Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки соединения с детергентами

    Фундаментальное свойство экстракционной модели, обусловленное самой природой гидрофобных взаимодействий, заключается в том, что инкремент свободной энергии переноса углеводородного фрагмента в молекуле лиганда из воды в органический растворитель практически не зависит от природы последнего [43—47]. Это связано с тем, что главный вклад в эту величину вносит свободная энергия сольватации углеводородного фрагмента в воде. Так, например, независимо от природы органического растворителя инкремент свободной энергии переноса СНа-группы из воды в органическую фазу составляет примерно 700 кал/моль (3000 Дж/моль) [45]. Приблизительно та же величина свободной энергии характеризует адсорбцию алифатических соединений на поверхности раздела фаз вода — масло или вода — воздух, адсорбцию их из водного раствора на поверхность ртутной капли или же процесс солюбилизации органических молекул мицеллами детергентов [45]. Значение этого факта трудно переоценить, поскольку именно поэтому (пользуясь сопоставлением термодинамики гидрофобного взаимодействия белок — органический лиганд с аналогичными данными для модельных процессов) можно выявить, в принципе, специфические свойства структуры или микросреды гидрофобных полостей в белках.  [c.27]


    Наиболее важное, с практической точки зрения, свойство полуколлоидных растворов детергентов — их моющее действие. Задача очистки состоит в устранении с поверхности твердых тел (металлов, керамики, дерева, пластмассы), текстильных волокон, кожи человека, прочно прилипших к ней загрязняющих веществ — жиров, белков и других органических соединений, сажи, пыли. Чистая вода обычно плохо смачивает их (большинство из них является гидрофобными), к тому же вода имеет очень высокое поверхностное натяжение. Вследствие этого моющее действие чистой воды очень мало. [c.144]

    Метод основан на том, что анионные синтетические моющие вещества (детергенты) образуют с метиленовой синей комплексные соединения, растворимые в хлороформе с образованием синих растворов. Сама метиленовая синяя в хлороформе не растворяется. В описываемом варианте метода экстракцию указанного комплексного соединения хлороформом проводят сначала в щелочной среде (буферный раствор, pH 10), а затем соединенные хлороформные экстракты промывают кислым раствором метиленовой синей. Таким двойным экстрагированием устраняется мешающее действие хлоридов, нитратов, роданидов и белков. [c.269]

    Эмульсионная полимеризация получила широкое распространение в промышленности. Для эмульгирования мономера в воде применяют кислотные, основные или нейтральные добавки (эмульгаторы). Главное преимущество эмульсионной полимеризации заключается в высокой подвижности (текучести) системы, что обеспечивает необходимый отвод тепла и устраняет возможность местного перегрева. Так как вода не участвует в переносе цепи, образование и рост полимера не сказывается на изменении вязкости системы. В эмульсионном способе полимеризации нельзя использовать мономеры, нестойкие к воде. В качестве эмульгаторов обычно используются мыла и синтетические детергенты. Удовлетворительные результаты получены также при использовании таких высокомолекулярных соединений, как поливиниловый спирт и белки. [c.523]

    Сложные белки возникают путем соединения белков с небелковыми веществами различных типов. Они могут соединяться за счет образования связей, близких по своей природе к внутримолекулярным связям в белке солеобразным, гидрофобным и вызванным диполь-дипольным взаимодействием. Эти связи возникают между определенными группами белковой частицы, с одной стороны, и небелковых соединений — с другой. Довольно подробно изучены комплексы белков с неорганическими ионами, органическими красителями, а также с другими органическими веществами, как например, детергентами, жирными кислотами, кислыми полисахаридами (например, гепарином) и т. п. Эти исследования позволили многое узнать о природе сложных белков. [c.38]


    К числу серьезных недостатков, свойственных четвертичным соединениям, относится несовместимость с целым рядом веществ, которая может повлечь за собой потерю активности. Например, мыла и анионактивные детергенты с ними образуют осадки. В некоторых случаях растворы после смешения даже сохраняют прозрачность, тем не менее при биологических испытаниях может обнаружиться несовместимость. Четвертичные соединения могут инактивироваться в присутствии органических веществ — сыворотки, крови или белков. [c.312]

