Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучук температура плавления

    Примером высокоплавкого полимера, обладающего относительно низкой теплотой плавления является изотактический полистирол с 7 пл==239°С, а удельная теплота плавления сравнима с теплотой плавления натурального каучука, температура плавления которого значительно ниже. Ясно, что для полимеров такого типа значение Т я в основном определяется энтропией плавления. [c.127]


    При нагревании (или при измельчении на вальцах) замороженный каучук возвращается в аморфное, эластичное, нормальное состояние, причем характерный рентгеновский спектр исчезает. Температура, при которой происходит исчезновение спектра, называется рентгенографической температурой плавления . У свежезамороженного каучука температура плавления равна 6—16° она возрастает до 32° спустя 4 года и до 36° через 12 лет. Наиболее высокая рентгенографическая температура плавления, наблюдавшаяся до настоящего времени, равна 42° (у каучука, хранившегося 22 года). Повышенные температуры плавления указывают на глубокую кристаллизацию, т.е. на параллельную ориентацию большого числа макромолекул. Изменение температуры плавления со временем, несомненно, обусловлено очень малой скоростью движения макромолекул, стремящихся к параллельной ориентации. [c.939]

    Плавление кристаллических полимеров очень напоминает плавление каучука. На рис. 7.8 приведена типичная кривая плавления полиэтилена высокой плотности. Как и в случае каучука, на кривой нет отчетливо выраженной точки плавления и процесс охватывает интервал температур в 10 °С. Однако в отличие от каучука температура плавления кристаллического полиэтилена меньше зависит от температуры кристаллизации максимальный разброс не превышает 2—3°С. [c.143]

    ЯМР [16], электронно-микроскопического [17]. Установлено, что даже незначительная доля структурных неоднородностей в каучуке оказывает большое влияние на скорость и степень кристаллизации полимера. Полупериод кристаллизации возрастает почти на порядок с уменьшением содержания ис-1,4-звеньев от 98 до 95%, а температура плавления кристаллов изменяется пропорционально изменению содержания 1,4-звеньев в этих пределах [14]. Скорость образования кристаллов в полимерах, содержащих 10% гранс-звеньев, на три порядка меньше величины, характерной для полиизопрена, состоящего исключительно из цис- [c.204]

    Литиевый полиизопрен не кристаллизуется в недеформированном состоянии. Он характеризуется очень малой способностью к кристаллизации и при растяжении с заметной скоростью кристаллизация происходит лишь при больших относительных удлинениях способность этого каучука к кристаллизации была установлена по эффекту Джоуля. Более высокая регулярность построения макромолекул титанового полиизопрена обусловливает способность этого каучука к кристаллизации как в условиях деформации, так и при понижении температуры. Однако кристалличность его ориентированных вулканизатов несколько меньше, чем вулканизатов НК при любых (одинаковых) деформациях и температурах [15, 19], а температура плавления ниже (-7- 2 "С по сравнению с 4-f- 11°С у НК). Кристаллическая решетка синтетического полиизопрена является моноклинной и имеет такие же параметры, как и решетка НК. [c.205]


    Композиции с твердым битумом или каменноугольным пеком. Эластомеры и битумные материалы с высокой температурой плавления могут смешиваться на двухвалковых мельницах или В закрытых смесителях, которые обычно используют для смешения резиновых смесей. Для приготовления концентрированных смесей битума и каучука необходимо, чтобы температура размягчения битумных материалов была достаточно высокой. В противном случае смесь становится слишком мягкой и клейкой, что затрудняет ее обработку. Достаточно большие количества сильно окисленных битумов или каменноугольных пеков, из которых глубоко отогнаны летучие ароматические фракции, хорошо смешиваются с эластомерами в смесителях типа Бенбери, и смесь легко поддается обработке. При охлаждении из смеси могут быть получены гранулы, которые затем при нагревании и перемешивании вводят в виде компонента в дорожный битум или деготь. Этот способ модификации битумных материалов эластомерами описан в ряде патентов [231. [c.232]

    Формамид представляет собой бесцветную гигроскопическую жидкость без запаха и является превосходным растворителем. Низкая температура плавления позволяет применять его для криоско-пических определений молекулярного веса. В настоящее время формамид находит также техническое применение, например для получения ускорителей полимеризации каучуков. [c.740]

