Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрофобные связи в белках

    Ионная связь может быть непосредственной или вовлекать двухвалентные катионы между аминокислотами, заряженными отрицательно, и анионными фосфолипидами (ФС, ФИ, ФГ). Взаимодействие такого типа (ионный мостик) было обнаружено между белком миелина и фосфолипидом ФИ [104], а также между ФС и водорастворимым белком пшеницы [33]. Было показано (хотя это нередко игнорируется в липидно-белковых взаимодействиях), что ионная связь может играть важную роль в образовании гидрофобных связей. Так, цитохром Ьб — белок эндоплазматического ретикулума не способен образовывать гидрофобные связи с алифатическими цепями фосфолипида ФС, тогда как они могут быть установлены с фосфолипидом ФХ [25]. Электростатическое отталкивание между белками и полярной частью фосфолипидов поэтому в состоянии воспрепятствовать последующему образованию гидрофобных связей. [c.311]


    Гидрофобные связи возникают в том случае, когда приходят в соприкосновение боковые неполярные группы белков (группы аланина, лейцина, изолейцина, валина, фенилаланина, пролина, тирозина и метионина). Между этими группами образуется гидрофобная область, из которой вытесняются молекулы [c.275]

    Аминокислоты образуют также водородные и гидрофобные связи, поддерживающие сложную структуру белков. [c.13]

    Неорганические электролиты (ионы солей) по своему эффекту могут быть разделены на три группы а) стабилизирующие нативную структуру б) снижающие устойчивость глобул и в) смешанного действия — усиливающие денатурацию в малых и средних концентрациях и ослабляющие ее при более высоких. Как мы установили, стабилизация является результатом эффекта, подобного высаливанию, при концентрациях солей, не приводящих, однако, к осаждению белка. Высаливающие соли стабилизируют белки с различной интенсивностью, соответствующей положению соли в лиотропном ряду Гофмейстера сульфат — фосфат — цитрат — тартрат — ацетат — хлорид — роданид. Это ряд высаливания. По силе стабилизирующего действия анионы располагаются в аналогичный ряд. Ионы солей, введенные в раствор, усиливают гидрофобные связи в молекуле белка и этим упрочняют его структуру. [c.166]

    Введение бензола в водные растворы желатины приводит к изменению третичной структуры белка, а именно бензол, взаимодействуя с гидрофобными областями желатины, делает молекулу более компактной (рис. 24), менее асимметричной и тем самым уменьшает число возможных межмолекулярных водородных и гидрофобных связей [213, 214]. Взаимодействие бензола с макромолекулами желатины уменьшает прочность геля, тогда как прочность эмульсий, приготовленных на этих же растворах желатины, увеличивается за счет прочных межфазных адсорбционных слоев желатины. Дальнейшее увеличение количества эмульгированного бензола снова понижает прочность всей системы, по-видимому, добавленный бензол действует как смазка, распределяясь по внешним оболочкам межфазных слоев. [c.98]

    Характер связей между белками и липидами отражается на переходе от геля к жидкому кристаллу у молекул липидов [82]. Так, белки, взаимодействующие в основном через посредство гидрофобных связей, вызывают уменьшение энтальпии перехода, пропорциональное концентрации белков. В этом случае определенное число молекул липидов больше не участ- [c.311]


    Третичная структура белка для глобулярных белков представлена сложной структурой, сходной с клубком или глобулой. Структура в этой глобуле поддерживается водородными, ионными, гидрофобными связями. Иногда одна часть структуры представлена спиралью, другая -складчатым листом, чередующимся с линейной последовательностью АК. Фрагменты такой структуры, имеющие определенное строение, называют доменами (например, спиральный домен). Третичная структура фибриллярных белков - более сложная спираль (двойная или тройная), иногда ее, например в молекуле коллагена, называют суперспиралью. [c.25]