    Следующая группа денатурирующих органических веществ — ионные детергенты (например, додецилсульфат натрия) и сали-цилат натрия — имеют, видимо, другой механизм действия. Оно обусловлено стехиометрическим соединением денатурирующих агентов с противоположно заряженными группами белка. Электростатическое отталкивание одноименно заряженных групп, оставшихся в цепи, приводит к разрыву водородных и иных связей, стабилизирующих нативное состояние. [c.185]

    В последнее время внимание исследователей привлекают вопросы, связанные с кинетикой и механизмом органических реакций в присутствии поверхностноактивных веществ (ПАВ) [1]. Эти соединения, называемые также амфифильными, или детергентами, обычно содержат длинную углеводородную цепь — гидрофобную часть и полярную или ионную группу — гидрофильную часть. В разбавленных растворах они образуют агрегаты с высоким молекулярным весом, или мицеллы. Взаимодействие между субстратом реакции и специфически ориентированными гидрофобной и гидрофильной частями молекул в мицеллах является основной причиной поразительного ускорения или ингибирования поверхностноактивными веществами многих органических реакций. Во многих случаях в мицеллярном катализе обнаруживается отчетливая субстратная специфичность, а кинетика подчиняется уравнению Михаэлиса — Ментен (с насыщением по концентрации субстрата), и в этом отношении мицеллярный катализ во многом аналогичен ферментативному. Кинетическая аналогия мицеллярных катализаторов с ферментами и известное структурное сходство мицелл и белковых глобул явились существенным стимулом исследований в этой области. Мицеллы детергентов, значительно более простые в структурном отношении, чем белки, позволяют подойти к объяснению кинетических свойств ферментативных и мицеллярных систем. Изучая изменения физических свойств системы при образовании мицелл, можно оценить роль гидрофобных взаимодействий и, таким образом, моделировать гидрофобные взаимодействия в белках и липидах. [c.222]

    Насколько же оправдалось наше предположение о том, что митотический аппарат образуется путем соединения молекул белка сульфидными мостиками Рассуждая логически, для проверки этого предположения следует направить процесс в обратную сторону. Если предположение верно (а успех опыта сам по себе еще ничего не доказывает), то детергент должен растворять митотический аппарат, когда дисульфидные мостики этого последнего восстановлены в свободные сульфгидрильные группы. Иными словами, нам следовало провести опыт, аналогичный опыту Годдарда и Михаэлис, [c.205]

    Пестициды, фенолы, полициклические соединения, нефтепродукты Гуминовые вещества (окраска), детергенты (пена), нефтепродукты (пятна) Углеводы, белки, липиды, нуклеиновые кислоты, витамины Детергенты, нефтепродукты, пестициды, полихлорированные бифенилы и родственные соединения [c.406]

    Детергенты — это группа амфифильных соединений, которые способны связываться с гидрофобными участками мембранных белков, контактирующими с липидной фазой мембран, тем самым разрушая ее структуру. В ходе солюбилизации мембран детергентами последние модифицируют бислой липидов, разрыхляя его, затем образуют смешанные (белок-липид-детергентные) мицеллы, а в конечном итоге — детергент-белковые и липид-детергентные мицеллы. Для сохранения мембранных белков в растворимом состоянии необходимо постоянное присутствие детергента. Его удаление приводит к агрегации и последующему осаждению молекул белка. [c.224]

    Мембранные структуры могут быть подвергнуты солюбилизации. Этот процесс обеспечивается детергентами — группой амфи-фильных соединений, способных связываться с мембранным белком гидрофобными связями, одновременно взаимодействуя полярными группами с водой. В результате молекулы детергента сначала разрыхляют мембрану, при повышении их концентрации образуют смешанные мицеллы, а затем и детергент-белковые комплексы (рис. 35). В ряде случаев при замене липидного окружения на детергент белок сохраняет хотя бы некоторые свои функции. [c.87]