    Аналогично можно истолковать термокинетические переходы расплавов или растворов, иллюстрируемые G — 7-диаграммами и рассмотренные выще. По аналогии с тем, как при растяжении каучука мы попросту временно (до Тех пор, пока приложено растягивающее напряжение) повышаем его температуру плавления настолько, что он вынужден кристаллизоваться, так и при растяжении расплава или концентрированного раствора мы повышаем их температуру плавления по сравнению со статической и, соответственно, провоцируем кристаллизацию — в идеале, с развернутыми цепями. Однако статическая температура плавления достаточно высока, и ориентированное кристаллическое состояние легко фиксируется после снятия нагрузки. [c.226]

Рис. 10.22. Соотношения между температурами плавления и кристаллизации для натурального каучука Рис. 10.22. <a href="/info/128990">Соотношения между температурами плавления</a> и кристаллизации для натурального каучука
    Оксиэтилированные полимеры растворимы в этиловом спирте и смеси спирта с водой по свойствам они приближаются к каучукам, сохраняя температуру плавления исходных полиамидов. [c.260]

    Литий используется как источник получения трития и для приготовления различных сплавов. Натрий применяют для получения синтетического каучука как катализатор, в ядерных реакциях как теплоноситель, для изготовления антифрикционных сплавов на свинцовой основе, для изготовления перекиси натрия и т. д. В сплаве с калием он образует эвтектику 77,2% К и 22,8% Ыа с температурой плавления 12,5°С. Сплавы, содержащие больше 40% калия (до 90%), при обыкновенной температуре жидкие. [c.274]

    Тиурам представляет собой светло-желтый порошок с плотностью 1,4 см и температурой плавления 140—142 "С. Тиурам является ультраускорителем, его критическая температура действия около 105—125 °С поэтому резиновые смеси с тиурамом обладают склонностью к подвулканизации. Применяют тиурам в дозировках от 0,1 до 0,75% от массы каучука, а при вулканизации в горячем воздухе в дозировке 0,3—0,7%. Активируется окисью цинка. Сажа, каолин и регенерат понижают активность тиурама. Вулканизаты отличаются хорошим сопротивлением старению. В дозировке 3—5% тиурам применяют в производстве теплостойких резин особой теплостойкостью отличаются резины, получаемые с тиурамом, без серы. Вулканизация при этом происходит за счет серы, отш,епляемой тиурамом. [c.137]

    Вазелин технический представляет собой однородную желтую или коричневую мазь с запахом минеральных масел с температурой плавления около 40—50 °С. Вазелин является смесью жидких и твердых углеводородов, получаемой сплавлением парафина, церезина с минеральными маслами. Вазелин технический применяется в количестве до 2—3% от количества каучука. [c.182]

    Неозон Д — вещество светло-серого цвета с температурой плавления 105 °С, применяется в темных резинах в дозировке 0,5—2% от массы каучука. [c.191]

    Серый порошок с температурой плавления не менее 147 °С. Это эффективный противостаритель, повышающий сопротивление резин из СКС, СКД, СКН и натурального каучука к действию многократных деформаций. Применяют его в количестве 0,2—2% от массы каучука. [c.191]

    Гидрохлорированный каучук находит широкое применение в производстве комбинированных упаковочных материалов в сочетании с бумагой, тканью, металлической фольгой, полимерными пленками. Комбинированные упаковочные материалы сравнительно дешевы и характеризуются таким комплексом свойств, которым не обладает ни один из компонентов комбинированного материала. Наиболее широко распространенным комбинированным материалом является бумага с покрытием из гидрохлорированного каучука, При минимальной толщине покрытия бумага становится водонепроницаемой, жиростойкой, термосвариваемой и т. д. Гидрохло-зированный каучук может наноситься на бумагу в виде раствора 132] или пленки при помощи связующих [133], путем совмещения материалов под давлением при температуре, близкой к температуре плавления каучука [134]. Гидрохлорированный каучук комбинируют с пленками из поливинилового спирта [135], из сополимеров винилхлорида с винилиденхлоридом [136], сополимеров винилхлорида с акрилонитрилом [137], с полиэфирными пленками [138]. [c.229]