    В 1971 г. Ф. Сенгер и Г. Николсон предложили жидкостно-мозаичную модель биомембран, согласно которой мембраны представляют собой жидкокристаллические структуры, в которых белки могут быть не только на поверхности мембран, но и пронизывать их насквозь. В этом случае основой мембраны является липидный бислой, в котором углеводородные цепи фосфолипидов находятся в жидкокристаллическом состоянии, и с этим бислоем связаны белки двух типов периферические и интегральнь1е. Первые - гидрофильные, связаны с мембранами водородными и ионными связями и могут быть легко отделены от липидов при промывании буфером, солевым раствором или при центрифугировании. Вторые белки - гидрофобные, находятся внутри мембраны и могут быть выделены только после разрушения липидного слоя детергентом (процесс солюбилизации мембран), например, додецилсульфатом натрия, ЭДТА, тритоном и др. Интегральные белки, как правило, амфипатические, т.е. своей гидрофобной частью они взаимодействуют с жирными кислотами, а гидрофильной частью - с клеточным содержимым. Интегральные белки часто являются гликопротеидами, которые синтезируются в аппарате Гольджи, глико-зилируются в мембране и содержат много гидрофобных АК и до 50% спиральных участков. Эти белки перемещаются внутри липидного бислоя со скоростью, сравнимой с перемещением в среде, имеющей вязкость жидкого масла ( море липидов с плавающими айсбергами белков ). [c.107]

    Для некоторых применений желательно, чтобы поверхность кремнезема или стекла смачивалась водой. Но в то же время должны отсутствовать различные характерные ионные, гидрофобные или водородные связи, которые возникают при адсорбции органических молекул. Известно, что поверхность кремнезема адсорбирует и денатурирует белки, после чего она становится гидрофобной в результате образования покрытия углеводородными группами. Такая поверхность способна адсорбировать органические молекулы путем образования гидрофобных связей. [c.936]

    В усовершенствованном варианте этого метода [6] возможно проведение процесса в микромасштабе. На рис. 24.2 показана используемая микроколонка. Для разделения 3—5 мкМ каждого гликозаминогликана берут 400 мг дауэкса 1-Х2 (100—200 меш) на колонку и элюирование выполняют с применением линейного солевого градиента в 8 М растворе мочевины. Кроме того, мочевина уменьшает до минимума неэлектростатические связи белков с ионитами на основе целлюлозы. Присутствие 8 М раствора мочевины в солевом градиенте сдвигает хроматографические зоны гликозаминогликанов в сторону более низких удерживаемых объемов, указывая тем самым, что в отсутствие мочевины значительную роль в процессе разделения играют гидрофобные связи. В присутствии мочевины пики лучше разрешаются, что свидетельствует о том, что неэлектростатическое связывание препятствует процессу разделения. Разделение микроколичеств гликозаминогликанов на дауэксе 1-Х2 является, согласно данным некоторых исследователей [6], лучшим классическим вариантом метода, использующего хлорид цетилпиридиния (без органических растворителей). [c.139]

    В 1-м столбце табл. 13 приводятся данные об избытке содержания правых а-спиралей над другими формами в различных белках, рассчитанные по наблюдаемым значениям Ьо. При этих расчетах делалось допущение, что влияние боковых цепей белка на оптическое вращение несущественно. Если белок растворить в 2-хлорэтаноле или других органических растворителях, не образующих водородных связей, то абсолютные величины Ьо часто оказываются большими, чем при других растворителях. Соответственно увеличиваются и рассчитанные по ним величины содержания спиральных структур для тех белков, в которых это содержание низко (см. табл. 13), достигая в некоторых случаях 60%. Исключением является инсулин, для которого подобных изменений не наблюдается. Добавление 2-хлорэтанола приводит к ослаблению гидрофобных связей, поскольку концентрация воды при этом уменьшается, и способствует образованию внутримолекулярных водородных связей, так как конкуренция за водородные связи со стороны растворителя ослабевает. [c.291]

    Гидрофобные связи должны также играть важную роль по крайней мере для некоторых растворимых белков, а возможно, и для всех. Хотя полярные и неполярные группы белковых молекул расположены с точки зрения образования гидрофобных связей не так удобно, как в детергентах, все же должны быть такие конформации белковых молекул, при которых относительно большое ко- [c.154]