    Высшие алкил- и арилсульфосоединения (додекан- и га-толуол-сульфокислогы) [450, 451] значительно ускоряют кислотный гидролиз амидных и пептидных связей при условии, что кислота очень разбавлена, а умазанные выше связи принадлежат большим молекулам (белкам или крупным. пептидам). Этот каталитический эффект приписывается действию ассоциатов [452], образующихся при соединении таких молекул (посредством электростатических сил или сил ван-дер-Ваальса) с большими анионами (которые благодаря их поверхностно активным свойствам известны также под названием синтетических детергентов). В настоящее время они применяются преимущественно для селективного определения амидного азота в белках, хотя каталитический гидролиз пептидных связей также не лишен интереса вследствие своей возможной специфичности. Кроме того, как полагает Заагер [329], полезно было бы знать, можно ли катализировать щелочной гидролиз белка катионоактивными детергентами (алифатическими третичными аминами с длинной цепью,- четвертичными аммониевыми основаниями и алкилированными пиридинами). [c.179]


    Для успешного вьщеления ферментов из клеточного содержимого необходимо очень тонкое измельчение исходного материала вплоть до разрушения субклеточных структур лизосом, митохондрий, ядер и др., которые имеют в своем составе многие индивидуальные ферменты. Для этого используют специальные мельницы и гомогенизаторы, а также ультразвук, метод попеременного замораживания и оттаивания ткани. Для высвобождения ферментов из мембранных структур клетки к гомогенатам добавляют небольшие количества детергентов (твин, тритон Х-100) или обрабатывают их энзимами — лизоцимом, целлюлазой, лецитиназой С. Особое внимание при вьщелении ферментов уделяют проведению всех операций в условиях, исключающих денатурацию белка (нейтральные значения pH, стабилизирующие добавки в виде белков, солей и специальных соединений). [c.79]

    Мешающие соединения. Пептиды, трис, сахароза и желчные пигменты дают окраску в биуретовой реакции соли аммония, трис, сахароза и глицерин оказывают влияние на окраску, даваемую белками. Липиды и детергенты могут вызывать помутнение. [c.466]

    Кристаллизация и кристаллические структуры. 9. Электрические и магнитные явления. 10. Спектры и некоторые другие оптические свойства. 11. Радиационная химия и фотохимия, фотографические процессы. 12. Ядерные явления. 13. Технология ядерных превращений. 14. Неорганическая химия и реакции. 15. Электрохимия. 16. Аппаратура, оборудование заводов. 17. Промышленные неорганические продукты. 18. Экстрактивная металлургия. 19. Черные металлы и сплавы. 20. Цветные металлы и сплавы. 21. Керамика. 22. Цемент и бетон. 23. Сточные воды и отбросы. 24. Вода. 25. Минералогическая и геологическая химия. 26. Уголь и продукты переработки угля. 27. Нефть, нефтепродукты и родственные соединения. 28. Детонирующие и взрывчатые вещества. 29. Душистые вещества. 30. Фармацевтические препараты. 31. Общая органическая химия. 32. Физическая органическая химия. 33. Алифатические соединения. 34. Алициклические соединения. 35. Неконденсированные ароматические системы. 36. Конденсированные ароматические системы. 37. Гетероциклические соединения (с одним гетероатомом). 38. Гетероциклические соединения (более чем с одним гетероатомом). 39. Элементоорганические соединения. 40. Терпены. 41. Алкалоиды. 42. Стероиды. 43. Углеводы. 44. Аминокислоты, пептиды, белки. 45. Синтетические высокомолекулярные соединения. 46. Краски, флуоресцентные отбеливающие агенты, фотосенсибилизаторы. 47. Текстиль. 48. Технология пластмасс. 49. Эластомеры, включая натуральный каучук. 50. Промышленные углеводы. 51. Целлюлоза, лигнин и др. 52. Покрытия, чернила и др. 53. Поверхностно-активные вещества и детергенты. 54. Жиры и воска. 55. Кожа и родственные материалы. 56. Общая биохимия. 57. Энзимы. 58. Гормоны. 59. Радиационная биохимия. 60. Биохимические методы. 61. Биохимия растений. 62. Биохимия микробов. 63. Биохимия немлекопитающих животных. 64. Кормление животных. 65. Биохимия млекопитающих животных. 66. Патологическая химия млекопитающих. 67. Иммунохимия. 68. Фармакодинамика. 69. Токсикология, загрязнение воздуха, промышленная гигиена. 70. Пищевые продукты. 71. Регуляторы роста растений. 72. Пестициды. 73. Удобрения, почвы и питание растений. 74. Ферментация. [c.50]