    Работы Куна, Петерли и Майера [419, 420] по замораживанию набухших вулканизованных каучуков наметили новый подход к изучению структуры сшитых полимеров. Их исследованиями было установлено, что оценка степени сшивания может быть дана, исходя из понижения температуры замерзания растворителя в набухшем каучуке. Разность между температурой замерзания чистого растворителя и растворителя, связанного набухшим каучуком, может достигать 20°. Эти авторы рассматривали замороженный набухший вулканизат как продукт, состояш ий из кристалликов растворителя (обычно бензола), разделенных один от другого элементами пространственной сетки каучука. Температура плавления таких кристалликов в соответствии с малыми их размерами должна быть ниже, чем температура плавления макрокристалла авторы метода считали, что разность температур замерзания АТ может быть найдена по уравнению [c.220]

    Плавление диеновых полимеров также соответствует закономерностям, наблюдаемым при плавлении их мономерных аналогов. Например, цыс-изомеры производных этилена более легкоплавки по сравнению с гранс-изомерами. Поэтому транс-1,4-полиизонрен (гуттаперча) плавится при более высоких температурах, чем Чыс-1,4-полиизопрен (натуральный каучук). Температура плавления 1 мс-1,4-полибутадиена равна 1 °С, а транс-1,4-нолибутадиена составляет 148 °С. По-видимому, более низкие температуры плавления обусловлены большей гибкостью цепи полимера. [c.116]

    Гуттаперча хорошо растворяется в горячем петролейном эфире, в холодном петролейном эфире растворение идет с трудом. В чистом виде гуттаперчу можно выделить из сырой гуттаперчи или балаты при этом получают а-форму, которая образуется также, если нагреть р-гуттаперчу до 70—75° и затем медленно охладить. а-Моди-фикация дает рентгенограмму волокна с периодом идентичности 8,7 А, что совпадает с величиной, рассчитанной для вещества с полностью вытянутым копланарным расположением атомов в элементарном звене макромолекулы и трснс-конфигурацией двойной связи [см. формулу (436)]. а-Модификация гуттаперчи — термодинамически устойчивая форма р-модификация образуется при быстром охлаждении нагретой до 70° а-гуттаперчи. Если вытягивать р-форму при 30—40 , то на рентгенограмме волокна появляются интерференции с периодом 4,77 А. Для плоскостного строения элементарного звена, согласно формуле (43а), период составляет 5,1 А, следовательно, у р-формы гуттаперчи, как и у каучука, по-видимому, происходит скручивание цепей. Гуттаперча кристаллизуется значительно лучше, чем каучук, температура плавления ее около 50° при этой температуре интерференции на рентгенограмме исчезают, но при охлаждении быстро появляются вновь. Различия в содержании кристаллической фазы (у гуттаперчи выше, чем у каучука), в кристаллизуемости и в физических свойствах каучука и гуттаперчи объясняются разной пространственной конфигурацией элементарных звеньев, хотя элементарный состав, строение элементарного звена и величина молекулярного веса у них одинаковы. [c.85]

    Стереорегулярный изопреновый каучук кристаллизуется при растяжении или понижении температуры, обладает низкой температурой хрупкости (около —70 °С), а вулканизаты его — низкой температурой стеклования (около —58°С). Наличие звеньев 1,2-и 3,4- затрудняет его кристаллизацию. Так, если СКИ-3 при —26 °С все же кристаллизуется при хранении с небольшой скоростью (в течение 140 ч), то изопреновые каучуки, полученные на литийорганическом катализаторе, вообще кристаллизуются только при растяжении. При этом кристаллическая фаза СКИ-Л возникает при значительно большем удлинении, чем для натурального каучука. Температура плавления кристаллитов как натурального, так и синтетического ц с-1,4-полиизопренов составляет около 25 °С. Содерл<ание кристаллической фазы в растянутом вулкани-зате натурального каучука достигает 40%, а синтетического изопренового не превышает 25%. Возможно, меньшая склонность к кристаллизации синтетических полиизоиренов (по сравнению с натуральным каучуком) обусловлена не только меньшей регулярностью их строения, но и тем, что в натуральном каучуке со- [c.107]

    Основное отличие гранс-полипентенамера от других каучуков состоит в характере кристаллизационных процессов. ТПП легко кристаллизуется при охлаждении и при растяжении, причем температура плавления кристаллов лежит в области комнатных температур, что сближает ТПП по физическим свойствам с НК. [c.63]

