изменения гидратационного числа q или т , а следовательно, и /i(T ). Такие эффекты могут быть обусловлены связыванием лигандов с макромолекулами, поэтому измерение скорости релаксации протонов воды в присутствии комплекса с фермен- [c.385]

    Эта точка зрения, согласно которой вблизи поверхности белка имеется один или два слоя воды, очень сходной с объемной водой, но имеющей приблизительно в 100 раз большее время корреляции, согласуется с результатами измерения диэлектрической дисперсии в растворе белка [21, 22]. Эти данные обнаруживают распространение дисперсии, в данном случае диэлектрической проницаемости при высоких частотах, в область частот порядка нескольких сотен мегагерц, что является указанием на увеличение времени ориентационной релаксации фракции растворителя (воды). Мы определяем эту воду как молекулы воды в первой (а возможно, и во второй) гидратационной оболочке вблизи полярных групп, во многом аналогичные воде, которая обнаруживается рентгенографическим методом. Динамика этой воды изменяется пол влиянием стерических факторов и образования водородных связей с участием групп на поверхности белка. Эти требования могут быть выведены из результатов рентгенографического исследования. Время корреляции является по существу временем обмена - 10 с и вытекает из динамики диффузии растворителя вблизи поверхности. В частности, нельзя предположить, что обмен воды из этих слоев будет протекать более медленно. Если бы это происходило в интервале 10 —10 с, то это бы сказалось на величине члена А, но этого не наблюдается. Трудно представить себе такой тип связывания воды с поверхностью типичного белка, при котором молекулы воды удерживались бы у поверхности еще более длительное время и в то же время допускалась свободная реориентация молекул воды. Кроме того, следует вспомнить, что ориентационное время релаксации воды на поверхности раздела в замороженных растворах белка лишь немного больше, чем этот параметр прп —35°С (10 с) [2]. Поэтому имеется весьма мало оснований думать, что существуют молекулы-воды, время обмена для которых намного меньше 10 9 с. [c.177]


    Немодифицированные мембраны для обессоливания воды с умеренными, и высокими значениями степени удерживания соли имеют диаметры пор 24 2, 41 3 и 50 5 А. Примерные значения степени удерживания для этих мембран составляют 65, 35 и 48% соответственно [6, 20, 38]. В работе [25] сделано предположение, что в порах ацетата целлюлозы и в мембранах на основе пористых стекол существует свободная от соли жидкокристаллическая гидратационная оболочка толщиной около 22 А. В то же время авторы работы [33] недавно показали, что задерживание соли значительно улучшается при уменьшении радиуса пор в мембране до значений ниже 20—22 А. [c.332]

    На рис. 1-38 приведена кривая бр = / (1 ) для ила, взятая нами из работы Н. Г. Фесенко [Л. 86]. Из рис. 1-38 видно, что термоградиентный коэффициент изменяется в зависимости от влагосодержания по некоторой кривой, имеющей максимум. Этот максимум согласно опытам Н. Г. Фесенко с илом различного состава, соответствует границе между коллоидно связанной (гидратационной) и свободной (капиллярной и осмотической) влагой. При этом метод определения связанной воды по диаграмме,бр = / (И7) оказывается более точным, чем классический тензиметрический метод. Максимальное значение коэффициента бр, как видно из рис. 1-38, равно й,2Ъ% град. Диа- [c.76]

    По исследованиям А. Раковского (1931 г.), плотность связанной воды на поверхности крахмала - колеблется в пределах от 1,28 до 2,45. По данным Поляни (1920 г.), гидратационная оболочка не обладает уже растворяющими свойствами, поэтому при растворении какого-нибудь вещества в золе гидрофильного коллоида оно будет растворяться только в свободной воде и концентрация растворенного вещества будет давать более высокие показатели, чем в случае растворения его в чистом растворителе. [c.293]

    На основании этого делались попытки объяснить процессы застудневания, исходя из явлений гидратации. Известно, что многие студни при повышении температуры плавятся, превращаясь в золи, а при понижении температуры золи снова образуют студни. При повышении температуры кинетическая энергия молекул воды увеличивается, в связи с чем внешние диполи, ранее ориентированные вокруг коллоидных частиц, теряют свою ориентировку, благодаря чему гидратационные оболочки коллоидных частиц становятся тоньше. При понижении температуры, наоборот., водяные оболочки утолщаются настолько, что поглощают значительное количество свободной воды. В этом случае коллоидные частицы якобы соприкасаются своими гидратационными оболочками и образуют студень. [c.297]