    Природа гидрофобной связи в водных растворах между гидрофобными участками молекулярных размеров была выявлена Клоцем [298] затем этот вопрос обсудил Шерага [299] в связи с исследованиями белков дальнейшее тщательное изучение было выполнено Немети и Шерага [300]. Козман [301] определил гидрофобную связь как стремление неполярных групп сцепляться друг с другом в водных средах. Это похоже на образование мицелл с внутримолекулярной связью, подобно тем, что существуют в водных растворах моющих веществ. Козман [302] представил общее обсуж дение вопроса о гидрофобных связях . [c.533]

    Вклад гидрофобного взаимодействия в свободную энергию сорбции органической молекулы на ферменте можно оценить теоретически [261. Однако более плодотворными для оценки прочности гидрофобной связи оказались некоторые эмпирические критерии. В их основу положено представление, что образование комплекса белок — органический лиганд, возникаюш,его в результате гидрофобных взаимодействий, можно рассматривать фактически как термодинамически выгодный перенос аполярной молекулы (или ее фрагмента) из воды в органическую фазу беЛка. Величина поверхности связываемой молекулы [40, 41] — это весьма частный критерий, поскольку на его основании нельзя сравнивать комплексующие свойства соединений, содержащих в молекуле различного рода полярные заместители. Недостаточным критерием гидрофобности ингибиторов или субстратов следует считать также и растворимость их в воде. Использование этой величи- [c.26]

    Белки относительно малых размеров можно фракционировать и на колонках типа jg при условии их растворимости в ацетонит-риле можно использовать для элюции градиент его концентрации вплоть до 60% [Ni e et al., 1979]. Рассматривая важную проблему денатурации белков в процессе хроматографии, авторы отмечают, что опасность связана не столько с относительно кратковременным пребыванием белка в водно-органическом растворителе, сколько с самим актом гидрофобного взаимодействия белка с матрицей. В результате этого взаимодействия могут нарушиться внутренние гидрофобные связи в белковой глобуле, от которых зависит сохранение ее нативной структуры. [c.211]

    Денатурирующие агенты делятся на химические и физические. К последним относится прежде всего температурное воздействие, в частности замораживание или нагревание, а также давление, ультразвуковое воздействие, облучение и др. Химические агенты — это органические растворители (ацетон, хлороформ, спирт), концентрированные кислоты, щелочи, ионы тяжелых металлов. В лабораторной практике в качестве денатурирующих агентов чаще всего используют мочевину или гуанидинхлорид, легко разрывающие водородные и гидрофобные связи, при помощи которых формируется третичная структура белка. Максимальное денатурирующее действие оба реагента прояв- [c.53]

    Обсуждаются методологические проблемы, связанные с изучением структурных особенностей белка, лежащих в основе регуляторных возможностей ферментов. В связи с этим исследуется роль аминокислотных остатков (5Н-групп, гидрофобных областей белков), гомо- и гетеросубъединичных взаимодействий, а также роль микроокружения ферментов в реализации их каталитической функции. Кроме того, анализируются подходы к выявлению локализации на ферменте активных и регуляторных центров. [c.329]

    Глютенины II сформированы из субъединиц с молекулярными массами более 68 ООО Да. Связь между полипептидами ковалентна и содержит, по крайней мере, один межмолекулярный дисульфидный мостик. Глютенины II способны мигрировать при электрофорезе в присутствии ДДС-Ыа только после восстановления дисульфидных мостиков вследствие очень высокой молекулярной массы молекулярных ассоциаций. Эти ассоциации могут, кроме того, формировать агрегаты посредством гидрофобного взаимодействия. Белки типа глютенинов I могут прочно соединяться с глютенинами II или захватываться последними, ибо фракция этого типа высвобождается после восстановления дисульфидных мостиков. [c.217]

