Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высшею порядка переходы

    Жидкое состояние. Структура жидкости. Жидкость имеет много общего с твердым состоянием. Компактное расположение частиц обусловливает высокую плотность и малую сжимаемость по сравнению с газами. Структура и внутреннее строение жидкостей и твердых тел во многом схожи и характеризуются упорядоченным расположением частиц. У кристаллических твердых тел упорядочение распространяется на огромное количество межатомных расстояний, т. е. ближний порядок переходит в дальний. В жидкости вследствие относительно высокой подвижности частиц упорядоченность ограничивается небольшими островками (агрегатами, или кластерами ), причем последние ориентированы друг относительно друга беспорядочно и часть пространства между ними остается не заполненной веществом. Эти образования нестабильны, связи в них постоянно разрушаются и вновь возникают. При этом происходит обмен частицами между соседними кластерами. Таким образом, в структурном отношении для жидкости характерно наличие лабильного (подвижного) равновесия, обусловленного относительной сво- [c.238]


    Таким образом при нитровании фенолов, ароматических аминов и их алкилированных производных мы встречаемся с иным механизмом реакции, названным Ингольдом специальным механизмом. При этом оказалось, что для нитрования этих высоко реакционноснособных соединений возможен переход от обычного нитрования нитроний-ионом к этому специальному механизму. Такой переход можно осуществить изменением концентраций азотной и азотистой кислот. При низких концентрациях азотной кислоты реакция сильно катализируется присутствующей азотистой кислотой и протекает по кинетике второго порядка (см. выражения скорости). Посте-ценное повышение концентрации азотной кислоты приводит сначала к уменьшению каталитического действия азотистой кислоты, затем к полному его исчезновению, когда порядок реакции становится нулевым, и, наконец, к появлению незначительного тормозящего действия азотистой кислоты. [c.194]

    Комиссия, расследовавшая причины аварии, предложила заменить стальные литые переходы на трубопроводах этилена высокого давления переходами более надежной конструкции, улучшить крепление трубопроводов для снижения знакопеременных нагрузок, возникающих в опасных сечениях от вибрации и температурных изменений, а также создать более рациональную схему удаления воды из системы гидратации и определить порядок проверки проходимости системы перед началом подпитки ее этиленом. [c.256]

    Переход при 327° имеет характер точки плавления. Это доказывается потерей кристаллической структуры, видимой на рентгенограммах, и тем фактом, что полимер не может быть ориентирован при более высокой температуре. При нагревании до этой температуры предварительно ориентированные образцы уменьшаются до их размеров в неориентированном состоянии, что показывает на первый порядок перехода с приобретением дополнительной степени свободы. [c.386]

    Четыре типа электронных переходов приведены в порядке уменьшения энергии. Самая высокая энергия света (дальний ультрафиолет) требуется для перехода а а , тогда как переходы п п могут быть вызваны обычным ультрафиолетовым облучением. Однако этот порядок может иногда меняться в зависимости от природы растворителя. [c.307]

    Разработана методика кинетических измерений, исключающая возможность термического и гидролитического разложения нитратов и нитритов в процессе подготовки проб и проведения анализа. Определение порядка реакции по субстрату показало переход значения от нулевого к дробному и далее к первому при увеличении концентрации азотной кислоты. Изучение влияния добавок позволило установить, что скорость сильно зависит от факторов, влияющих на равновесие автопротолиза азотной кислоты. В присутствии серной кислоты скорость резко увеличивается, тогда как добавление в реакционную смесь воды и нитрата калия приводит к резкому снижению начальной скорости. При этом происходит переход порядка реакции по субстрату т дробного к нулевому. Добавка нитрита калия вызьшает снижение скорости процесса. Реакция имеет первьт порядок по субстрату в области концентраций азотной кислоты 3.5-24.0 моль/л. Из-за значительного избытка азотной кислоты реализуется процесс псевдопервого порядка. Порядок по азотной кислоте определен по тангенсу угла наклона в координатах lgk ,фф- 1й[НКОз]. Константа скорости пропорциональна пятой степени концентрации азотной кислоты. Линейный характер зависимостей сохраняется для всего диапазона концентраций азотной кислоты, т е. высокий порядок по азотной кислоте не связан с влиянием растюрителя, а присущ собственно реакции нитроксилирования. [c.13]