    В набухших полимерах (студнях) различают два вида воды связанную (или гидратационную) и свободную (или капиллярную). Количество связанной воды в полимере зависит от его гидрофильности. Опыт показывает, что чем выше гидрофильные свойства полимера, тем больше содержит он связанной воды. Например, содержание связанной воды в желатине вдвое превышает массу сухого вещества. [c.421]

    Упорядоченность молекул воды в гидратационных оболочках, уплотненность ее обусловливает и еще одно замечательное свойство связанной воды, которое имеет большое значение для биологов и агрономов. Связав-ная вода при охлаждении раствора ВМС не замерзает, тогда как свободная вода подвержена замерзанию. Протоплазма животных и растительных организмов представляет собой сложнейшую систему, состоящую из высокомолекулярных соединений, поэтому вполне понятно то огромное значение, которое играет свободная и связанная вода в живой клетке. [c.422]

    Находящаяся в клетках организмов вода выступает не только в качестве растворителя, в котором находятся растворенные вещества. Часть воды так сильно связана силами межмолекулярного взаимодействия с другими соединениями, что ее можно рассматривать в качестве структурного соединения, отличающегося от свободной, не связанной воды. Это — гидратационная вода молекул, обладающих гидрофильными свойствами. Гидратационная вода настолько связана с соответствующими соединениями, что ее уже нельзя рассматривать в качестве растворителя. Она обладает незначительным давлением пара и повышенной плотностью. Это свидетельствует о том, что силы химического взаимодействия подвер- [c.59]

    Молекулы гидратационной воды находятся в постоянном обмене с молекулами свободной воды, и поэтому нерастворяющие свойства связанной воды в известной мере представляют условное понятие. Нерастворяющее пространство или объем зависит от природы веществ, обладающих сродством к воде. [c.60]

    ОПРЕДЕЛЕНИЕ СВОБОДНОЙ ВОДЫ ИЛИ ГИДРАТАЦИОННОЙ ВОДЫ [c.25]

    В предыдущей главе было показано, что с помощью реактива Фишера можно получить количественные результаты при определении гидратационной и свободной воды во многих неорганических соединениях. Однако часто встречаются затруднения, вызываемые побочными реакциями, и поэтому для успешного применения реактива весьма важно иметь ясное представление о природе и стехиометрии этих мешающих реакций. [c.250]


    Линия akb заканчивается пунктиром. Он проведен параллельно абсциссе иа том основании, что, как показано в ряде работ [4, 5], вводимая в полимер жидкость влияет на его Tg только до достижения предела растворимости. В данном случае этому пределу соответствует предельное содержание гидратационной воды. При концентрациях в области указанного пунктира невозможно было экспериментально получить значения Tg, так как на расстеклование накладывалось плавление свободной воды. [c.90]

    Каковы данные по состоянию воды в гидратной оболочке белка Основной вклад в энергию гидратации дают водородные связи между водой и полярными группами молекулы белка. Для образования гидратной оболочки глобулярных белков имеет значение пространственная доступность протон-донорных и протон-акцепторных центров для взаимодействия с молекулами воды. Оказалось, что гетероатомы нерегулярно расположены на поверхности глобулы, которая не может служить матрицей для кристаллизации воды. Так как число и размеры гидрофобных участков на поверхности также невелики, то шуба из уплотненных молекул воды вокруг глобулы не образуется, количество гидратационной воды, определенное различными методами, составляет 0,3-0,4 г НгО/г сухого белка, а обш ее содержание воды в кристаллах глобулярных белков не превышает, как правило, 0,45-0,60 г НгО/г сухого белка. Следовательно, количество свободной воды в белке невелико. Она, в частности, может заполнять внутренние полости , свободные от белкового веш ества, содержание воды в этих полостях также невелико (в лизоциме — 2, трипсине —12 молекул). Она может обмениваться с поверхностными водными слоями вследствие флуктуационных открытий внутренних полостей. [c.235]