    Совокупность реакций, воздействующих на боковые группировки, о которых шла речь выше, обусловливает перенос радикалов от липидов к белкам. В процессе деградации гидроперекисей образуются различные альдегиды. Эти молекулы способны связываться с белками вначале через посредство нековалентных гидрофобных связей [16], а затем формировать основания Шиффа со свободными аминогруппами белков [56] (рис. 7.10). Так, гексаналь может соединяться ковалентными связями с растворимыми белками сои и составлять до 0,1 % массы этих белков [1]. Гексаналь также в состоянии образовывать основа- [c.302]

    Кроме того, текучесть алифатических цепей может играть роль в формировании гидрофобных связей. Так, в интервале температур перехода из состояния геля в состояние жидкост-но-кристаллическое происходит латеральное разделение в мембранах и белки взаимодействуют преимущественно с жидкостнокристаллическими зонами [43]. [c.311]

    Подобное расхождение мнений наблюдается также и в отношении белков зерновых. Казарда с соавторами [23] объясняют меньшую растворимость клейковины после прогрева в основном образованием гидрофобных связей в ходе этой обработки. [c.512]

    Вторичная структура белков (как и пептидов) отражает расположение полипептидной цепи в пространстве. Характер пространственной структуры полипептидной цепи обусловлен дополнительным образованием пяти типов связей между отдельными аминокислотными остатками, стабилизирующих структуру белковой молекулы 1) дисульфидные мостики, 2) водородные связи, 3) ионные связи, 4) гидрофобные связи и 5) гидратируемые группы при этом связьшаемые остатки могут находиться и в достаточно удалённых друг от друга участках полипептидной цепи. [c.67]

    Липопротеины составляют большую группу сложных белков. Эти макромолекулы в значительных количествах находятся в митохондриях, из них в основном состоит эндоплазматический ретикулум, их обнаруживают и в плазме крови, и в молоке. Как правило, липопротеины — это большие молекулы. Их молекулярная масса достигает миллиона дальтон. Гидрофильность белковой и гидрофобность простетической группы липопротеинов определяют ту роль, которую они играют в процессах избирательной проницаемости. Липиды, входящие в состав липопротеинов, отличаются по строению и биологическим свойствам. В частности, в составе липопротеинов открыты нейтральные липиды, фосфолипиды, холестерин и др. Липидный компонент соединяется с белком при помощи нековалентных связей различной природы. Так, нейтральные липиды соединяются с белком посредством гидрофобных связей. Если же в образовании липопротеина участвует фосфолипид, то он взаимодействует с белком при помощи ионных связей. [c.48]

    Немети п Шерага произвели также теоретический расчет термодинамических параметров образования гидрофобной связи между тремя неполярными аминокислотными радикалами, а также оценили вклад гидрофобных взаимодействий в устойчивость глобулы в водной среде [10]. Хотя энергия гидрофобных взаимодействий невелика (0,2 —1,5 ккал [10]), высокое содержание неполярных аминокислот в белке может дать большую суммарную величину, вносяш ую заметный вклад в стабильность глобулы белка. [c.15]

    Рассмотрим теперь, какие межмолекулярные связи участвуют в образовании необратимого прочного межфазного адсорбционного слоя. Можно ожидать, что в образовании межмолекулярных связей будут участвовать те же типы связей, которые обеспечивают определенную конформацию молекул белка в растворе. Все эти типы связей электрической природы, но различно11 силы кулоновское взаимодействие, ван-дер-ваальсово взаимодействие и водородные связи. При денатурации молекул яичного альбумина разрываются внутримолекулярные водородные связи и ван-дер-ваальсовы ( гидрофобные ) связи, при этом образуются в соответствующих условиях межмолекулярные связи. [c.206]