    Для полимеров характерны некоторые особенности, такие, как высокоэластическое состояние в определенных условиях, механическое стеклование, способность термореактивных макромолекул образовывать жесткие сетчатые структуры. Механическая прочность полимеров возрастает с увеличением их молекулярной массы, при переходе от линейных к разветвленным и далее сетчатым структурам. Стереорегулярные структуры имеют более. высокую прочность, чем полимеры с разупорядоченной структурой. Дальнейшее увеличение механической прочности полимеров наблюдается при их переходе в кристаллическое состояние. Например, разрывная прочность кристаллического полиэтилена на 1,5—2,0 порядка выше, чем прочность аморфного полиэтилена. Удельная прочность на единицу площади сечения кристаллических полимеров соизмерима, а на единицу массы на порядок превышает прочность легированных сталей. [c.361]

    Переход вещества из газообразного в конденсированное состояние объясняется проявлением между его частицами сил притяжения. Для их преодоления при переходе молекулярных веществ из конденсированного в газообразное состояние требуется энергия, затраты которой гораздо меньше значений энергии химической связи (см. гл. П1, 8>. Действительно, теплота испарения воды составляет 40,6 кДж/моль, хлороводорода — 16,3 кДж/моль, в то время как энергия связей Н—О и Н—С1 достигает значений, на порядок более высоких — соответственно 492 и 431 кДж/моль. [c.89]

    При постепенном увеличении и уменьшении Рсо должен существовать гистерезис зависимости скорости реакции от Рсо- Полученные результаты подтверждены экспериментально (рис. 1.6). Измерения скорости реакции гидрирования СО в проточно-циркуляционной установке под давлением 30 атм показали, что при концентрации СО менее 0,02 моль/мЗ скорость реакции пропорциональна со- При более высоких концентрациях скорость резко уменьшается, переходя в нулевой порядок. Аналогичная зависимость скорости реакции от концентрации наблюдалась при гидрировании малых количеств кислорода на никелевых катализаторах [31]. [c.17]

    Для жидкого агрегатного состояния характерны изотропия — одинаковость физических свойств по всем направлениям и текучесть — способность легко изменять внешнюю форму под воздействием малых нагрузок По высокой плотности и малой сжимаемости жидкости близки к твердым телам В жидкостях существует ближний порядок в расположении молекул, который проявляется в том, что число соседних молекул у каждой молекулы, а также их взаимное расположение в среднем для всех молекул в объеме жидкости одинаково У жидкостей сильно выражена самодиффузия, т е непрерывные переходы молекул с места на место [c.88]

    В свете сказанного встает еще один вопрос можно ли вообще ускорить реакцию созданием каталитического маршрута более высокого кинетического порядка Для того чтобы найти ответ на этот вопрос, необходима такая каталитическая система, которая повышала бы не кинетический порядок реакции, а число функциональных каталитических групп в молекуле. Если снижение энтальпии активации при переходе от моно- к би- [c.295]

    В формулах электронного строения прпнято сначала последовательно записывать все состояния с данным значением п, а аатем уже переходить к состояниям с более высоким значением п. Поэтому порядок записи не всегда совпадает с порядком заполнения энергетических подуровней. Так, в записи электронной формулы атома скандия подуровень Зй помещен раньше подуровня 45, хотя заполняются эти подуровни в обратной последовательности. [c.95]