    Поскольку мы делали все время довольно грубые до-пушения, следует считать, что совпадение в определении числа молей гидратной воды у иона водорода, полученное в трех различных методах (сорбция неэлектролитов, кинетика ионного обмена и набухание), вполне допустимое. Идея о разделении внутренней воды на свободную и гидратационную, вероятно, разумна, однако допущение постоянства количества молекул воды, входящей в гидратную оболочку фиксированных ионов и противоионов смолы, независимо от степени сшивки смолы, является почти наверняка грубым упрощением. Чем больше степень сшивки смолы и, следовательно, чем меньше набухший объем, тем меньше расстояние между подвижными и фиксированными ионами и тем сильнее взаимодействие между ними. Это взаимодействие стремится вытеснить молекулы воды из гидратной оболочки катиона и уменьшить степень его гидратации. Таким образом, в случае иона, находящегося в смоле с высокой степенью сшивки, определение количества молей воды, входящих в его гидратную оболочку, будет приводить -к более низким результатам, чем в случае того же иона, находящегося в смоле с малой степенью сшивки. В некотором отношении это подтверждается приведенными выше цифрами. Количества молей воды, входящих в гидратную оболочку иона водорода, найденные с помощью определения сорбции неэлектролитов или подсчитанные из скоростей ионного обмена, получены в обоих случаях в результате экстраполяции к бесконечно большой степени сшивки они поэтому представляют собой верхние пределы этой величины, равные 4 г-моль/г-ион и соответственно 5 г-моль1г-ион. Значения, полученные из определений набухшего объема, являются результатом [c.26]

    Часть воды, содержащейся внутри гранулы ионита, сольватирует фиксированные ионы и противоионы и наз. гидратационной. Для гидратации, напр., одной сульфогруппы катионита требуется 4—6 молекул воды. Остальная часть воды, наз. свободной , служит для транспортировки обменивающихся ионов. Свободная вода доступна и для неэлектролитов, находящихся во внешнем р-ре. Количество свободной воды в ионите быстро падает с увеличением степени поперечной сшитости каркаса, уменьшением числа и степени диссоциации ионогенных групп и увеличением концентрации внещие-го р-ра. [c.429]

    Наряду с водою гидратационной и водою иммобильной различают еще воду свободную. Жидкости организма плазма крови, лимфа, спинномозговая жидкость, пищеварительные соки, моча содержат свободную воду. Свободная вода содержится и в межклеточных пространствах тканей (межклеточная вода), но количество ее настолько невелико, что она не вытекает ири разрезе ткани вода удерживается между клетками силами капиллярности. Количество межклеточной воды значительно возрастает при патолсгических условиях, особенно, при болезнях почек, когда почки оказываются неспособными удалять избыток воды из организма. В этих случаях веда накапливается в подкожной клетчатке, в мышцах и в иных органах, что вызывает явление, именуемое отеком. Накопление свободной воды в организме (отеки) имеет также место при глубоких нарушениях функции сердечно-сосудистой системы. Нри отеках в организме человека накопляется много литров свободной воды. Из отечной мышцы вода вытекает при погружении в нее тонкой металлической трубки. Отечные органы теряют свою эластичность, становятся мягкими, тестообразными. При надавливании пальцами иа отечную кожу остается углубление, которое медленно расходится. [c.204]

    В области вяжущих веществ в настоящее время предметом исследований является углубленное изучение механизма гидратацион-ного твердения. При этом наряду с другими методами эффективным является метод ИК спектроскопии. С помощью этого метода возможно одновременное определение несвязанной воды (по деформационным колебаниям при 1629 см ), а также свободных и ассоциированных групп ОН (по валентным колебаниям при 3650 см ). [c.53]

    Свободная энергия активации для большинства систем близка к 15 ккал/молъ, и, очевидно, электростатическое отталкивание между обменивающимися катионами не является первостепенным фактором в определении скоростей обмена. На основании близости значений АР предполагается, что перенос электрона между акватированными катионами происходит через согласованный перенос атома водорода от гидратационной сферы восстановителя к гидратационной сфере окислителя. Далее, считается, что другие лиганды в первой координационной сфере (за исключением воды) не играют существенной роли. Активированный комплекс для обмена между Feaq и Fe q представляется поэтому в виде [c.149]

    Таким образом, при затворении молотой негашеной извести водой происходит гидратационное твердение, характерное и для других вяжущих веществ и выражающееся в гидратации окиси кальция, коллоидации и кристаллизации продукта гидратации. Наряду с этим для процесса твердения при обычных температурах имеют значение испарение свободной воды при высыхании и естественная карбонизация. При автоклавной обработке затвердевших продуктов основное значение приобретает процесс-взаимодействия извести с кремнеземом песка в присутствии воды при повышенной температуре. [c.95]

