Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Золото электроотрицательность

    Так как константа нестойкости комплекса KAu( N)2 ничтожно мала (/С 5-10 ), то потенциал равновесия золота в цианистом щелочном растворе значительно смещен в сторону электроотрицательных значений, что исключает взаимное вытеснение металлов при погружении в электролит золочения изделий из меди и ее сплавов, а также из других металлов. Электроосаждение золота из щелочных цианистых электролитов протекает при большой катодной поляризации (рис. ХП-20), что обусловливает их высокую рассеивающую способность и мелкозернистую структуру катодных осадков. [c.425]


    Практически все примеси, находящиеся в аноде, более электроотрицательны, чем серебро. Исключение составляют золото и платиноиды. Последние лри растворении анода переходят в шлам (Стандартные потенциалы, см. табл. 4). Медь, свинец переходят в раствор, но совместный разряд их ионов на катоде при столь большом различии потенциалов исключен (см. гл. I, 9). Соли As, Sb, Bi гидролизуют и переходят в шлам. [c.237]

    Стандартные потенциалы образования одновалентных и трехвалентных ионов, а также перехода из одновалентных в трехвалентные имеют следующие значения (табл. 58). Из приведенных данных видно, что электродные потенциалы в кислых водных растворах имеют более электроотрицательное значение вследствие того, что золото присутствует в растворах в виде комплексных ионов. [c.247]

    При столь электроположительных потенциалах практически все примеси, за исключением золота, платиноидов и серебра, более электроотрицательны, чем ртуть. Электролитическое рафинирование ртути применяется весьма редко. [c.278]

    Сера непосредственно соединяется со многими элементами. Если элемент имеет меньшую электроотрицательность, чем сера, происходит образование сульфидов, содержащих ион S . Например, сульфид железа(П) FeS образуется при непосредственном взаимодействии железа и серы. Многие металлические элементы встречаются в природе в виде сульфидных руд, например PbS (галенит, или свинцовый блеск) и HgS (киноварь). Существуют также руды, родственные сульфидным, которые содержат ион Sj (аналог пероксид-иона) и называются пиратами. Пирит железа FeS, образует золотисто-желтые кубические кристаллы. Поскольку в старину золотоискатели иногда по ошибке принимали пирит железа за золото, он получил название золотая обманка . [c.312]

    Этот же принцип Д. И. Менделеев строго соблюдает и внутри каждой группы при расположении элементов главных подгрупп и переходных металлов. Действительно, наиболее электроположительные металлы располагаются в I группе слева от более электроотрицательных меди, серебра и золота. Во П группе щелочноземельные металлы с ярко выраженными электроположительными свойствами располагаются слева от заметно более электроотрицательных элементов подгруппы цинка. В П1 группе слева Д. И. Менделеев располагает скандий, иттрий и лантан, обладающие типичными металлическими свойствами, а справа — амфотерные, значительно более электроотрицательные элементы подгруппы бора алюминий, галлий, индий и таллий. В IV группе на том же основании подгруппа титана располагается слева от подгруппы углерода. Во всех остальных группах подгруппы переходных металлов находятся слева от неметаллических элементов главных подгрупп. [c.78]


    Сурьма, висмут и олово, будучи более электроотрицательными, чем серебро, также растворяются анодно, однако, попав в раствор, образуют нерастворимые соединения сурьма и висмут — гидроокиси, олово — метаоловянную кислоту. Эти соединения являются результатом гидролиза образующихся в первый момент нитратов этих металлов (см. главу I). Они выпадают в шлам вместе с золотом, селеном, теллуром и платиноидами. Основная электрохимическая реакция на катоде — реакция разряда ионов серебра  [c.41]

    В сплавах, компоненты которых образуют непрерывный ряд твердых растворов, при определенных электрохимических условиях наряду с основной фазой твердого раствора может образоваться и фаза электроотрицательного элемента. В качестве примера можно привести сплав золота с медью. Литейный сплав является твердым раствором, в случае же электрохимического осаждения этого сплава из цианистого электролита наряду с твердым раствором на катоде выделяется более электроотрицательный металл — медь. [c.142]

    Для золочения применяют главным образом цианистые и реже железистосинеродистые электролиты. В цианистых электролитах равновесный потенциал золота настолько сильно сдвигается в область электроотрицательных значений, что предварительного амальгамирования не требуется. [c.208]