    С. Углеводы, аминокислоты, белки. D. Алициклические соединения. Е. Производные бензола. F. Конденсированные карбоцикли-ческие соединения. G. Гетероциклические соединения. Н. Алкалоиды. I. Терпены. J. Стероиды. 11. Биологическая химия. А. Общие вопросы. В. Методы. С. Микробиология. D. Ботаника. Е. Питание. F. Физиология. G. Патология. Н. Фармакология. I. Зоология. 12. Пищевые продукты. 13. Химическая промышленность и различные химические продукты. 14. Вода. Сточные воды. 15. Почва. Удобрения. 15А. Инсектициды и стимуляторы роста. 16. Ферментативная промышленность. 17. Фармацевтическая химия. Косметика. Парфюмерия. 18. Технология неорганических веществ. 19. Стекло, керамика, эмали. 20. Цемент, бетон и другие строительные материалы. 21. Топливо и продукты пиролиза. 22. Нефть, смазочные масла, асфальт. 23. Целлюлоза, лигнин, бумага—продукты древесины. 24. Взрывчатые вещества. 25. Красители. Текстильная химия. 26. Краски, лаки, чернила. 27. Жиры, масла, воск, детергенты. 28. Сахар, крахмал, камеди. 29. Кожа. Клей. 30. Каучук и другие эластомеры. 31. Синтетические смолы и пластики. [c.46]

    Множество исследований было проведено над соединениями белков с анионными детергентами. Последние представляют собой алкилсульфоновые кислоты с длинной углеводородной цепью (ЯЗОзИ) или эфиры алкилсерных кислот (КОЗОзН). В большинстве этих работ в качестве анионного детергента использовался [c.223]

    Реакции, происходящие между белками и макромолекуляр-ными анионами, имеют особое значение, так как они могут служить моделями соединения белков с нуклеиновыми кислотами, которые также представляют собой анионы с высоким молекулярным весом. Реакции нуклеиновых кислот с белками будут рассмотрены ниже (см. гл. ХГ). Забегая, однако, вперед, можно сказать, что нуклеиновые кислоты ведут себя так же, как и рассмотренные выше анионы, соединяясь с белками при помощи солеобразных связей и образуя осадки в межизоэлектрической зоне [29, 30]. Из сказанного ясно, что анионы должны наиболее охотно соединяться с теми белками, которые обладают основными свойствами. Лизоцим, белок основного характера, изоэлектрическая точка которого лежит при pH 10,5—11,0, соединяется в нейтральных растворах с нуклеиновыми кислотами, а также с анионными детергентами и метиловым оранжевым [31]. [c.224]

    В настоящее время нет сомнений в том, что анионные и катионные детергенты притягиваются к белкам при помощи ионизированных групп белковых молекул однако весьма вероятно и то, что неполярные углеводородные цепи детергентов также принимают участие в образовании этих соединений. Неполярная углеводородная группа соединяется, повидимому, с неполярными группами белка, т. е. с алифатическими цепями аланина, валина, лейцина и изолейцина, с бензильной группой фенилаланина и с группами СНг пирролидинового кольца пролина. При помощи этих неполярных группировок белки соединяются с жирами и жирными кислотами [39], а также с простыми углеводородами. Так, например, было установлено, что 2-процентный раствор эдестина в 10-процентном хлористом натрии способен удержать в растворе 5 000 молекул пентана на одну молекулу белка [40]. Адсорбция кишечной стенкой полярных соединений с низким молекулярным весом (например, четыреххлористого углерода) [c.225]