    Рациональный выбор спектрального прибора имеет важное значение при определении малых количеств мышьяка. Эффективность применения приборов высокой разрешающей силы показана, например, в работе по определению мышьяка в двуокиси титана [432]. В этой работе установлено, что переход от кварцевого спектрографа ИСП-22 средней дисперсии к спектрографу ДФС-8 с дифракционной решеткой 600 штрих/мм, позволяет снизить предел обнаружения мышьяка в 2,5 раза. Приближенные теоретические расчеты [250] показали, что возбуждение спектров в полом катоде примерно на порядок снижает относительные пределы обнаружения примесей по сравнению с возбуждением дугой. Так, например, при определении мышьяка в стали при возбуждении спектров дугой [26] достигнут предел обнаружения 3-10 Зо/ц а при возбуждении в полом катоде — 2-10 % Аз [1145]. При прямом определении мышьяка в кремнии при возбуждении спектров в полом катоде предел обнаружения достигает 5-10 % [241], а при возбуждении спектров в дуге переменного тока при использовании предварительного химического обогащения он составляет только 1-10 % [143]. [c.93]

    Исследование процесса перехода молекул воды из жидкой фазы в газо- образную также доказывает существование водородных связей и высокий порядок расположения молекул воды в структуре жидкостк. Температуры кипения водородных соединений элементов V группы НзЗ, НаВе и Н Те линейно возрастают с номером периода, в котором расположен элемент (см. рис. 1.7), [c.31]


    Жидкое состояние. Структура жидкости. Жидкость имеет много общего с твердым состоянием. Компактное расположение частиц обусловливает высокую плотность и малую сжимаемость по сравнению с газами. Структура и внутреннее строение жидкостей и твердых тел во многом схожи и характеризуются упорядоченным расположением частиц. В кристаллических твердых телах упорядочение распространяется на огромное количество межатомных расстояний, т.е. ближний порядок переходит в дальний. В жидкости вследствие относительно высокой подвижности частиц упорядоченность ограничивается небольшими островками (агрегатами или кластерами), причем последние ориентированы друг относительно друга беспорядочно и часть пространства между ними остается не заполненной веществом. Эти образования нестабильны, связи в них постоянно разрушаются и вновь возникают. При этом происходит обмен частиц между соседними кластерами. Таким образом, в структурном отношении для жидкости характерно наличие лабильного (подвижного) равновесия, обусловленного относительной свободой перемещения частиц. Образование лабильных агрегатов в жидкости наблюдается даже при температурах, намного превышающих температуру кристаллизации. С понижением температуры стабильность таких агрегатов увеличивается и вблизи температуры кристаллизации жидкости имеют квазикристалличе-ское строение, т.е, возрастает количество агрегатов, они становятся больше по размерам и начинают определенным образом ориентироваться друг относительно друга. [c.144]

    Сравнение обсужденного выше положения с описанным в разделе 2.3 показывает, что при более высоком порядке химической реакции переход от диффузионного к кинетическому режиму более плавный. Больший чем первый порядок реакции по концентрации абсорбируемого компонента редко встречается в практике. Поэтому можно утверждать, что в случае реакции первого порядка наибольший практический интерес имео - промежуточный режим. [c.38]

    Роль РеС1з объясняют не только ускорением стадии перехода л-комплекса в о-комплекс, но также образованием комплекса С1— С1 РеС1з. Каталитическая реакция имеет первый порядок по олефину, СЬ и РеСЬ, но на нее обычно накладывается и некаталитический процесс, имеющий по хлору более высокий порядок. Реакционная способность олефинов зависит от стабильности промежуточного катиона и изменяется следующим образом  [c.117]

    Основной недостаток указанных выше подходов состоит в пренебрежении связываюш,ими взаимодействиями, как СГ-, так и тс-перекрыванием, между металлом и лигандом, а также между лигандами. Первоначально Мэзон рассчитал, что взаимодействия металла могли бы обращать порядок переходов и Е в комплексах типа М(Ыру)з, по-видимому, независимоотМ [122]. Однако его последние оценки различных вкладов в расщепление между Аа и Е показали, что для фенантролина как меж-лигандное, так и металл-лигандное и-связывания стремятся противодействовать энергии резонанса возбужденных состояний, а для дипиридила межлигандные и металл-лигандные вклады взаимодействия имеют противоположные знаки и для обоих соединений переход лежит при более высокой энергии. Тем не менее как будет видно в дальнейшем, рассчитанные расщепления сильно завышены для некоторых комплексов, а для других имеют неправильный знак. [c.301]