    Наиболее благоприятные условия для образования твердых растворов замещения — близкие атомные радиусы обоего рода атомов и одинаковые кристаллические решетки (изоморфность компонентов) у обоих компонентов. Важно, чтобы элементы были близко расположены друг к другу в периодической системе, лучше в одной группе с одинаковым числом валентных электронов, с малым различием потенциалов ионизации и электроотрицательности. Мы знаем уже, что такие твердые неограниченные растворы образуют серебро и золото (г = = 1,44 А у обоих металлов), кремний и германий (rsi = 1,17 А, гое = = 1,22 А). Ограниченные твердые растворы образуются при различии радиусов до 15% (по Юм-Розери). Например, цинк (г = 1,37 А) в меди г = 1,28 А) растворяется до 38,4 ат. %, а кадмий —только до 1,7 ат.% (г = 1,54 А). [c.141]

    На катоде преимущественно идут процессы, требующие наименьшего отрицательного потенциала. Поэтому если с основным металлом с анода перейдут в раствор ионы более электроотрицательных металлов, то на катоде будет осаждаться только основной металл. Метод электролитического рафинирования широко используется для получения чистой меди из черновой меди, содержащей примеси серебра, золота, для получения чистого никеля из чернового никеля с целью очистки от меди, железа и платиновых металлов. Электрорафинированием получают серебро и золото, а также используют этот метод Для. получения чистого свинца, висмута, олова и сурьмы. Как правило, процессы электрорафинирования осуществляют в бездиафрагменных электролизерах. [c.299]

    Почти всю медь в мире готовят методом электрорафинирования. Извлекаемые при этом серебро и золото практически окупают стоимость рафинирования. Для осуществления процесса электрорафинирования черновая медь отливается в аноды, которые завешиваются в электролизер, а между ними помещаются катоды из тонких листов меди. Электролитом служит сульфат меди, к которому для увеличения электропроводности добавляется серная кислота. В процессе электрорафинирования медь и более электроотрицательные примеси переходят из анода в электролит, а на катоде [c.303]

    Рассмотрите изменение атомных радиусов, энергий ионизации, сродства к электрону и электроотрицательности в ряду Си - Аи. Почему радиус атома меди (Z=29) меньше радиуса атома калия (Z=19) Почему радиусы атомов серебра (Z=47) и золота (Z=79) практически одинаковы  [c.140]

    Полученные уравнения, конечно, не могут быть применены для сплавов со сколь угодно большой концентрацией электроотрицательного компонента, когда переходное время, определяемое условием Са(Хг. та) =0, экспериментально неизмеримо. Подобное наблюдается не всегда. К примеру, даже на сплавах системы Ag—Au, у которых поверхностная перегруппировка атомов максимально облегчена, оплошной слой золота в ходе СР серебра образуется лишь при N°Ag 0,5 [101]. Для таких сплавов выражения концентраций и хронопотенциограммы могут быть существенно упрощены.. Действительно, из (2.88) следует, что снижение поверхностной концентрации А до нуля происходит, если соблюдается условие  [c.93]

    Ковалентная составляющая в связях соединений меди, серебра и золота с электроотрицательными элементами выше, чем у щелочных металлов. Склонность соединяться с водородом и образовывать гидриды ионного типа невелика и такие соединения очень непрочны. Элементы подгруппы 1В образуют значительно больше труднорастворимых соединений, чем щелочные металлы. Высокая ковалентная составляющая обусловливает низкую растворимость оксидов, гидроксидов, сульфидов и невысокие растворимости хлор-, бром- и иодпроизводных однозарядных катионов элементов подгруппы 1В. Высокое значение ионизационного потенциала и меньшее, чем у щелочных металлов, различие между радиусами ионов и атомов указывает на более положительное значение их окислительно-восстановительных потенциалов. Сверху вниз по подгруппе окислительно-восстановительный потенциал растет. В водных растворах нормальный потенциал у всех элементов положительнее водорода. По отношению к кислороду потенциал у Си и Ag — отрицательный, а у Аи — положительный. Поэтому элементы этой подгруппы не вытесняют водород из растворов его нонов и выделяются при электролизе водных растворов солей в отсутствие перенапряжения водорода. Из-за того, что окислительно-восстановительный потенциал у Си и Ag отрицательнее кислорода, а у Аи — положительнее, металлы встречаются в природе в самородном состоянии, а Си и Ag еще и в виде соединений. [c.282]


    Азотная кислота является сильным окислителем. Поэтому она растворяет не только металлы, обладающие электроотрицательным потенциалом, но и расположенные в ряду напряжений вправо от водорода, как серебро, ртуть, медь. Золото и платина в ней не растворяются. [c.506]