    Исследование процесса кристаллизации модифицированного полиизопрена (каучука СКИ-ЗМ) дилатометрическим методом [14, с. 109—127] показало, что введение даже небольшого количества полярных атомов и групп (до 1,5%) снижает скорость кристаллизации. В то же время модификация полиизопрена структурирующим агентом нитрозаном К вследствие возникновения слабых химической и физической сетки в определенных условиях способствует ускорению кристаллизации полиизопрена. Действительно, в дальнейшем при рентгенографическом изучении кристаллизации при растяжении наполненных смесей НК, СКИ-3 и СКИ-3, модифицированного различными функциональными группами, было показано [21], что сажевые смеси на основе каучука СКИ-3 с функциональными группами при растяжении на 300—400% обнаруживают кристаллические рефлексы, аналогичные наблюдаемым для натурального каучука, в то время как смеси на основе каучука СКИ-3 не обнаруживают кристаллических рефлексов при растяжении до 1000%. Температура плавления кристаллитов модифицированного каучука СКИ-ЗМ составляет 50—60 °С (в зависимости от метода модификации), т. е. ниже, чем у кристаллитов натурального каучука (65°С), вследствие большей дефектности. Это исследование ярко иллюстрирует роль кристаллизации в возникновении когезионной прочности. Имеется четкая связь степени кристаллизации и прочности ненаполненных сополимеров этилена и пропилена в зависимости от содержания пропилена [22]. [c.234]

    Параллельная укладка цепей уменьшает величину А5, присущую аморфному каучуку, до значений, характерных для кристаллизующихся полимеров, поскольку конформационная энтропия ориентированных цепей"имеет меньшее значение. С другой стороны, ориентация не оказывает никакого влияния наХэнтальпию аморфного каучука. Поэтому [величина АЯ в уравнении (3.6-2) остается неизменной и определяется из теории Гвысокоэластичности каучука. Таким образом, уравнение (3.6-2) показывает, что при деформации каучука должно наблюдаться заметное повышение температуры плавления, увеличивающее степень переохлаждения, которая является главным фактором, управляющим скоростью процессов кристаллизации. [c.60]

    Сера является наиболее распространенным вулканизирующим веществом для многих каучуков. Степень чистоты применяемой серы должна быть не менее 99,5 %. Равномерное распределение серы в смеси — необходимое условие для достижения оптимальных физико-механических показателей вулканизатов. Наличие в резинах свободной серы указывает на неправильную рецептуру смеси или на недовулканизацию. Суть процесса вулканизации заключается в образовании трехмерной сетчатой структуры из линейных макромолекул каучука при нагревании его, например, с серой. Атомы серы присоединяются по двойным связям макромолекул и образузот между ними сшивающие дисульфидные мостики, как показано на рис. 3.1. Се тчатый полимер прочнее и проявляет повышенную упругость — высокоэластичность. В зависимости от количества сшивающего агента (серы) можно получать сетки с различной частотой сшивки. Предельно сшитый каучук — эбонит — не обладает эластичностью и представляет собой твердый материал. Температура вулканизации должна быть выше температуры плавления серы (120 °С), но ниже температуры плавления каучука (180-200 °С). [c.24]

    Общеизвестн(5Й иллюстрацией роста Тал. с растяжением (хотя о том, что именно подобные опыты иллюстрируют, почему-то редко задумываются) является ориентационная кристаллизация каучуков. Действительно, растягивая каучук при комнатной температуре, мы доводим его до закристаллизованного состояния при этом выделяется регистрируемая без всяких приборов теплота кристаллизации. Однако так как статическая температура плавления такого каучука на десятки градусов ниже, то после снятия напряжения каучук плавится и сокращается. Не следует путать, эти эфферты с рассмотренными в гл. III и IV для ал<орфных каучуков. [c.226]

    Хлорид серы (I) S2 I2 — маслянистая жидкость золотистого цвета, во влажном воздухе дымит вследствие гидролиза, растворяется в сероуглероде, температура плавления— 77 °С, температура кипения 138 °С используется в качестве растворителя серы при вулканизации каучука. [c.138]

    Температуры плавления ряда полимеров ниже комнатной. Будучи регулярными, эти полимеры способны кристаллизоваться лишь при значительном понижении температуры. Это прежде всего каучуки. Так, для цис-полиизопрена (натуральный каучук) T j, = 28° , Однако нрн комнатной температуре он [грактически не кристаллизуется, а максимальная скорость его кристаллизации составляет —25°. [c.181]