    Структурные параметры и поверхностные свойства порошков зависят от их дисперсности. У ультрадисперсных порошков наблюдается значительная неупорядоченность кристаллической структуры, некоторые из них аморфны. Предполагают [4], что при таких размерах на поверхности частичек происходит перестройка расположения атомов и изменение типа межатомных связей, следствием которой является структурная, фазовая и концентрационная неоднородность. Строго пространственная периодичность расположения атомов, характерная для монокристаллов, нарушается, хотя дальний порядок сохраняется. Межатомное расстояние закономерно изменяется при переходе от центра частички к ее поверхности. По этим признакам ультрадисперсные среды предложено отличать от других типов конденсированного состояния вещества жидкого, аморфного и стеклообразного, а также от поликристаллов. Предполагается также, что из ультрадисперсных порошков методами порошковой металлургии могут быть приготовлены особомелкозернистые материалы и керамические изделия, обладающие сверхпластичностью, уникальными плотностью и прочностью, тепло- и жароустойчивостью, стойкостью в агрессивных средах, особыми электрофизическими свойствами, имеющими, в частности, высокую температуру перехода в сверхпроводящее состояние. [c.198]

    Восстановление к через кг (рис. 2.7, кривая 7) приводит не к аррениусовой прямой, а к более сложной зависимости. При низких температурах когда все определяется самым нижним уровнем, кривая 7 в правой части асимптотически совпадает с прямой для первого колебательного уровня, а при более высоких температурах переходит через промежуточный участок к прямой с энергиями активации соответственно 1,2 2,05 1,15 и изменением значения к приблизительно на порядок. Именно поэтому аррениусова обработка экспериментальных данных в таких случаях, как сильно экзотермические реакции, разветвление цепи через возбужденные молекулы и т. п., [c.68]

    Из данных табл. 20 четко видно, что основные металлы, содержащиеся в нефтях, в том числе содержащиеся в наиболее высоких концентрациях (V, Ni, Fe, Са), практически полностью сконцентрированы в смолисто-асфальтеновой части. В то время как в смолах и асфальтенах их концентрации не превышают десятых долей милиграмма на грамм, при переходе к мазуту, содержащему более половины углеводородов, концентрация их снижается на порядок, а при переходе от мазута к углеводородам — на два порядка. Исчезающе малые концентрацин металлов в высокомолекулярной углеводородной части обусловлены, вероятно, наличием в них небольших примесей смолы. [c.67]

    Характер распределения ССЕ в твердых телах позволяет разделить их по степени симметрии на кристаллические п аморфные нефтяные дисперсные структуры. Твердые нефтяные тела, в которых расположение соединений имеет дальний порядок, соответствующий периодическому повторению определенной архитектуры в трех измерениях, называют кристаллическими, а расположение соединений в них — кристаллической структурой. Порядок, свойственный расположению соединений внутри твердого тела, часто приводит к симметрии его внешне] ) формы. Например, кристаллы графита имеют гексагональную форму, в базисных плоскостях атомы расположены в углах шестиугольников, на расстоянии 0,142 нм, т. е. на таком же расстоянии, как и в молекулах бензола. Прочность связей углерода в базисной плоскости кристалла графита примерно в шесть раз выше, чем в атомах углерода, расположенных на двух плоскостях, находящихся на расстоянии 0,3345 нм. Кристаллы графита имеют высокую симметрию. Аналогично другая форма кристалла углерода — алмаз — образует куб. В узлах кристаллическо 1 решетки алмаза а-связи каждого атома углерода направлены к четырем соседним атомам. Теплота сгорания алмаза несколько выше, чем графита. В связи с этим осуществляется переход при нагреве алмаза в графит в термодинамически более устойчивое состояние, в результате чего формируется новая симметрия. Симметрия также свойственна таким твердым нефтяным телам, как парафины. Известны нефтяные твердые тела с ближним порядком расположения соединений, они являются не кристаллами, а крайне вязкими жидкостями. К ним относятся, например, битумы, пеки, остаточные крекинг-остатки и др. [c.165]