    Сера соединяется непосредственно почти со всеми химически активными элементами. Не соединяется сера лишь с двумя неметаллами, близкими к ней по степени электроотрицательности последним неметаллом VII группы — йодом и первым неметаллом V группы — азотом, и с двумя наиболее благородными металлами платиной и золотом. Тем более примечательно, что с их соседями в ряду напряжений — ртутью, медью и серебром — сера соединяется непосредственно, даже без нагревания, а лишь при простом соприкосновении с ними, тогда как с кислородом серебро вообще не соединяется, а ртуть и медь соединяются лишь при нагревании. [c.371]

    Рассмотрим соединение Сз+Аи-. На первый взгляд это соединение кажется несуществующим, так как представляет собой ионное соединение двух металлов в отличие от С5+1 . Однако значения энергии ионизации цезия и сродства к электрону золота и иода (или электроотрицательность золота, равная 2,54, и электроотрицательпость иода, равная 2,66) показывают, что существование такого соединения возможно. Если процесс его получения проводить путем смещивания двух металлов (Сз и Аи), то невозможно будет различить, что образовалось — ионное соединение или сплав. [c.361]

    Электролитическое рафинирование ртути в ячейке, имеющей биполярные электроды, заключается в растворении ртутного анода при прохождении электрического тока через электролизер, вместе со ртутью в раствор переходят металлические примеси, более электроотрицательные, чем ртуть, тогда как более электроположительные примеси (серебро, золото, платина и др.) практически остаются в анодной ртути. [c.239]

    Превалирующими катодной и анодной реакциями при рафинировании серебра являются Ag е Ag+. Из-за малого перенапряжения при не слишком высоких плотностях тока эти реакции протекают при потенциалах, близких к равновесному. В соответствии с этим возможные примеси — золото, платиноиды, медь, сурьма, висмут, олово, селен, теллур, а также незначительные количества цинка, кадмия, никеля, железа — ведут себя в растворах рафинирования серебра в соответствии с их потенциалами и химическими свойствами. В шламе концентрируются золото и платиноиды, сурьма, висмут и олово в виде гидроокисей и метаоловян-ной кислоты, сера, селен и теллур в виде сульфидов, селенидов и теллуридов металлов. В растворе накапливается медь, которой в рафинируемом металле может быть довольно много (в сплаве д оре до 2—3%), а также все более электроотрицательные металлы. Контролирующей примесью является медь, допустимое содержание которой 30—40 г/л. При превышении этого количества часть электролита отбирают и заменяют свежим серебро из отработанного раствора извлекают методом цементации медьЕо. [c.316]

    Как видно из приведенного рисунка (потенциал меди находится в исходной точке координат), потенциал сплава почти линейно сдвигается к более электроположительным значениям по мере увеличения концентрации золота. По достижении состава в 50% (ат.) Аи сплав практически принимает потенциал золота. То же самое наблюдается и с твер дыми растворами N1 — Си с содержанием оа )лю 7,6—13 >/о (ат.) Си поггенциал сплава принимает значение потенциала Си. Это происхо дит от того, что атомы электроположительного компонента, находящиеся в достаточной доле в нрнсталлической решетке, нач инают экраниров/ать атомы более электроотрицательного. [c.121]

    При электрорафинировании в электролизере осуществляют растворение анодов, отлитых от чернового, полученного пироме-таллургическнм путем металла, с получением на катоде металла, очищенного от примесей. В процессе электрорафинирования содержащиеся в аноде более электроположительные, чем рафинируемый металл, примеси (например, золото и серебро при рафинировании меди) переходят в шлам, а более электроотрицательные накапливаются в растворе электролита. [c.250]

    Из сравнения металлохимических характеристик компонентов указанных выше систем (см. таблицу) видно, что разница электроотрицательностей компонентов для сплавов золота больше, а размерное несоответствие — меньше, чем для сплавов олова. Поэтому существенно меньшую энергию взаимодействия компонентов в сплавах N1—Аи и Со—Аи по сравнению с соответствующими сплавами олова можно объяснить отсутствием дополнительного энергетического вклада, связанного с заполнением 3 -элeктpoннoй полосы. [c.158]

    Добавка третьего элемента может по-разному влиять на селективное растворение цинка. Если элемент более электроотрицательный чем цинк, то он должен растворяться с большей скоростью чем цинк, и это ведет к образованию более высокой концентрации вакансий и меньшей стабильности поверхностного слоя на растворяющейся латуни. В противном случае третий компонент накапливается в поверхнос 1Ном слое и его атомы стабилизируют поверхностный слой. Например, введение в -латуни натрия, магния или марганца увеличивает долю селективного растворения за счет фазового превращения в поверхностном слое [5.18]. Присутствие в латунях электроположительных элементов (германия, серебра, золота) уменьшает долю такого разрушения, так как атомы этих элементов выступают в качестве стопоров , которые тормозят поверхностную диффузию атомов меди и тем [c.218]

