Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловые образования

    Таким образом, в кристаллах со сравнительно малым значением разности W—е, и небольшой энергией активации движения вакансии (междоузельного атома) вероятность теплового образования собственного дефекта решетки с одновременным захватом носителя тока намного превышает обычную вероятность теплового рождения дефекта (без захвата носителя) и может быть значительной при не слишком высокой температуре. [c.221]


    Крекинг-процесс в общем включает не только реакции расщепления, в которых под влиянием теплового воздействия образуются смеси низко-молекулярных углеводородов, но и реакции, приводящие к образованию смесей углеводородов, кипящих при более высокой температуре, чем исходный материал, и богатых ароматическими углеводородами. Таким образом, суммарный эффект крекинга измеряется не только образованием низкокипящих продуктов в результате расщепления исходного сырья, но также и количеством вновь образовавшихся продуктов, кипящих при температурах более высоких, чем исходное сырье и являющихся результатом реакций конденсации. [c.38]

    Тепловые эффекты химических реакций и могут рассчитываться на основе изобарных теплот образования из простых веществ или теплот сгорания, или энталь-пни образования веществ в стандартных условиях [c.64]

    При высоких давлениях, в особенности когда плотность газа становится сравнима с плотностью жидкости, образование газовых растворов сопровождается изменением объема и тепловым эффектом. Механизм растворения веществ в сжатых газах принципиально не отличается от механизма растворения в жидкости. В сжатых газах растворение веществ достигает значительных величин. Так, при l 10 Па и 100"С азот растворяет до 10 молярных долей бензина (%), а этилен при 2,4-10 Па и 50° С — до 17 молярных долей нафталина (%). Сжатые газовые растворы используются в технике для синтеза некоторых минералов. Например, растворимость кварца при высоких температурах в сжатом водяном паре, насыщенном некоторыми солями, используется для выращивания крупных (массой до нескольких килограммов) кристаллов. [c.126]

    Энтальпия (теплота) образования. В термохимических расчетах широко используют энтальпии (теплоты) образования веществ. Под энтальпией образования понимают тепловой эффект реакции образования 1 моля вещества из простых веществ. Обычно используют стандартные энтальпии образования их обозначают ДЯ обр.298 или АЯ /,298 (часто ОДИН ИЗ индексов опускают). Стандартные энтальпии образования простых веществ, устойчивых в стандартных условиях (газообразный кислород, жидкий бром, кристаллический иод, ромбическая сера, графит и т. д.), принимают равными нулю. Стандартные энтальпии образования некоторых веществ приведены в табл. 24. [c.162]


    В соответствии с законом Гесса алгебраическая сумма тепловых эффектов промежуточных стадий образования НС1 из простых веществ равна энтальпии образования НС1  [c.165]

    Атомарная энтальпия (теплота) образования. Тепловой эффект реакции образования данного вещества из атомов называется атомарной теплотой (энтальпией) образования. Она равна теплоте (энтальпии) атомизации (с обратным знаком), т. е. тепловому эффекту разложения данного вещества на свободные атомы. Для процесса, записываемого в общем виде [c.166]

    Водородная связь объясняет аномально высокие температуры кипения и плавления ряда веществ, аномальную диэлектрическую проницаемость и не соответствующую строению молекул растворимость. Различают два вида водородной связи межмолекулярную и внутримолекулярную. В первом случае атом водорода связывает два атома, принадлежащих разным молекулам (например, растворителям и масляному сырью), во втором случае оба атома принадлежат одной и той же молекуле. Образование водородной связи наиболее вероятно при пониженных температурах с повышением температуры водородные связи ослабляются или рвутся вследствие усиления теплового движения молекул. [c.217]

    Образование комплексных соединений карбамида является экзотермическим процессом, тепловой эффект которого в расчете на один атом углерода (п) в молекуле н-алкана составляет 6,7 кДж. [c.271]