    Вода в набухших полимерах (студнях). Вода является важнейшим растворителем, и вопрос об отношении воды к растворенным и набухшим в ней веществам имеет первостепенное теоретическое и практическое значение. Следует различать две основные формы существования воды-растворителя в набухших полимерах (студнях, или гидрогелях) связанную, иначе,—гидратацион-ную воду, и воду свободную (несвязанную), или, иначе, капиллярную. Особую форму связанной воды представляет ее разновидность—кристаллизационная вода в водно-кристаллических веществах. Обособленно стоит вода химически связанная, или гидратная, входящая непосредственно в состав молекул многих веществ, в том числе и в состав макромолекул полимеров, например углеводов. [c.188]

    Гидратационная вода называется связанной водой, в отличие от свободной воды, выполняющей функцию среды. На это обстоятельство в свое время обратили В1нимание Думанский, Гатчек и другие исследователи. [c.292]

    Упорядочеяиость молекул воды в гидратационных оболочках, уплотненность ее обусловливает и еще одно замечательное свойство связанной воды, имеющее огромное аначение для биологов. Связа н-ная вода при охлаждении коллоидной системы ниже нуля ие замерзает, тогда как свободная подвержена заме рзанию. Если учесть, что протоплазма животных и растительных организмов представляет собой сложнейшую систему, состоящую из лиофильных коллоидоз, то будет яоно огромное значение свободной и связанной воды в организмах. [c.294]

    Их получают в результате реакции гидроксида кальция с жирными кислотами или жирами в минеральном масле [12.8]. Однако стабильная структура смазки (стабильная дисперсия мыла в масле) может быть достигнута только в присутствии воды (около 10 % масс, от содержания мыла). Удаление гидратационной воды приводит к разрушению структуры и разделению смазки на масляную и мыльную фазы, что сопровождается размягчением смазки. При недостаточном содержании воды получают крупнозернистые продукты с высокой склонностью к синерезису, тогда как при слишком высоком содержании воды получают непрозрачные смазки с низкими выходами мыла. Оптимальная концнетрация воды зависит также от содержания так называемых модификаторов структуры (например, глицерола, свободных жирных кислот, гликоля). Для производства кальциевых смазок предпочтительными являются нафтеновые и ароматические минеральные масла. [c.411]

    Большой интерес к исследованиям морозостойкости ионообменных материалов, вызванный прежде всего разработкой условий хранения и транспортировки их в зимнее время, вызвал публикацию ряда работ [221—222]. По данным этих работ, после замораживания уменьшается обменная емкость ионитов, а после размораживания отмечено разрушение гранул и увеличение набухаемости. Отсутствие каких-либо сведений о продуктах деструкции ионитов при замораживании не позволяет сделать обоснованных выводов о реакциях, протекающих при этом в ионообменниках. За счет расширения свободной воды в составе гидратационных слоев функциональных групп ионитов при замораживании следует ожидать механического разрыва, в первую очередь, связей функциональных групп с полимерной матрицей и в меньшей степенп — карбоцепных связей. Однако это предположение нуждается в экспериментальной проверке, [c.79]

    Сорбированную ионитом воду или растворитель обычно подразделяют на связанную и свободную . К связанной относят воду, образующую первые гидратационные слои вокруг фиксированного иона и противоиона. Количество ее обычно невелико и определяется числами гидратации ионов. Эта вода обладает целым рядом специфических свойств большей прочностью связи, повышенными плотностью и теплотой сорбции [310, 314], пониженной (около 183 К) температурой замерзания [15—17], пониженной подвижностью, затрудняющей ее регистрации методом ЯМР [315]. Общее содержание ее в ионите не зависР1т от природы и степени сшивки матрицы, а должно определяться природой фиксированного иона и противоиона и линейно возрастать с увеличением концентрации диссоциированных функциональных групп. Свободную воду целесообразно подразделить на порозную , находящуюся в порах трещинах [c.120]

    Из-за сопротивления полимерных цепей коэффициенты самодиффузии воды в ионитах существенно меньше, чем в жидкой фазе, но всегда больше, чем коэффициенты самодиффузии ионов. Так, коэффициенты самодиффузии воды в жидкой фазе при 271 и 298 К состав-тяют соответственно 1,1и 3,1-Ю м с, а энергия активации — 56 и 19 кДж/моль [318, с. 262]. Коэффициент самодиффузии воды в сульфополистирольном сульфокатионите Дау-экс-50 Н-формы при 298 К для образцов с содержанием ДВБ, равным 4,8 и 16%, составил соответственно 9,1 10- 5,4-10 ° и 2,2-10- ° м7с, а энергия активации — 19, 22 и 22 кДнч/моль [318, с. 262]. К сожалению, найденные коэффициенты самодиффузии воды в юнитах отражают перенос не только свободной, но и связанной воды в составе гидратационных слоев, размеры [c.124]