    Рассмотрим сначала наиболее простой случай развития межфазной прочности водных растворов глобулярных белков на границе с воздухом. Известно, что в водных растворах молекулы яичного альбумина, сывороточного альбумина и казеина находятся в виде глобул и большинство неполярных групп создают гидрофобные области внутри глобулы. При адсорбции белка на поверхности в результате избытка свободной энергии на границе раздела фаз происходят конформационные изменения адсорбированных молекул, так как нарушается равновесие сил, стабилизи-руюш их глобулу. Ранее на возможность развертывания глобул белков на границе раздела фаз указывалось в работах Александера [42, 43, 126], Пче.чипа [151], Деборина [152]. Развертывание макромолекул на границе раздела фаз сопровождается глубокими изменениями в третичной структуре, вследствие чего большинство гидрофобных групп ориентировано к воздуху. Агрегация денатурированных макромолекул и обусловливает нарастание прочности межфазного адсорбционного слоя. Возникаюш,ий при агрегации макромолекул тип структуры, образованный множеством межмолекулярных гидрофобных связей, напоминает -структуру параллельного типа. Фришем, Симхой и Эйрихом [153—155] для разбавленных растворов полимеров была разработана модель структуры адсорбционного слоя, по которой гидрофобные участки макромолекул обращены в газовую фазу, тогда как остальная часть адсорбированной макромолекулы образует как бы свободные петли и складки. Эта модель также не исключает возможности образования межмолекулярных связей, приводящих к возникновению межфазных прочных структур. [c.214]

    Проведенные исследования позволили предложить механизм образования пространственных структур в водных растворах белков. Гелеобразование всегда связано с конформационными изменениями макромолекул, сопровождающимися уменьшением растворимости белка, либо в связи с процессом ренатурации — образованием коллагеноподобных спиралей (желатина), либо в связи с денатурацией (яичный альбумин, казеин). В результате большого числа межмолекулярных связей из пересыщенных растворов возникают агрегаты макромолекул, т. е. частицы новой лиофильной фазы. Их накопление вызывает в дальнейшем возникновение прочных дисперсных структур. Сращивание частиц новой полимерной фазы с образованием контактов (водородных и гидрофобных связей) между ними и приводит к появлению объемной структуры геля, характеризующейся твердообразными механическими свойствами. [c.356]

    Поскольку в образовании вторичной и третичной структуры частично участвуют относительно слабые связи, физическое состояние белка, а следовательно, и активность фермента, гормона и антибиотика в значительной степени зависят от температуры, pH, присутствия солей и т. д. Нагревание вызывает распрямление белковой молекулы, которое вследствие большой положительной энтропии проявляется тем больше, чем выше температура [106]. Некоторые химические реагенты, такие, как мочевина и гуанидин, вызывают изменения в физическом состоянии и реакционной способности многих белков, разрывая главным образом стабилизующие структур г водородные связи, в то время как под действием органических растворителей пройсходит разрыв гидрофобных связей. Изменение pH обусловливает разрыв водородных связей в результате удаления протона и вызывает электростатическую неустойчивость. Эти изменения часто происходят очень резко и напоминают переходы первого порядка. [c.385]

    По-видимо.му, анионы н-алкильсулфата удерживаются около белка за счет гидрофобных связей и реакция может протекать внутри мицелл. [c.220]

    Можно выделить четыре тина взаимодействий, ответственных за под-дерлсание вторичной и третичной структуры белков 1) водородные связи между пептидными группами 2) водородные связи между боковыми цепями аминоКИС.Л0ТИЫХ остатков 3) иоиные связи и 4) неполярные, или гидрофобною, связи (фиг. 41). Отнюдь не исключено, что и другие типы взаимодействий также могут вносить вклад в поддержание свернутой формы некоторых полипентидных цепей, однако мы о них пока практически ничего не знаем. [c.110]

    Тенденция углеводородов и других неполярных молекул к ассоциации в водных растворах обусловлена образованием неполярных (или гидрофобных) связей. Имеется много указаний в пользу того, что неполярные связи — очень вал ный, а дюл Т быть и ваншейший, фактор, обеспечивающий поддержание вторично и третичной структуры белков. Наибо,лее полная инфор- [c.110]

