Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции неразветвленные

    В 1913 г. Боденштейн, изучая фотохимическую реакцию образования НС1 из Нз и Glj, впервые ввел представление о ценной нераз-ветвленной реакции. Неразветвленная цеии состоит из акта зарождения цепи (например, разрыва связи в молекуле с образованием свободных радикалов), некоторого числа последовательных актов развития или продолжения цепи (т. е. радикальных реакций, протекающих с образованием того же числа свободных радикалов, сколько в них вступает) и, наконец, акта обрыва цени. Последний может осуществляться либо в объеме путем насыщения свободной валентности в результате взаимодействия свободных радикалов друг с другом с образованием молекулы (так называемый квадратичный обрыв), либо при адсорбции радикала стенкой или его реакцией с примесью с образованием малоактивного радикала и последующей рекомбинацией последнего (так называемый линейный обрыв). [c.45]


    Больщое внимание привлекли реакции неразветвленных углеводородов. Ионная химия таких молекул достаточно богата, и протекание нескольких реакций для каждой пары ион — нейтральная молекула является скорее правилом, чем исключением. [c.367]

    Скорость неразветвленной цепной реакции. Неразветвленные цепные реакции являются своеобразными гомогенными каталитическими реакциями. Скорость расходования исходного вещества в реакциях продолжения цепи, как и для любой гомогенной каталитической реакции, пропорциональна концентрации катализатора и концентрациям исходных веществ. Обычно активная частица взаимодействует только с одной молекулой исходного вещества, следовательно, скорость расходования последнего можно представить следующим образом  [c.96]

    ЦЕПНЫЕ РЕАКЦИИ — НЕРАЗВЕТВЛЕННЫЕ, [c.109]

    Цепные реакции, при которых в результате взаимодействия активной частицы с исходной молекулой образуется одна новая активная частица, получили название неразветвленных. Они были открыты М. Боденштейном в 1913 г. [c.24]

    Если в результате индуцированной реакции произойдет частичная регенерация индуктора или промежуточного вещества, то тем большее количество исходного вещества (акцептора) будет входить в реакцию и, следовательно, тем больше окажется фактор индукции. В предельном случае, когда проме жуточный продукт регенерируется нацело, знаменатель выра жения (VII, 10) обратится в нуль, и фактор индукции станет ранным бесконечности (/ = оо). Такого типа процесс является стационарным. На практике таким процессам, как мы увидим позже, соответствуют каталитические процессы и стационарные неразветвленные цепные реакции. [c.191]

    Таков механизм цепной неразветвленной реакции при каждом элементарном взаимодействии один активный центр образует, кроме молекулы продукта реакции, один новый активный центр. [c.182]

    Окисление в режиме цепной неразветвленной реакции [c.63]

    В численном моделировании согласно рекомендациям [2, 19] мы использовали величину 22 = 1,7 10 -ехр (—3800/ВТ) л/моль-с, которая варьировалась в диапазоне 1000% с целью получения результатов, лучше всего описывающих задержку воспламенения при Т (850-т-- -1050) К, Р 5—10 ат, т. е. в области неразветвленной цепной реакции над третьим пределом. 5%-ное отклонение решения начиналось нри вариациях Г2 (150-г [c.277]


    Для областей А—Е, IV представлены механизмы уровня адекватности 6 > 0,7. Условно обозначено положение переходной области ( четвертый предел ) между разветвленной цепной реакцией (область Е) и неразветвленной (область О). [c.295]

    Рассмотрим теперь неразветвленный цепной процесс. В пренебрежении рекомбинацией, которая становится заметной на последних фазах реакции, когда концентрация активных центров высока, система уравнений для температуры и активных центров в одноцентровом приближении имеет вид [c.322]

    Структура (4.41) такова, что первый член А есть тепловое ускорение реакции зарождения (если пренебречь А и Ад, то (4.41) сводится к уравнению для неразветвленной цепной реакции), А я Аз связаны с разветвлением цепей. Если же пренебречь то получается уравнение для разветвленной цепной реакции. В ходе процесса в некоторый момент времени начнет выполняться условие [c.326]