    Полезное использование энергетических ресурсов не превышает 40 — 42 %, что приводит к перерасходу топлива и образованию тепловых выбросов в окружающую среду  [c.270]

    Для определения расхода тепла У на проведение рассматриваемого процесса полного испарения слоя А с образованием паровой и жидкой фазы В, достаточно составить уравнение теплового баланса и решить его совместно с уравнениями 33 и 34 согласно схеме, представленной на фиг. 25  [c.54]

    Увеличение пузырьков пара перед отрывом, а также подъем их в жидкости приводит в движение определенные столбики жидкости, которые вызывают циркуляцию и перемешивание жидкости во всем объеме и вдоль поверхности нагрева. Этим определяется в основном степень интенсивности передачи тепла от поверхности нагрева к жидкости. Поэтому при кипении в большом объеме жидкости, т, е. при естественной конвекции, коэффициент теплоотдачи а тем больше, чем больше частота образования пузырьков и чем больше количество центров парообразования на поверхности нагрева. Ввиду того, что частота отрыва пузырьков и количество центров парообразования зависят от разности температур поверхности теплообмена и жидкости, коэффициент теплоотдачи при кипении жидкости является функцией этой разности температур или теплового напряжения поверхности нагрева, [c.108]

    Пленка из пластмассы, которая сама по себе создает увеличение теплового сопротивления стены, может, несмотря на это, значительно улучшить общую теплопередачу, если этим путем создается препятствие для образования осадков, тепловое сопротивление которых значительно больше сопротивления пластмассовой пленки. [c.158]

    Выше 400° скорость образования воды становится большой (выше 100 мм рт. ст. общего давления), и при температурах от 400 до 600° реакция характеризуется цепным самовоспламенением и областью теплового взрыва. Рис. XIV.4, взятый из работы Льюиса и Эльбе, иллюстрирует такое поведение смеси (2Н2 О2) в сосуде из стекла пирекс диаметром 7,4 см, покрытом КС1 (объем 220 см ). [c.390]

    Хотя для описания кинетики цепных разветвленных взрывных реакций есть различные механизмы, совершенно отличные от чисто тепловых взрывов, формально зависимости пределов воспламенения от температуры совпадают. Механизм распространения разветвленного взрыва в виде медленной волны горения должен быть связан скорее о диффузией радикалов, ведущих цепь, а не с диффузией тепла. Зельдович [54] показал, что в первом приближении можно считать, что градиенты концентрации и температуры пропорциональны друг другу. В этих условиях формальные уравнения для распространения волны будут одинаковы для обоих механизмов взрыва и совершенно независимо от цепного механизма градиенты концентрации и температур в пламени будут пропорциональны друг другу во всех точках. С физической точки зрения это вполне вероятный результат, потому что наиболее резкие перепады температур должны проявляться там, где скорость реакции наибольшая, что в свою очередь вызывает образование максимальных концентраций продуктов. [c.399]

    Явление холодного пламени тесно связано с образованием альдегидов и кетонов в окислительных системах. На рис. XIV.10 показан типичный пример взрывных пределов для смеси углеводород—кислород. Область взрыва, за исключением области положительного наклона, напоминает предельную кривую для теплового взрыва. Переход между медленным горением и взрывом характеризуется интенсивным светящимся голубым пламенем, которое появляется после короткого периода индукции и сопровождается взрывом. Периоды индукции не превышают нескольких секунд. [c.416]


    Пользуясь уравнением (70а), определим тепловой эффект реакции образования воды при 500° С. Стандартная (при 20° С и 1 ата) теплота образования воды равна 57850 кал моль (см. табл. 17)  [c.114]

    Подсчитать тепловой эффект разложения натриевой селитры концентрированной серной кислотой, если разложение идет до образования твер- [c.153]

    К, э. д. с. элемента компенсируется приложенной извне и равной 0,6753 В. Стандартные тепловые образования хлоридов кадмия и epeopii соответственно равны —389,0 и —126,8 кДж/моль. [c.76]