    Нормальные и кислые соли щелочных металлов большинства, сильных кислот не реагировали с реактивом Фишера, и при титровании определялось только содержание свободной воды или гидратационной воды (см. гл. VII), Тоже самое относится и к родственным им солям — дитйонату натрия ЫааЗгОв 2НаО и к пиросульфату калия КаЗгО . [c.262]

    При повышении температуры системы ионит—вода наблюдается ослаблел 1е и разрыв водородных связей воды, вследствие чего сигнал ПМР воды смещается в сильные поля. Скорость смещения сигналов ПМР внутренней воды от температуры меньше, чем впсш ней. Это явление было использовано для вычисления чисел гидратации противоионов и количества гидратационной воды (считали, что числа гидратации и химический сдвиг гидратационной воды не зависят от температуры [10]). Таким образом, еще раз было показано, что в полностью набухших ионитах внутренняя вода находится в двух состояниях вода гидратации и свободная вода определено относительное содержание свободной воды [И]. [c.94]

    Если природа противоионов определяет структуру и количество гидратационной воды, то природа и степень сшитости матрицы влияют на структуру и количество свободной воды [4, 9, 10]. В работе [И] показано, что количество свободной воды при заданном содержании дивинилбензола — почти постоянная величина для понитов в ионной форме щелочных металлов. [c.94]

    Рейд с соавторами считают, что в структуре ацетилцеллюлозных мембран находятся связанная и капиллярная воды . Первая из них непосредственно соединена водородными связями с определенными участками полимерных цепей матрицы мембраны. Капиллярная же вода заполняет промежутки (макрополости, капилляры) внутри этой структуры. Так как гидратационная способность связанной воды утрачена при создании водородной связи со свободными гидроксильными группами ацетилцеллюлозы, то она не обладает растворяющей способностью по отнощению к соли фильтруемого раствора, а мембраны, следовательно, не пропускают ионы солей. Молекулы воды проходят через мембрану, содержащую связанную воду, непрерывно разрывают и вновь образуют водородные связи между молекулами воды и гидроксильными группами ацетилцеллюлозы. [c.22]

    Гидратация ионитов и заполнение водой пустот их структуры является одним из условий протекания процессов ионного обмена между ионитами и контактирующими с ними водными растворами. Ясно, что количество воды в ионите и характеристики их взаимодействия существенно влияют на параметры процессов ионного обмена. Ввиду этого важно изучение гидратации и набухания ионообменных смол в зависимости от природы ионогенной группы и обмениваемого катиона. Но соответствующих данных в литературе мало, особенно о содержании связанной (гидратационной) воды в слабокислотных катионитах. Имеются лищь отдельные работы, в которых связанную воду определяли по энтальпии сорбции [1—4]. К сожалению, точность этого метода недостаточна — 2—5%. Имеются также работы по изучению набухания ионитов по изотермам сорбции паров воды [5—8]. Однако, как показал эксперимент, определение связанной воды по количеству ее, отвечающему равенству Р=Ро (ро — давление пара чистой воды), приводит к очень сильно завышенным результатам. Это объяснено тем, что значительное количество свободной воды конденсируется в капиллярах системы [5]. Ввиду такой картины при определении связанной воды по зависимости Р=/(л) (п — число молей воды в ионите) проводится неоднозначная графическая экстраполяция [9]. [c.88]

    Вполне понятно, что различные состояния воды в организме теснейшим образом связаны друг с другом. Изменения в содержании гидратационной воды влияют на содержание иммобильной воды, точно так же иммобильная вода находится во взаимосвязи со свободной водой. [c.205]


Смотреть страницы где упоминается термин Вода гидратационная свободная: [c.334]    [c.184]    [c.341]    [c.341]    [c.268]    [c.100]    [c.198]    [c.422]    [c.232]    [c.34]   
Физическая и коллоидная химия (1957) -- [ c.292 , c.295 ]




ПОИСК





Смотрите так же термины и статьи:

Вода гидратационная

Вода свободная

Определение свободной воды или гидратационной воды в инертных соединениях (общий метод)



© 2024 chem21.info Реклама на сайте