    Другая особенность разветвленных цепных процессов заключается в том, что концентрации радикалов не выходят на плато, как это имеет место для неразветвленных цепных процессов, а достигают четко выраженного максимума (при этом в самом максимуме и его районе концентрация радикалов сверхравновесна) и затем спадают. Интенсивность свечения в таких реакциях имеет максимум в области между точкой перегиба и максимальной температурой и соответствует максимальной концентрации радикалов. Даже для значений 0 1 точка перегиба и выход кривой температура — время на плато находятся вблизи точки, соответствующей моменту воспламенения для смесей с большим 0. Поэтому понятие задержка воспламенения имеет вполне ясный физический смысл, и им можно пользоваться практически при любых значениях 0т- [c.329]

    Различают два тина цепных реакций — с неразветвленными и с разветвленными цепями. [c.227]

    Скорость цепной неразветвленной реакции для линейного обрыва цепей будет [c.388]

    Решение. Кинетика цепной неразветвленной реакции описывается уравнением  [c.393]

    По особенностям стадии развития цепи цепные реакции делятся на две группы неразветвленные цепные реакции, когда в процессе развития цепи число свободных валентностей в звене цепи остается постоянным, и разветвленные цепные реакции, когда развитие цепи идет с увеличением свободных валентностей в звене цепи. В качестве примера неразветвленной цепной реакции рассмотрим реакцию взаимодействия водорода с хлором. В темноте водород и хлор практически не взаимодействуют. Но при освещении системы солнечным светом реакция протекает со взрывом. Зарождение цепи происходит при поглощении молекулой С кванта энергии h  [c.605]

    В результате химических реакций, составляющих звено неразветвленной химической реакции, число радикалов в системе не увеличивается. Цепная реакция продолжается, пока не исчезнут частицы со свободными валентностями. Число звеньев в цепи определяет длину цепи. Длина цепи в реакции взаимодействия Н и СЬ доходит до нескольких сот тысяч звеньев. Средняя длина цепи п может быть определена из соотношения [c.605]

    Обрыв цепи, как и в неразветвленных цепных реакциях, может происходить при столкновении радикальных частиц со стенками сосуда или в результате тройных столкновений. К описанию скорости реакции можно подойти, используя методы теории вероятности. Пусть вероятность разветвления цепи на п-м звене будет а, вероятность гибели радикала (активного центра цепи)— р, время, в течение которого протекают реакции в звене (время жизни звена), — т. Тогда число разветвлений / в единицу времени за счет одного активного центра будет равно / = а/т. Если т — число активных центров в единице объема, то число разветвлений будет в пг раз больше, т. е. т/. Число гибнущих цепей в единице объема будет равно тр/т. Пусть скорость зарождения первичных активных центров цепи в единице объема т 1(1 будет постоянной, тогда изменение числа активных центров в единице объема будет [c.608]

    Кинетика неразветвленных цепных реакций [c.52]

    Рассмотрим особенности кинетики неразветвленных цепных реакций на примере термического распада этана. Этан расходуется в реакциях (1), (2) и (4) и регенерируется в реакциях (5) и (6). Полагая, что вероятность прохождения реакций (5) и (6) с образованием этана равна а, можем записать  [c.52]

    Название разветвленные затем привело к названию цeпt ыx реакций — неразветвленные , таких, где размножения активных частиц не происходит. [c.220]

    Была надежда связать ф с изменениями состава смесей и другими свойствами посредством измерения т. Однако по различным причинам, описанным в другом месте, эта теория была оставлена, и теперь считают, что ф изменяется непрерывно в течение всего индукционного периода [74, 75]. Сначала NO2 или NO I обрывают цепи, удаляя цепные центры. Пока они присутствуют в умеренных концентрациях, ф имеет большие отрицательные значения, т. е. реакция неразветвленная. Недавние фотометрические исследования смесей Но + О, + N0 [75—77] полностью подтвердили, что NO2 удаляется во время иидукционных периодов, причем продолжительность последних была предсказана для смесей, для которых было известно уравнение скорости реакции между NOg и Н2. Эти исследования, кроме того, показали, что скорость удаления NO2 заметно возрастает в конце индукционного периода. Для смесей, находящихся между пределами сенсибилизации или близко к ним, колебание давления начинается сразу же после этого ускорения и затем несколько позже происходит падение давления, связанное с медленной реакцией между водородом и кислородом или с резким падением давления после воспламенения. На рис. 126 представлено [77] ускоренное удаление NO2 (широкая линия) и колебание давления (узкая линия) в конце индукционных периодов, записанные на [c.480]