    Более сложно зафиксировать диффузионную зону в сплавах, у которых электроотрицательный компонент преобладает. Как показывают расчеты, толщина такой зоны невелика. Поэтому дифракционные методы будут полезны лишь при условии многократного прохождения рентгеновского или элек-тройного пучка через слой взаимодиффузии компонентов.. Решению этой задачи косвенно способствует сам процесс СР подобных сплавов благодаря вторичному эффекту развития поверхности. Поэтому поверхностные слои сплавов исследовали после интенсивного анодного травления, режим которого исключал ионизацию электроположительного компонента. Подобным методом установлено, в частности, что состав поверхностного слоя сплава СиЮАи меняется непрерывно, так как интенсивность линий золота на рентгенограммах сплава постепенно увеличивалась, а линий меди — снижалась [10]. Как показали эксперименты с вращающимся дисковым электродом с кольцом и прямой химический анализ среды, золото в раствор действительно не переходило. [c.44]

    Приведенная схематическая форма коррозионной диаграммы широко распространена. На рис. 4-. 12 представлена серия квазистационарных анодных поляризационных кривых сплавов системы Ад—Аи с содержанием золота от 0,1 до 40 ат.%, полученных в 0,1 М КЫОз [83], и катодные кривые, снятые на золоте в нитратных растворах, содержащих дополнительно различные " окислители — Ог (кривая / ), Оа+НгОг (кривая 2 ), Ог+концентрированная НМОз (кривые 5 и 4 ). Айалогичные зависимости, полученные в [97] на спл-авах системы Си—Аи в кислом сульфатном растворе, приведены на рис. 4.13. Видно, что в зависимости от природы окислителя, состава сплава и условий проведения -опыта потенциалы коррозии действительно могут быть как отрицательнее, так и положительнее соответствующих критических потенциалов. В первом случае токи коррозии рассчитанные нз коррозионной диаграммы, низки, а во втором намнрго, выше. В частности, когда окислителем служит кислород воздуха, значения 1 столь малы, что аналитическими методами не удается зафиксировать в растворе даже следов электроотрицательного компонента. Коррозионная стойкость сплавов всех составов - в этих условиях высока. Однако добавление в раствор перекиси водорода и нагревание его до 333 К приводит к тому, что для сплавов систем Ад—Аи, Си—Аи, Си—Рс1, содержащих менее 10—20 ат.% электроположительного компонента, значения заметно больше, чем у сплавов [c.163]

    Поверхность Ag,Аи-сплавов, содержащих более 50 ат.%1 золота и растворяющихся в кипящей концентрированной азотной кислоте, покрывается слоем практически чистого золота [91, 168]. Отметим, что и многокомпонентные сплавы, содер-- жащие Au,Pd и другие благородные металлы, полностью коррозионно устойчивы в агрессивных средах при суммарном содержании благородных компонентов свыще 50—55 ат.% [173]. Когда же содержание электроположительной составляющей ниже указанного предела, на поверхности корродирующих или аноднорастворяющихся сплавов присутствует, как уже отмечалось, электроотрицательный компонент. В итоге кинетика расворения сплава определяется факторами, влияющими на кинетику растворения чистого электроотрицательного компонента [20]. [c.167]

    Хотя в цитируемых выше работах фазовый переход порядок— беспорядок достигался термическим путем, не исключено, что СР электроотрицательного Компонента, сопровождаемое в процессе коррозии перегруппировкой атомов благородного компонента, также способно привести к определенному атомарному упорядочиванию поверхностной структуры, Косвенно в пользу этой гипотезы свидетельствуют результаты дифрактометрнческих исследований поверхностных слоев сплавов после травления. Например, если исходный Си,Ац-сплав представляет истинный твердый раствор на основе меди, то после растворения в царской водке, на дифрактограммах наряду с линиями, отвечающими твердому раствору на основе золота, присутствуют также линии соединений СизАи и СцАц [54]. Другим доказательством поверхностного упорядочивания, происходящего в ходе СР прн ЕС Ехр. может служить то обстоятельство, что у сплавов сйстем Си—Р(1 [90] и Си—Аи [174] после взаимодействия с агрессивным раствором отмечено появление границ коррозионной стойкости при 25 ат.% Рс1 и Аи, причем положение границы не зависело от степени исходного атомарного упорядочивания, создаваемого объемной термообработкой. [c.169]