    На глубину превращения, выход и состав продуктов реакции, продолжительность работы катализатора большое влияние оказывает подготовка сырья, которое может быть облагорожено предварительной гидроочисткой для снижения содержания сернистых и азотистых соединений, а также частичного перехода полициклических ароматических углеводородов в алкиларома-тические с меньшим числом колец. Предварительная гидроочистка сырья позволяет повысить выход бензина, снизить коксообразование и увеличить срок работы катализатора, а также на порядок уменьшить содержание серы в бензине и газойле. Поэтому установки каталитического крекинга для эффективной переработки тяжелого сернистого сырья комбинируют с установками гидроочистки. Например, в состав современной комбинированной установки Г-43-107 мощностью по сырью 2 млн. т в год входят гидроочистка вакуумного дистиллята, каталитический крекинг, ректификация и газофракционирован ие продуктов крекинга. В блоке каталитического крекинга используется цеолитсодержащий катализатор, который обеспечивает высокий выход бензина и компонента дизельного топлива — легкого газойля. [c.28]

    ЖИДКОСТИ — агрегатное состояние тела промежуточное между твердым и газообразным состояниями. По своей высокой плотности и малой сжимаемости, а также по наличию сильного межмоле-кулярного взаимодействия Ж. близ1 и к твердым телам и существенно отличаются от газов. Наряду с этим, изотропность, текучесть (способность легко изменять внешнюю форму под действием малых нагрузок) приближают их к газам. Вязкость Ж., в отличие от газон, резко падает с повышением температуры. Ж- ограничена со стороны низких температур переходом в твердое или стеклообразное состояние. Для каждого вещества характерна критическая температура, выше которой Ж. не может существовать в равновесии с собстпеиным паром. Под влиянием поверхностною натяжения Ж- стремится приобрести форму шара. Как правило, вещества имеют только одну жидкостную модификацию, за исключением некоторых веществ, для которых наблюдается как нормальная жидкая фаза, так и анизотропные фазы. Это жидкие кристалл , а также гелий, который может находиться в двух жидких фазах. Структура и физические свойства Ж- зависят от химической индивидуальности образующих ее частиц и от характера и интенсивности сил, действующих между ними. В Ж- существует т. наз. ближний порядок , проявляющийся в том, что число окружающих молекул и их взаимное расколожение в среднем для всех молекул одинаково. [c.97]

    Наиболее высокий уровень. чимичсской организации вещества достигается в его кристаллическом состоянии. Расположение атомов и молекул в кристаллической структуре максимально упорядоченно. В кристаллическом состоянии порядок расположения атомов и молекул наиболее высок по сравнению с но 11ЯДКОМ в жидком и газообразном состояниях, а энтропия uf щества в кристаллическом состоянии минимальна. Так же, кяи жидкость имеет некоторые свойстна, характерные для газооб разного состояния, кристаллические вещества обладают рядом свойств жидкостей, а жидкости — свойствами кристаллических вешеств. При переходе от одного урм орг пизации вен1ест ,  [c.241]