    В смесях из натурального и дивинил-нитрильных каучуков, содержащих сажу, применяется ускоритель вулкацит Р экстра М, представляющий собой этилфенилдитиокарбамат цинка. Это серый порошок с температурой плавления 203—204 °С и плотностью 1,43—1,44 г/см . Добавка 0,1% ускорителя к обычной ускорительной группе в сажевых смесях сокращает время вулканизации при 150 °С в 2,5 раза. [c.136]

    ДФГ — порошок белого или светло-серого цвета с плотностью 1,13 и температурой плавления 143—147 °С. Применяется в резиновых смесях, вулканизующихся в прессе а также в котле в паровой и воздушной среде, в дозировках 0,7—2,5% от массы каучука. В смесях из натурального каучука ДФГ является ускорителем средней активности. Он не токсичен и поэтому применяется в резинах, используемых в пищевой промышленности не вызывает потемнения резин и употребляется также при изготовлении цветных резин это единственный ускоритель, пригодный в смесях с трех- и пятисернистой сурьмой. ДФГ часто применяется совместно с каптаксом или альтаксом. Рекомендуется использовать ДФГ для изготовления жестких резин, обладающих высоким модулем, работающих в условиях многократного сжатия, изгиба или в условиях ударных нагрузок. [c.141]

    Парафин — это смесь твердых углеводородов жирного ряда кристаллического строения. Получается из парафинистых дистил-латов нефти путем их охлаждения. Парафин выпускается разных марок в зависимости от степени очистки. Технически очищенные парафины марок Г и Д имеют температуру плавления не ниже 50 °С. Парафин легко выпотевает на поверхность резиновой смеси и вулканизата, понижая клейкость резиновой смеси, но увеличивая сопротивление резины старению. Применяется парафин в количестве до 2% от количества каучука. [c.182]

    Дпазоаминобензол СвНа—Н = Ы—НИ—СеНа кристаллическое вещество коричнево-желтого цвета с температурой плавления 96—98 °С, хорощо растворяется в натуральном и хлоропреновом каучуках. В резиновых смесях его применяют в количестве 1 —4% от массы каучука. В присутствии воды энергично разлагается уже при температуре 93 °С по уравнению  [c.198]

    К веществам, специально применяемым для понижения активности ускорителей вулканизации и для предотвращения преждевременной вулканизации, относятся бензойная кислота СеНаСООН, 0-фталевая кислота СеН4(СООН)2 и фталевый ангидрид СеН4(С0).20. Эти вещества называются иногда антискор-ч и н г а м и. Они легче других кислот распределяются в каучуке. Особенно часто применяют фталевый ангидрид. Это кристаллическое вещество с кристаллами в виде блестящих игл или призм, с температурой плавления около 131 °С. Применяют фталевый ангидрид в количестве нескольких десятых долей процента от массы каучука в резиновых смесях, содержащих тиурам. [c.198]

    Прн растяжении кристалличной плеикк происходит ориентация. Образцы ориентированной пленки очень прочны. Выше температуры плавления кристаллитов (около 55°) лленкн становятся похожими на каучук, однако сохраняют свою прочность. [c.309]

    Напротив, гибкие макромолекулы сравнительно простого строения, с регулярной структурой, гораздо легче укладываются в кристаллические решетки. К этой группе относятся такие полимеры, как полиэтилен, тефлон, найлон и другие полиамиды, в значительной мере образующие кристаллиты уже при комнатной температуре без охлаждения или растяжения например, полиэтилен при комнатной температуре закристаллизован на 50—70°о. Легко кристаллизуются также полимеры стереоспецифического регулярного строения (изотактические полимеры), молекулы которых обладают высокой химической однородностью они при комнатной температуре кристаллизуются почти нацело. Такие полимеры называются кристаллическими, тогда как все рассмотренные выше полимеры называются аморфными. Они обладают значительной прочностью, но гораздо менее эластичны, чем каучуки у полиэтилена высокая эластичность проявляется лишь при температуре выше 115°. Температура плавления кристаллитов большинства этих полимеров лежит выше 80°, причем ее положение смещается при растяжении полимера (Александров, Лазур-кин). Поэтому при деформации кристаллических полимеров происходит плавление одних кристаллитов и рекристаллизация других в направлении силы растяжения, что [c.234]