    Еще более активно, чем ионы хлора, действуют на золото ионы N . В их присутствии золото окисляется даже кислородом воздуха. Этот процесс лежит в основе получения золота цианидным выщелачиванием из золотоносной руды. Со своими ближайшими аналогами — серебром и медью — золото образует непрерывные твердые растворы, аналогичный характер взаимодействия наблюдается при сплавлении золота с некоторыми элементами VIH группы — платиной и палладием. В системах золото— медь и золото — платина непрерывные твердые растворы существуют лишь при высоких температурах, при понижении температуры наблюдается их распад с образованием упорядоченных металлических соединений, так называемых фаз Курнакова, Золото образует ряд металлических соединений (ауридов) с электроположительными и переходными металлами ПА, ША, IVA, VIIA и VIIIA подгрупп. Ограниченные твердые растворы и металлические соединения золото образует со многими элементами, более электроотрицательными по сравнению с ним. Так, золото образует широкие области ограниченных твердых растворов с металлами ПА подгруппы (цинком, кадмием, ртутью), IIIA подгруппы (алюминием, галлием, индием), IVA подгруппы (германием, оловом, свинцом) и VA подгруппы (мышьяком, сурьмой). За пределами растворимости в этих системах образуются соединения, имеющие во многих случаях переменные составы. [c.84]

    Система золото—медь. При определенных условиях наряду с основной фазой твердого раствора может появиться фаза электроотрицательного элемента или же твердый раствор не образуется вовсе. Так, например, во всей области составов электролитически осажденных сплавов Аи—Си, по данным Рауба и Зауттера [27 [, отмечаются постоянные решетки золота и постоянные решеток меди (фиг. 8). Эти значения в значительной мере отличаются от значений постоянных решеток соответствующих литых и рекристаллизованных сплавов. Отсюда можно сделать вывод, что при электрокристаллизации золотомедных сплавов из цианистых электролитов не происходит образования твердых растворов, в отличие от термических сплавов. Этим можно объяснить, что гальванические сплавы Аи—Си, несмотря на высокое содержание золота, имеют сильную склонность к потускнению. Проведенные Раубом исследования показывают, что при некоторых условиях электролиза возможно частичное образование твердых растворов, но оно является неполным, причем процент гетерогеннокристаллизующейся меди линейно растет с ростом общего содержания меди в осадке. [c.14]

    Гардам и Тидсвел [52] приводят описание метода осаждения сплава Си—2п и сплавов золота Аи—А —Си и Аи—Си—N1 с использованием периодически прерываемого постоянного тока. Они предполагают, что во время перерывов тока концентрация катионов металлов, разряжающихся на катоде, в приэлектродном слое электролита вследствие диффузии приближается к их концентрации во всем объеме раствора. Это позволяет вести процесс в течение каждого периода прохождения тока от осаждения наиболее электроположительных металлов до осаждения электроотрицательных компонентов сплава. [c.50]

    Связь между высотой волны и концентрацией определяемого вещества, выражающаяся в общем виде ур-нием =Кс, выражается при работе с ртутным капельным электродом Ильковича уравнением. Ртуть, служащая катодом, вытекает с определенной скоростью из тонкого стеклянного капилляра. Отрываясь от последнего, ртутная капля уносит с собой выделившийся на ней металл, и нроцесс восстановления продолжается уже на свежей капле, появляющейся в устье капилляра тотчас же после отрыва предыдущей капли. Это постоянное обновление поверхности является достоинством ртутного капельного электрода. Кроме того, на ртути велико перенапряжение для выделения водорода, что позволяет восстанавливать ионы электроотрицательных металлов (свинца, цинка, кадмия и т. п.). В положительной области потенциЗ лов применение ртутного электрода ограничено окислением самой ртути (потенциал, при к-ром происходит это окисление, зависит от состава р-ра). Для работы в этой области пригодны электроды из благородных металлов — платины, золота. Одпако иоверх- [c.129]


Смотреть страницы где упоминается термин Золото электроотрицательность: [c.249]    [c.72]    [c.275]    [c.356]    [c.304]    [c.316]    [c.275]    [c.60]    [c.466]    [c.796]    [c.160]    [c.577]    [c.292]    [c.193]    [c.577]    [c.189]    [c.600]   
Справочник по общей и неорганической химии (1997) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Электроотрицательность



© 2025 chem21.info Реклама на сайте