    При хроматографии и электрофорезе белков использование органических растворителей исключается из-за их денатурирую щего действия, в результате которого белки переходят в нерастворимое сйстояние. Подобное действие могут оказывать и некоторые органические соединения. Поэтому при разделении белков необходим тщательный выбор селективных водных буферных систем. Однако необходимость солюбилизации белков, в особенности тех из них, которые ассоциированы с биологическими мембранами, привела к введению детергентов — как ионных, так и неионных, а также таких реагентов, как мочевина и гидрохлорид гуанидина, которые разрывают водородные связи и препятствуют гидрофобным взаимодействиям. Даже будучи денатурированными, многие белки остаются растворимыми в присутствии этих соединений, особенно после расщепления ди-сульфидных связей дитиотретиолом или меркаптоэтанолом. [c.105]

    Допустим, что перед исследователем стоит задача определить природу дефекта у мутантной мыщи, синтезирующей аномально низкое количество альбумина (белка, который в норме секретируется в кровь клетками печени в значительных количествах). Для этого прежде всего необходимо взять образцы ткани печени у дефектных и нормальных мыщей (последние служат в качестве контролей) и обработать клетки сильным детергентом для инактивации клеточных нуклеаз, которые в противном случае могут разрушить нуклеиновые кислоты. Затем отделяют РНК и ДНК от всех других компонентов клетки присутствующие белки при этом полностью денатурируются, их удаляют последовательной экстракпией фенолом - мощным органическим растворителем. Нуклеиновые кислоты остаются в водной фазе. Чтобы их отделить от низкомолекулярных клеточных соединений, проводят осаждение спиртом. После этого ДНК отделяют от РНК, пользуясь их различной растворимостью в спиртах и обрабатывают высокоспецифическими ферментами (соответственно РНКазой или ДНКазой), чтобы освободиться от нежелательных примесей нуклеиновых кислот. [c.239]

    На рис. 60 приведены структурные формулы, а в табл. 18 описаны свойства некоторых детергентов, используемых для выделения и очистки мембранных белков. Необходимо отметить, что свойства растворов солей желчных кислот существенно зависят от температуры, pH, ионной силы. Эти соединения способны к образованию гелей при сдвиге pH на единицу выше рКа (для холата — 5,2, для дезоксихолата — 6,2). [c.225]

    Большинство белков теряют биологическую активность в присутствии сильных минеральных кислот или оснований, при нагревании и обработке ионными детергентами (амфифильными соединениями), хаотропными агентами (мочевиной, гуанидином), тяжелыми металлами (Ag, Pb, Hg) или органическими растворителями. Денатурированные белки обычно менее растворимы в воде и часто из водного раствора выпадают в осадок. Это свойство широко используется в клинической лаборатории. Пробы крови или сыворотки, взятые для анализа на содержание в них малых молекул (глюкозы, мочевой кислоты, лекарственных препаратов), сначала обрабатывают трихлоруксусной, фосфовольфрамовой или фосфомолибденовой кислотой для осаждения белка. Осадок удаляют центрифугированием, а свободную от белка надосадочную жидкость анализируют. [c.48]

    Порядок работы. Подготовительные операции. Экстракция белков и тканей растений основана на способности белков прн разрушении клеток (обработка детергентами, ультразвуком, растирание материала в ступке с кварцевым песком, гомогенизация п блен-доре, размалывание на ударных п шаровых мельницах сухого растительного материала) растворяться в воде, растворах солей, органических соединениях, кислотах й щелочах, буферных растворах. Буферные растворы обеспечивают мягкие условия выделения белкпп, при которых сохраняется природная структура их молекул. Для выделения большей части белковых веществ (препарат суммарного белка) используют буферные растворы с pH 8. [c.175]


Смотреть страницы где упоминается термин Белки соединения с детергентами: [c.223]    [c.298]    [c.436]    [c.331]    [c.183]    [c.212]    [c.212]    [c.212]    [c.157]    [c.40]    [c.47]    [c.224]    [c.364]    [c.27]    [c.36]    [c.54]    [c.239]    [c.286]   
Химия и биология белков (1953) -- [ c.223 , c.225 ]




ПОИСК





Смотрите так же термины и статьи:

Детергенты



© 2024 chem21.info Реклама на сайте