    Восковая композиция включает 70 % гаровакса, восковая мон-тановая композиция — 30 % (температура плавления 58,5 °С). Состав пропиточного лака (г) асфальт 50, сера 3,5, льняное масло 150, скипидар 50, бензин 200 смесь нагревают до температуры 120°С и перемешивают. Состав каучукового лака (г) каучук 50, кани-( юль 120, скипидар 300 (готовят так же, как и пропиточный лак). [c.267]

    Аналогичные композиции были получены на основе поликарбоната из бисфенола А с другими эластомерами натуральным каучуком, полибутадиеном, полиизопреном, бутилкаучуком и нитрильным каучуком [121]. Смеси поликарбоната и привитых сополимеров стирола и акрило-нитрила с полибутадиеном также позволяют улучшить термопластичность поликарбоната и перерабатывать композиции литьем под давлением при соотношении поликарбонат привитой сополимер от (90 30) до (10 70) [118]. Композиция поликарбоната с 50% поли-а-бутена имеет низкую температуру плавления, поэтому этот материал можно перерабатывать при пониженных температурах [122]. Описан новый термопласт циколой 800 , представляющий, собой композицию поликарбоната с АБС-пластиком (Гпл = 254,2—276,7 С), который обладает высокой ударной вязкостью, теплостойкостью, разрушающим напряжением при растяжении, высокой химической стойкостью [123]. Этот термопласт перерабатывается экструзией, литьем под давлением, вакуумформова-нием [123] и применяется в самолетостроении., судостроении, машиностроении, а также для производства защитных шлемов [124]. [c.270]

    Суперпозиция фазово-агрегатных и релаксационных состояний тоже приводит к появлению ряда сугубо полимерных физических и механических свойств. Наиболее характерный пример — кристаллизующиеся каучуки. Поскольку обычно температуры стеклования и размягчения лежат ниже температуры плавления, кристалло-аморфный полимер может существовать в виде взвеси кристаллитов, связанных в паракристаллическую сетку Хоземанна (в примере с взвесью кристаллитов простого вещества в стеклообразной матрице сетка отсутствовала) в стеклообразной или высокоэластической матрице. Поскольку температура текучести зависит от молекулярной массы и простого соответствия между ней и Тал нет, возможны ситуации, когда после размягчения аморфной матрицы полимер будет сохранять твердоподобие из-за высокой степени кристалличности типичный пример — линейный полиэтилен. [c.322]

    Из таблицы видно, что наибольшее значение относительного удлинения при разрыве имеет образец с диэтиламинометилентри-этоксисиланом (АДЭ-3). При введении полиметиленфениленди-амина ЭС-К-1 гидрохлорированный каучук становится эластичным и более теплостойким температура плавления возрастает на 6 °С, а начало разложения сдвигается в сторону более высоких температур. Нерастворимость в хлорсодержащих растворителях указывает на образование сшитого продукта. [c.226]

    Можно выделить еще одно направление в развитии полимерной химии а-окисей, в котором полиалкилеиоксиды играют роль реакционноспособных промежуточных продуктов. Значительное место здесь занимает синтез полиуретанов на основе олигомерных простых полиэфиров, и по сей день являющийся сильнейшим стимулятором всей этой области [1]. Развивается и другой метод создания поли-алкиленоксидных каучуков — введение периферических двойных связей с последующей радикальной вулканизацией 12]. Ряд фирм уделяют этому большое внимание. И, наконец, разрабатываются способы прямой вулканизации и разнообразная химическая модификация гомополимеров [3], способная обеспечить возможность их непосредственного практического использования, основным препятствием которому являются низкие температуры плавления. [c.214]

    Недавно было сообщено [224] о синтезе светлого малотоксичного продукта фенольного типа марки ВТС-250. Данный стабилизатор представляет собой белое кристаллическое вещество с температурой плавления 88-89° С, растворимое в органических растворителях и хорошо совместимое с карбоцепными каучуками. Он не растворяется в воде и не гидролизуется в кислой и щелочной средах, имеет малую летучесть.По этому показателю новый стабилизатор значительно более предпочтителен Ионола, П-23 (2,4,6 - три-трет. бутилфенол), Агидола-2, Нафтама-2. [c.215]


Смотреть страницы где упоминается термин Каучук температура плавления: [c.538]    [c.182]    [c.142]    [c.248]    [c.140]    [c.50]    [c.18]    [c.146]    [c.24]    [c.35]   
Введение в химию высокомолекулярных соединений (1960) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Температура плавления



© 2025 chem21.info Реклама на сайте