    Вы уже знаете из гл. 17, особенно из задачи 17.14, что вероятность теплового образования ионов в газовой фазе пренебрежи.мо мала, за исключением самых высоких температур. Поэтому в газах обычно не наблюдают реакций с ионным механизмом. Иначе обстоит дело в конденсированных фазах. [c.195]

    Изложенная точка зрения представляется перспективной при исследовании вопроса об образовании F-центров при действии рентгеновых лучей. Экспериментальные данные [7] позволяют представить схематически механизм этого процесса следующим образом. Действие радиации приводит к повыще-нию концентрации свободных электронов и дырок (либо экситонов). В присутствии свободных носителей либо экситонов существенно отлична от нуля вероятность теплового образования дефекта Френкеля с одновременным захватом электрона междоузельным атомом (энергетический уровень ем) и дырки отрицательно заряженной вакансией аниона (энергия 8 ). При этом энергия, затраченная на удаление атома из узла, W, существенно компенсируется выделением энергии sm+ v Это обстоятельство, как и в предыдущем примере, может существенно увеличить вероятность теплового рождения дефекта по сравнению со случаем, когда такое рождение не сопровождается захватом электрона и дырки на уровни образующегося дефекта. Однако оценка, аналогичная приведенной, для случая одновременного захвата электрона и дырки несколько затруднена. Этот вопрос также нуждается в дальнейшем рассмотрении. [c.222]

    Для 1 ыоора схемы реакторного устройства н кинетического расчета необходимо располагать данными о тепловых эффектах химических реакций. Тепловые эффекты реакции можно определять экспериментально. Их можно также вычислять по закону Гесса как разность теплот образования продуктов реакции и исходного сырья нибо как разность теплот сгорания исходного сырья и продуктов реакции. [c.271]

    Стирол, как ранее уже мпого раз указывалось, отиосительпо легко, полимеризуется под влиянием теплового воздействия [88]. Термическая полимеризация стирола (блокполимеризация) проводится следующим образом в мешалке ири 80" стпрол полимеризуется до образования сиропообразной жидкости, содержащей примерно 33% полимера. Дальнейшая полимеризация производится непрерывным стюсобом в условиях ступенчатого повышения температуры до 140—180 . Расплавленный стирол пропускается затем через тонкие щели высотой 1 мм и шириной 30 мм на охлаждаемые стальные вальцы, при этом он затвердевает, а затем размалывается в. порошок на мельничной установке. [c.239]

    Согласно закону Гесса, тепловые эффекты образования СО а как непосредственно из простых веществ, так и через промежуточную стадию образования и сгорания СО равны АНДЯг + [c.161]

    По энтальпийной диагр амме (рис. 108) или приведенному выше равенству нетрудно вычислить одну из величин АЯ, зная две другие. Как известно, тепловые эффекты образования СОг ( i) и горения СО (АНз) определяются экспериментально. Тепловой же эффект образования СО (ДЯг) измерить невозможно, так как при горении углерсда в условиях недостатка кислорода образуется смесь СО и СОг- [c.161]

    Энергия химической связи. Значениями энергии связи часто пользуются для вычисления тепловых эффектов реакций, если неизвестны энтальпии образования веществ, участвующих в реакциях. С другой стороны, значениями теплот образования, возгонки, диссоциации и других энергетических эффектов пользуются для определения проч юсти межатомных, межионных и межмолекулярпых взаимодей-гтвий. [c.164]

    Тепловой эффект этого процесса соответствует энтальпии образования кристаллического Na I [c.167]

    Ценность этой классификации заключается в том, что именно природа промежуточного химического взаимодействия, а не агрегатное состояние реакционной системы определяет свойства, кото — рыми должен обладать активный катализатор. Так, при гомолити — ческом катализе разрыв электронных пар в реагирующем веществе обычно требует большой затраты энергии. Для того, чтобы тепловой эффект, а следовательно, и энергия активации этой ст адии не были бы слишком большими, одновременно с разрывом электронных пар должно протекать и образование новых электронных пар с участием ь еспаренных электронов катализатора. [c.80]