    По Ингольду и сотр. [35, 36], скорость реакции неразветвленных цепей зависит только от индукционного эффекта стоящей у Р-углеродного атома алкильной группы, +/-эффект которой противодействует отщеплению р-протона. Разветвленные а-ал-кИльные группы ускоряют реакцию благодаря своей способности стабилизовать двойные связи. [c.245]

    Зельдович высказывает предположение, что такой случай может реально осуществляться в смесях водорода с хлором, где скорость, рассчитанная Зельдовичем и Ратнером [130], оказалась несколько ниже, чем экспериментально измеренная Соколиком и Щелкиным [131]. Здесь, исходя из механизма реакции (неразветвленная цепь), можно ожидать первичного образования продукта, дающего наибольшее выделение энергии хлористого водорода, с последующей частичной диссоциацией хлора на атомы. Второй процесс является эндотермическим. Таким образом, в данном конкретном примере как раз имеют место условия, когда тепло может сначала выделяться, а потом поглощаться обратно, т. е. возможно достижение состояния типа С (фиг. 44) и повышенное значение скорости детонации. [c.291]

    Не меньшее значение имеют реакции хлорирования олефинов замещением. С олефиповымп углеводородами изостроения, у которых углерод с двойной связью находится в боковой цепи, реакция хлорирования путем замещения идет уже при комнатной и даже при значительно более низкой температуре. Хлорирование неразветвленных углеводородов, в частности пропена, для которого эта реакция играет большую роль, идет только при очень высоких температурах (горячее хлорироваппе при 500 ). [c.168]

    Реакция дегидроциклизацпи не ограничивается парафиновыми углеводородами, имеющими неразветвленную цепь по меньшой море из 6 атомов углерода. Так, образование ароматических углеводородов главным образом, на/)а-ксилола наблюдалось нри превращении 2,2,4-тримотил-пентана [25, 39]. Изучение продуктов циклизации различных чистых парафинов привело к созданию изложенной ниже теории механизма циклизации. [c.169]

    Последние наблюдения были сделаны над этаном и пропаном и касались главным образом зависимостей между диаметром сосуда и давлением, причем были обнаружены те же закономерности, что и для метана Как и в случае метана, было отмечено существование критического диаметра сосуда, ниже которого реакция прекращалась. Точно так же можнО предположить, что период представляет собой неразветвленные реакции цепные, инициируемые окислением формальдегида и, возможно, других альдегйдов. Альдегиды, особенно формальдегид, всегда образуются в период Тц и этим оба периода связаны между собой, так же как и остатками перекисей. В условиях, применявшихся Норришем и Ри, когда разветвленные реакции, характерные для периода т , в значительной мере подавлены, можно как будто ожидать развития реакции до стационар- [c.252]

    На групповой состав углеводородов синтеза в сильной степени влияют вторичные реакции. Олефины, образующиеся при синтезе, могут тотчас же гидрироваться в насыщенные углеводороды. Катализатор синтеза одновременно вызывает смещение двойной связи от крайнего атома С к середине молекулы. При этом цис-и тракс-изомеры образуются в почти эквимолекулярных количествах [368, 369, 379, 381, 382]. Примерно 40—50% об. от фракции Се—С полученной над железным катализатором, составляют олефины с прямой ценью [383]. В незначительной степени образуются также нафтеновые и ароматические углеводороды. Парафиновые углеводороды 04—0 представлены всеми возможными моно-и диметилизомерными структурами, за исключением неонентана. С ростом молекулярного веса доля неразветвленных молекул постепенно падает, но даже во фракции Сц, содержится еще очень много углеводородов с прямой цепью. [c.595]

    Независимо от преимущественной направленности процесса эта реакция в любом случае будет реакцией продолжения цепей. Она играет важную роль в области цепного неразветвленного процесса над третьим пределом воспламенения, поскольку фактически регенерирует по маршруту 11+ 12+ важнейшее промежуточное звено во всей цепи окисления — радикал Н. Теоретический расчет 12 наталкивается на серьезные трудности не только из-за полного отсутствия данных о геометрии активированного комплекса, но и потому, что неясно, в какой форме вступает в реакцию сама перекись водорода. Известны две формы существования Н2О2 — форма лодки и форма седла . (Линейная структура Н2О2 маловероятна, поскольку в этом случае молекула получается весьма рыхлой и слабосвязанной, что не подтверждается никакими спектроскопическими данными.) Форма седла более предпочтительна с точки зрения максимального удаления взаимно-отталкивающихся конечных протонов Н+, в то время как в лодке обеспечивается лучшее перекрывание [c.276]