    Жидкое состояние вещества является промежуточным между твердым и газообразным (рис. 1.1). Сбласть существования жидкости ограничена со стороны низких температур переходом в твердое состояние (точки сМ ), а со стороны высоких — переходом в газообразное состояние (точки с, е). Линия АК, разделяющая жидкую и газообразную фазы, заканчивается критической точкой, соответствующей температуре и давлению р р, выше которых невозможно существование жидкости в равновесии с паром. Линия равновесия жидкость — твердая фаза критической точки не имеет. У металлов температура плавления повышается с увеличением давления (кривая АВ) у льда, кремния, гер1иа-ния — понижается (кривая АВ ). Точка А на диаграмме состояния соответствует температуре и давлению, при которых в закрытом сосуде находятся в равновесии твердая, жидкая и газообразная фазы. Жидкости сочетают некоторые свойства как твердых тел, так и газов. Твердые тела бывают кристаллические и аморфные. По типам связи кристаллы подразделяют на атомные, ионные, металлические и молекулярные. Они обладают ближним и дальним порядками. Ближний порядок означает правильное расположение около фиксированного атома, иона или молекулы определенного числа ближайших соседей. Дальним порядком называется расположение частиц в определенной последовательности с образованием единой трехмерной решетки. При наличии дальнего порядка расстояние до любого атома кристалла вычисляется через параметры элементарной ячейки по формуле [c.7]

    Таким образом, из-за повышенной концентрации аренов в вОде их скорость деградации становится соизмеримой со скоростью разрушения других более усваиваемых УВ (см. табл. 11). В обоих случаях переход от нефтей группы А к нефтям группы Б сопровождается резким уменьшением содержания аренов. Доказательством того, что при этом происходит не простое вымывание их водой, а именно их окисление, служит обнаруженное нами явление увеличения доли низкомолекулярных ал-килфенолов (фенола, крезолов и ксиленолов), образовавшихся путем окисления аренов нефтей зоны биодеградации (см. раздел 1.3.1). Кроме того, в пользу выдвинутого предположения говорит увеличение почти на порядок отношения Е ксилолов/этилбензол. Дело в том, что среди аренов С. этилбензол обладает самой высокой растворимостью в воде, [c.43]

    Скорость A.n., особенно при умеренных т-рах, в большинстве случаев значительно выше скорости радикальной полимеризации. Это обычно связано с более высокой действующей концентрацией активных частиц (в пределе она м. б. равиа исходной концентрации инициатора). Собственная же реакц. способность разл. форм активных центров варьирует в очень широких пределах даже для одного и того же мономера. Напр., для А. п. стирола при 30 °С порядок величины абс. константы скорости роста цепи (в л/моль-с) при переходе вдоль равновесий (2) изменяется от 10 " (литиевые ассоциаты, II) до 10 (своб. анионы, V). [c.167]

    Полиморфные переходы, согласно принятой в термодинамике классификации, подразделяются на переходы I и II рода. Последние (в отличие от переходов первого рода) не сопровождаются скачкообразным изменением энтропии теплоемкость в точке такого перехода проходит через высокий и острый максимум. Изменение кристаллич. структуры при переходе второго рода невелико, а в нек-рых случаях практически отсутствует (напр, при переходе a-Fe в p-Fe, происходящем при 769 С, теряются ферромагн. св-ва). Переходами второго рода часто являются переходы типа порядок-беспорядок, переходы с появлением внутр. вращения (напр, в случае NH4NO3). [c.16]

    Кислотность и основность растворителей можно определять различными методами [49]. Помимо обычных экспериментальных методов измерения констант кислотно-основного равновесия, основность и кислотность растворителей можно определять, контролируя изменение какого-либо физического параметра (например, поглощения в ИК-, УФ- или видимой областях или химических сдвигов в спектрах ЯМР) молекул стандартного соединения при переходе от стандартного к изучаемому растворителю. Например, определив смещение волнового числа полосы валентного колебания =С—Н в фенилацетилене при переходе от тетрахлорметана к 19 другим растворителям, удалось оценить относительную основность последних — от самой низкой в случае тетрахлорметана до самой высокой в случае гексаметилфосфотриамида [61], В качестве критерия основности растворителей использовали также разность химических сдвигов в спектрах ЯМР Н протона хлороформа Абоо(СНС з), определяемых путем экстраполяции до бесконечного разбавления в изучаемом растворителе и в инертном стандартном растворителе (циклогексане). Приведенные в табл. 3.5 данные позволили выяснить порядок изменения основности растворителей относительно стандартного растворителя — хлороформа [62]. [c.108]