    Термический эффекг сварочной дуги в конструкциях сопровож-даегся образованием напряжений и деформаций. Их называют сварочными, остаточными или собственными. Основными причинами их возникновения являются тепловое расширение металла и структурнофазовые превращения. [c.142]

    Охрупчивание ферритных сгалей возможно также после выдержки в интервалах температур, способствующих образованию а-фазы (550 850 °С) и явлению ".хрупкости" при 475 °С (400 - 550 °С) (рис. 8.7). Хруисосгь при 475 °С получает развитие уже при коротких выдержках, даже в процессе охлаждения в интервале 400-550 С после тепловой обработки. Ударная вязкость стали после кратковременного нагрева при 475 °С снижается до 0,3 против 0,9 МДж/м1 [c.245]

    Выводы, получаемые на основании излагаемой теории и результатов экспериментальных исследований, основываются на ряде упрощающих предпосылок и часто соответствуют лищь идеальным условиям. На практике обычно наблюдаются сложные случаи теплопередачи и такие производственные условия, при которых наслоение накипи или образование инкрустации на поверхности теплообмена весьма удаляют условия, при которых в действительности происходит передача тепла, от идеальных. Отсюда следует сделать вывод, что без необходимого практического опыта, основанного на проверке теории измерениями, проведенными в производственных условиях, правильный расчет теплового оборудования невозможен. [c.28]

    На фиг. 174 показана конвективная система, образованная верхней частью трубок 1. Продукты сгорания поступают через концентрическое сечение, образуемое отражательной плоскостью 2, подвешенной под потолком печи. Сужение проточного сечения увеличивает скорость течения и, следовательно, теплоотдачу. Кроме того, количество переданного тепла увеличивается также за счет оребрения трубок. Благодаря этому, можно увеличить тепловую нагрузку трубок добившись ее равномерности по всей их длине. В последнее время отражательная плоскость 2 стола изготовляется из металла, что обеспечивает передачу тепла за счет теплолроводности металлической стенки из радиационого в конвективное пространство. Это также способствует более равномерному нагреву всей поврехности нагрева. [c.263]

    Соединения аминов с кислым газом в условиях тепловой регенерации пасьгщенного раствора легко диссоциируют с образованием исходных веществ. Затраты энергии на регенерацию тем меньше, чем ниже реакционная способ1Юсть амина. [c.171]

    Чтобы предотвратить образование в горючей среде источников зажигания, необходимо регламентировать исполнение, применение и режим эксплуатации машин, механизмов и другого оборудования, а также качество материалов и изделий, которые могут служить источником зажигания горючей среды, и применение электрооборудования, соответствующего классу пожаровзрывоопасности помещения или наружной установки, группе и категории взрывоопасности смеси применение технологического процесса и оборудования, удовлетворяющих требованиям электростатической искробезопасности устройство мол-ниезащиты зданий, сооружений и оборудования. Необходимо регламентировать максимально допустимые температуры нагрева поверхности оборудования, изделий и материалов, способных контактировать с горючей средой, максимально допустимую энергию искрового разряда в горючей среде, максимально допустимые температуры нагрева горючих веществ, материалов и конструкций следует применять неискрящий инструмент при работе с легко воспламеняющимися веществами, ликвидировать условия для теплового, химического и микробиологического самовозгорания обращающихся веществ, материалов, изделий и конструкций устранить контакт пирофорных вещестР с воздухом. [c.17]