    Водородные связи пропионовых групп с поверхностными остатками дают только качественное структурное обоснование механизма регуляции ориентации порфирина. Кроме того, в обоих белках имеются многочисленные ароматические остатки в окружении гема [11, 99], которые могут вовлекаться во взаимодействие с порфирииовым кольцом через тс-электронные системы. Эти взаимодействия трудно охарактеризовать количественно и использовать для сравнения. Однако водородные связи пропионовых остатков могут оказаться существенными в других гемопротеинах. Вероятно, в цитохром с-пероксидазе дрожжей по крайней мере одна из групп —СН2СН2СООН спрятана внутри гидрофобной области белка [150], тогда как в цитохроме с обе пропионовые группы образуют водородные связи с остатками внутри гидрофобной области белка [19, 20]. Эти различные структурные соотношения между белком и группами —СН2СН2СООН могут обеспечить различные типы взаимодействия белок — порфирин при регуляции изменений конфигурации порфирина. [c.62]

    На фиг. 53 приведены кривые изменения [аЬ и Ьо при добавлении диоксана в водный раствор р-лактоглобулина. Изменение происходит в два этапа сначала отрицательное вращение увеличивается, а затем уменьшается. Одновременно с уменьшением [а]в увеличиваются отрицательные значения Ьо. Добавление реагентов, образующих водородные связи с белком, в частности мочевины или формамида, способствует увеличению вращения (но не уменьшению его или изменению Ьо). Это позволяет предположить, что сначала происходит развертывание большей части нативной структуры, стабилизируемой гидрофобными связями, для которой характерно малое число спиральных форм, а затем (при отсутствии растворителя, конкурентного в отношении образования водородных связей) молекула свертывается, образуя спиральную структуру. Таким образом, при переходе от начальной нативной структуры к конечной конформации с высоким содержанием спиральных форм молекула проходит через более хаотическую промежуточную конформацию. Уменьшение отрицательного вращения, наблюдаемое на второй стадии при высоких концентрациях органического растворителя, обусловлено, по-видимому, образованием а-спиралей. Начальное увеличение вращения связывают е нерехедом -тедрофобного окружения— к водному или с вкладом р-структур, но число данных, которые позволили бы решить, какое нз этих предположений правильно, [c.292]

    Наконец, следует заметить, что многие глобулярные белки имеют дисульфидные связи, которые могут двумя путями влиять на структуру, во-первых, препятствуя образованию совершенно беспорядочного клубка и, во-вторых, внося изменения в сгтособность к образованию спиральной структуры или мешая оптимальному расположению боковых цепей, необходимому для образования гидрофобных связей между ними. [c.157]

    Наибольшее значение в белке имеют дисульфидные и гидрофобные связи. В последнее время все чаще высказываются сомнения в том, могут ли водородные связи и связи солевого типа с их относительно низкой энергией обеспечить жесткую конформацию цепей, когда белковые молекулы находятся в водных растворах. Роль водородных и солевых связей относительно невелика. В тех белках, которые содержат остатки цистина — 5—8-мостики играют, по-видимому, важную роль в образовании внутримолекулярных поперечных соединений, в частности между различными участками одной и той же пептидной цепи. Такие связи обнаружены в сывороточном и яичном альбуминах, рибонуклеазе (см. рис. 3), лизоциме, эдестине и др. Вероятно, главная причина этого — относительно высокая прочность дисульфидных мостиков. Неполярные боковые цепи в водных растворах белков окружены молекулами воды, которые могут соединяться с другими частицами воды водородными связями. Взаимное притяжение молекул воды и стремление гидрофобных групп к объединению с группами такого же типа приводит к их вытеснению из водной среды и значительно повышает их сродство друг другу. Гидрофобные связи играют важную роль в поддержании характерной конформации нативных протеинов. [c.34]


Смотреть страницы где упоминается термин Гидрофобные связи в белках: [c.134]    [c.183]    [c.375]    [c.99]    [c.383]    [c.598]    [c.247]    [c.54]    [c.16]    [c.39]    [c.207]    [c.134]    [c.277]   
Стратегия биохимической адаптации (1977) -- [ c.217 , c.219 ]




ПОИСК





Смотрите так же термины и статьи:

Гидрофобные связи



© 2025 chem21.info Реклама на сайте