    При радикальном механизме изомеризации, продемонстрирован ном выше для реакций в присутствии 8Рб, путем стабилизации образующегося сложного радикала можно получить продукты при соединения к олефинам галоген- и кислородсодержащих и други) гетероорганических соединений. Интересно, что продукты присоеди нения образуются вопреки правилу Марковникова, в связи с чe такое активированное присоединение является удобным методол получения ряда неразветвленных гетероорганических соединений и линейных а-олефинов. [c.78]

    Примерами процессов с неразветвленными цепями служат также реакции хлорирования углеводородов, в частности, метана, разложения органических соединений, например, СН3СНО, полимеризации, например, хлоропрена. [c.228]

    Образующиеся в двух пе13.вых реакциях радикалы обеспечивают развитие неразветвленной цепи, а атом кислорода, обладающий двумя свободными валентностями, входя в третью реакцию, образует два добавочных радикала, начинающих разветвление. Так получается огромное число свободных радикалов. Этим рассматриваемые реакции отличаются от процессов первого типа, в которых концентрации радикалов невелики. Размножение радикалов [c.228]

    Образующиеся в реакциях (XIII) и (XIV) радикалы обеспечивают развитие неразветвленной цепи, а атом кислорода, обладающий двумя свободными валентностями, входя в реакцию (XV), образует два добавочных радикала, начинающих разветвление. Так возникает огромное количество свободных радикалов. Этим рассматриваемые реакции отличаются от процессов первого типа, в которых концентрации радикалов невелики. Размножение радикалов приводит к лавинообразному течению процесса, которое может вызвать взрыв. Однако и в этих процессах происходят обрывы цепей. Причем лишь в том случае, когда темп разветвления опережает темп обрыва, происходит бурное увеличение скорости процесса. [c.128]

    Таким образом, для неразветвленных цепных реакций в результате элементарных стадий, составляюш,их звено цепи, образуется и исчезает равное число радикалов. Общую скорость процесса можно выразить через снсь Сс1, и сн,  [c.607]

    При образовании активированного комплекса через пяти-, шести- и семичленный циклы термонейтральность или экзотермич-ность реакции (при изомеризации первичного радикала во вторичный) приводит к тому, что энергия активации ее меньше энергии активации эндотермичной реакции распада, и изомеризация происходит. В результате для алкильных радикалов с неразветвлен-ной углеродной цепью осуществим переход свободной валентности от п-то к (и+ 4)-, (я+ 5)- и (га+ 6)-му атомам углерода. [c.43]

    Из данных термохимии раопада карбоний-ионов видны следующие закономерности. Раопад первичных ионов с неразветвленной углеродной цепью проходит тем легче, чем большее число атомов углерода содержит образующийся карбоний-ион. Отщепление метильного иона происходит значительно труднее, чем ионов с большим числом атомов углерода, а распад н-пропнльного карбоний иона сильно эндотермичен. Раопад вторичных ионов с образованием таких же ионов, как при распаде первичных, значительно эндотермичнее вторичные карбоний-ионы устойчивее первичных в реакциях распада. С возрастанием числа атомов углерода в отщепляемом ионе теплота реакции снижается, однако для ионов с неразветвленной углеродной цепью во всех случаях эндотермичность распада велика. Третичные ионы устойчивее относительно распада, чем вторичные. Эндотермичность распада значительно снижается, когда отщепляется вторичный ион, и еще в большей степени — при отщеплении третичного иона. Распад первичных карбоний-ионов в этом случае становится экзотермичным. [c.169]


Смотреть страницы где упоминается термин Реакции неразветвленные: [c.71]    [c.139]    [c.208]    [c.64]    [c.336]    [c.199]    [c.114]    [c.388]    [c.389]    [c.390]    [c.201]   
Основы химической термодинамики и кинетики химических реакций (1981) -- [ c.212 , c.216 ]

Основы кинетики и механизмы химических реакций (1978) -- [ c.100 ]




ПОИСК







© 2025 chem21.info Реклама на сайте