    Распределение нитрата тория между раствором азотной кислоты и диэтиловы.м эфиром впервые исследовано Имре [1098], показавшим, что увеличение концентрации азотной кислоты в водном слое приводит к повышению коэффициента распределения нитрата тория. Позднее было замечено, что насыщение водного слоя нитратами тория [1489] или некоторых металлов, не экстрагирующихся эфиром [398, 399, 783, 1741], значительно повышает коэффициенты распределения нитрата тория. В исследованиях, проведенных Бок [399], кислотность раствора поддерживалась 1 М по HNO3 и определялся процент экстракции тория для эквивалентного объема эфира в присутствии высаливателей. При этом наилучшие результаты были получены с Zn (N03)2 (экстракция тори я осуществлялась па 80,9%) порядок эффективности наиболее пригодных высаливателей оказался следующим Zn(NO3)2>Ре(NO3)2> >Са(ЫОз)2>Ь[МОз>А1(ЫОз)з>Мй( Оз)2- Повышение концентрации азотной кислоты до 3 /V в растворах, насыщенных нитратом цинка, обеспечивает экстракцию почти 90% Th за одну операцию. Несмотря на то, что р. з. э. за исключением Се [913, 1098], практически не экстрагируются эфиром, метод аналитического значения не имеет, так как другие примеси, которые могут присутствовать в исследуемом образце, частично переходят в эфир при высокой концентрации кислоты и высаливателей в водной фазе. [c.121]

    Как уже отмечалось выше, высокоэластичность полимерных материалов является особым состоянием вещества, которое определяется тенденпией к увеличению энтропии, тогда как, например у стали, возвращение к равновесию определяется тенденцией к уменьшению внутренней энергии. Энтропийная природа упругости объясняет тот факт, что напряжение растянутой резиновой ленты возрастает с температурой, в то время как у стальной проволоки оно снижается при растяжении макромолекулы переходят из статистически наиболее вероятной формы клубка в статистически наименее вероятное состояние растянутых цепочек. Чем выше температура, тем выше подвижность цепей и тем больше потеря эн тропии при переходе в растянутое состояние, при котором подвижность цепей сильно ограничена (ближний порядок, см. раздел 14.1). Таким образом, с повышением температуры увеличивается стремление вернуться в исходное состояние с более высокой энтропией. [c.40]

    Каждое из этих уравнений, связывающих эффективность обработки со временем удерживания для различных значений скоростей реакции и концентрации загрязнений в подаваемом стоке, можно использовать независимо. Особый случай, однако, представляет биофильтр с диффузией в биопленке, поскольку на разных участках одного и того же фильтра могут одновременно реализоваться все три варианта. Концентрация вещества в подаваемом стоке может быть достаточно высокой для того, чтобы вещество проходило фильтр насквозь, т. е. реакция имеет нулевой порядок. Падение концентрации вещества после некоторой обработки приводит к тому, что фильтр становится лишь частично проницаем, т. е. порядок реакции становится равным 1/2. Дальнейшее падение концентрации разлагаемых веществ приведет к переходу к реакции первого порядка. В итоге весь происходящий на биофильтре процесс можно рассматривать как реакцию первого порядка с пониженной эффективностью (см. разд. 5.1). [c.210]


Смотреть страницы где упоминается термин Высшею порядка переходы: [c.263]    [c.124]    [c.528]    [c.58]    [c.181]    [c.188]    [c.68]    [c.149]    [c.177]    [c.215]    [c.344]    [c.538]    [c.293]    [c.76]   
Химическая термодинамика (1966) -- [ c.295 ]




ПОИСК







© 2025 chem21.info Реклама на сайте