    При прокладке газопроводов, в которых возможно выделение воды, следует избегать образования пониженных точек (мешков). В местах, где неизбежно выделение влаги, предусматривают ее отвод. Газопроводы для подачи газа на топливо должны прокладываться по территории предприятий в соответствии с действующими отраслевыми правилами. Требования этих правил распространяются также на транспортирование к печам газа, полученного на НПЗ. На трубопроводах не должно быть тупиковых участков. В тех случаях, когда их невозможно избежать, за ними устанавливают контроль и при необходимости предусматривают обогрев. Надземные трубопроводы для влагосодержащих газов защищают от замерзания тепловой изоляцией, при необходимости монтируют обогревающий спутник. [c.114]

    Известны другие случаи бурного выхода паров нз нескольких резервуаров сжиженных газов. В каждом случае теплый и тяжелый продукт закачивали в резервуар снизу и выход паров происходил при заполнении, до охлаждения продукта в нем. Данные явления до настоящего времени изучены недостаточно. Некоторые исследователи приписывают этот выход паров явлению ролловера. Другие объясняют тепловым переливом и феноменом поверхностного слоя . Но и те и другие считают, что внезапный мощный выброс паров сжиженных газов не может происходить в низкотемпературных резервуарах, содержащих однородные жидкости с одинаковой по всему объему плотностью, а также в резервуарах с жидким аммиаком, жидким кислородом или жидким азотом. В случае возникновения этих явлений, наблюдавшихся до сих пор, не происходило аварий, но объемы и скорости образования паров были достаточно велики, чтобы привести к аварии. [c.133]

    Особенностью некоторых нефтепродуктов является их способность к образованию тепловой волны (прогретого слоя) при поверхностном горении в резервуарах. В случае горения нефтепродуктов с узкой областью выкипания тепло пожара проникает только в тонкий поверхностный слой. При горении сырых нефтей и жидких углеводородов с широкой областью выкипания низкокнпящие фракции углеводородов уходят с поверхностей и подпитывают пламя, а высококипящие углеводороды устремляются вниз через прогретый слой, образуя нагретый фронт более глубоко расположенных слоев жидких углеводородов. Это явление называют тепловой волной. Тепловая волна растет вследствие подвода тепла и ухода паров, пока не выкипят все более легкие углеводороды или пока она не достигнет водяного или эмульсионного слоя. В последнем случае возникает паровой взрыв с выбросом горящего продукта. [c.143]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Тепловой эффект реакции образования 1 моля вещества из -элементов иазываегся теплотой образования этого вещества  [c.107]

    Согласно закону Гесса теплота реакции q любого химического процесса зависит только от начального и конечного состояния системы, а не от промежуточных стадий, т. е. не зависит от пути, по которому идет этот процесс. Отсюда следует, что тепловой эффект EXHKoii химической реакции равен сумме теплот образования конечных продуктов минус суммы теплот образования исходных веществ этой реакции. Например, для реакции [c.108]

    Для подсчетов теплового эффекта реакции значения теплот образования и сгорания всегда берут из таблиц, которые составлены для состояния системы при 20° С и 1 ата. Эти теплоты образования называкзтся стандартными [c.108]

    В промышленной практике большинство процессов паро-образования протекает при температурах кипения под П() 1малы1[.1м или близком к нему давлении (1 ата). Исключение из этого составляют процессы испарения воды и сжиженных газов, значениями теплоты испарения котор[>1х в практике расчетов довольно часто приходится пользоваться при разлн п-1ых их состояниях (Р и 7"). На рис. 12 приведена зависимость теплоты испарения воды от температуры. Для сжиженных газов теплоту нснарення при любом давлении, а следовательно, и при любой температуре кипения, можно находить по тепловым или энтропийным диаграммам, как это было указано выше для давлеш1я, равного 1 ата, она дана в табл. 5. [c.123]


Смотреть страницы где упоминается термин Тепловые образования: [c.155]    [c.347]    [c.220]    [c.24]    [c.57]    [c.181]    [c.537]    [c.90]    [c.110]   
Основы химической термодинамики и кинетики химических реакций (1981) -- [ c.43 ]




ПОИСК







© 2025 chem21.info Реклама на сайте