Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость реакции мономолекулярная

    В первой части книги рассматриваются вопросы формальной кинетики простых реакций (порядок реакции, константа скорости, кинетические уравнения различных порядков), математические характеристики сложных кинетических систем и экспериментальные характеристики простых и сложных кинетических систем. Вторая часть имеет вспомогательный характер — она посвящена статистическим методам, применяемым к системам из большого числа частиц при равновесии. В третьей — рассматриваются вопросы кинетики гомогенных реакций в газах (реакции мономолекулярные, бимолекулярные, тримолекулярные, сложные реакции в газовой фазе взрывные процессы и процессы горения). Четвертая, последняя, часть посвящена реакциям в конденсированной фазе (кислотно-основной катализ, реакции окисления-восстановления, радикальная полимеризация, гетерогенный катализ). [c.4]


    Применяя снова метод квазистационарных концентраций, который использовался для мономолекулярных реакций (см. разд. XI.5), можно найти выражение для суммарной скорости реакции [c.240]

    Вычислите константу скорости реакции мономолекулярного распада N1(00)4 и оцените время полупревращения при температуре 350 К, если опытная энергия активации Е = 80 кДж х хмоль , ае = 1. Температурной зависимостью колебательных стат-сумм можно пренебречь. [c.224]

    Ввиду сложности уравнений даже для простых последовательных реакций и тем более для бимолекулярных практически при расчетах констант скорости реакций крекинга часто пользуются соотношениями для простых мономолекулярных реакций. [c.43]

    В этом отношении первый член равен скорости распада гидроперекиси на поверхности, а коэффициент 0,065 является константой скорости реакции мономолекулярного распада гидроперекиси на радикалы в объеме. Приведенная зависимость скорости инициирования от концентрации гидроперекиси подтверждает высказанную выше гипотезу о генерировании радикалов на поверхности раздела фаз при окислении углеводородов в эмульсионных системах. [c.73]

    Стерическое ускорение. В стадии, определяющей скорость реакций мономолекулярного замещения, происходит отщепление замещаемой группы, не связанное с необходимостью одновременной атаки реагента. В реакциях, протекающих по этому механизму, простран ственные затруднения приобретают гораздо меньшее значение. [c.438]

    Отсюда следует, что мономолекулярные реакции разложения отличаются по своей концентрационной зависимости от реакций изомеризации (см. разд. XI.3). В последнем случае комплекс, соответствующий продуктам реакции, будет влиять на скорость реакции [см. уравнение (XI.3.1)]. В первом случае, рассмотренном выше, было показано, что комплекс, соответствующий продуктам [АВ], будет влиять на скорость только тогда, когда энергия активации обратной реакции (А + В Ь) равна нулю [см. уравнение (X.5.12)1. В противном случае (когда Е > 0) [АВ] на скорость не влияет. Причина этого заключается в следующем после того как образуется [АВ], вероятность распада ее па части (к ) настолько превышает вероятность конкурирующих процессов, что последние не оказывают влияния на скорость реакции. Исключение появляется в случае, когда Е = 0. При этом [АВ] имеет равную вероятность распасться или вновь образовать В, и это снижает скорость реакции в 2 раза [даже при высоком давлении, уравнение (XI.5.15)]. [c.218]

    Величина и — некоторое число между О и 1, называемое трансмиссионным коэффициентом . Так как экспериментальная скорость для мономолекулярной реакции является скоростью первого порядка, то можно положить, что Н = /сехр А, И, таким образом, написать для Аехр выражение [c.223]


    Определите константу скорости реакции мономолекулярного распада N30 N3 + Оз при 900 К, используя следующие [c.224]

    Приближенный расчет относительных скоростей реакций мономолекулярного распада [c.203]

    Реакции присоединения были уже рассмотрены в разделах, посвященных обратимым процессам (мономолекулярный распад). Модель для этого случая, представленная уравнением (XI.5.2.), и результаты, полученные из этой модели, могут быть применимы к реакциям присоединения. Суммарная скорость реакции Я соответствует величине Н в уравнении (XI.5.3), а именно [c.239]

    Большая часть из рассмотренного выше экспериментального материала указывает на то, что механизм каталитических реакций на твердых поверхностях включает реакцию атомов (или ионов) катализатора с адсорбатом, причем образуется мономолекулярный слой химически активных промежуточных веществ. Так как первичным актом хемосорбции является химическая реакция, то естественно ожидать, что она может иметь некоторую энергию активации. Вообще хемосорбция является очень быстрым процессом и осуществляется с большой вероятностью при соударении молекулы газа с поверхностью . Зачастую даже в тех случаях, когда поверхностный мономолекулярный слой близок к насыщению и можно было бы ожидать уменьшение скорости сорбции, скорость реакции уменьшается незначительно [46]. Этот факт объяснялся тем, что на поверхности мономолекулярного слоя образуется второй, слабо связанный слой сорбата, который способен быстро мигрировать к незанятым активным центрам поверхности. [c.550]

    Рассматривая теоретически обоснованные методы предвидения скоростей химических реакций, следует отметить, что применение в этих целях теории активного комплекса ограничивается в настоящее время простыми реакциями. Она дополняет теорию столкновений, которая дает возможность выяснить ход некоторых реакций между линейными молекулами в жидкой и газовой фазах. Однако во многих случаях скорость реакции, определенная с использованием теории столкновений, слишком велика. Объяснить же ход мономолекулярных реакций, например изомеризации н-бутана или разложения ацетальдегида, по теории столкновений невозможно. При интерпретации хода таких реакций с применением теории активного комплекса предполагается, что механизм активации основан на столкновении молекул и в дальнейшем реакция проходит в два этапа (образование активного комплекса и его распад или перегруппировка), характеризующихся разными скоростями. [c.222]

    Элементарная реакция, при которой радикалы образуются из молекулы (при мономолекулярном распаде) или молекул (при бимолекулярном диспропорционировании молекул на радикалы), называется реакцией инициирования цепи. Реакции превращения одних радикалов в другие, при которых расходуется исходное вещество, называются реакциями продолжения цепи. Реакции, при которых радикалы гибнут, превращаясь в стабильные молекулы в результате рекомбинации или диспропорционирования, называются реакциями обрыва цепи. Если реакция радикала с молекулой приводит к образованию малоактивного радикала, который практически вступает только в реакции диспропорционирования и рекомбинации, то реакцией обрыва цепи является реакция образования этого радикала. При рекомбинации и диспропорционировании радикалов скорость реакции обрыва цепи пропорциональна квадрату концентрации радикалов, и такой обрыв цепей называется квадратичным. При обрыве цепей в результате образования малоактивных радикалов, не способных к реакциям продолжения цепи, скорость пропорциональна концентрации радикалов в первой степени, и такой обрыв называется линейным. [c.50]

    Кинетические закономерности реакции изомеризации н-пентана на алюмоплатиновом катализаторе,промотированном фтором, были изучены в связи с разработкой технологии процесса [38]. Была установлена зависимость выхода изопентана от мольного отношения водород н-пен-тан, рабочего давления, температуры и объемной скорости подачи н-пентана. Было изучено также влияние парциальных давлений н-пентана и водорода на скорость протекания реакции. Состав исходного сырья и продуктов реакции определялся с помощью газожидкостной хроматографии. Реакция протекала с высокой селективностью выход продуктов распада не превышал 1%. Диаметр зерна катализатора составлял 1,5 мм. Для описания полученных закономерностей бьшо использовано уравнение для случая мономолекулярной обратимой гетерогенной реакции, протекающей в струе [39]. Преобразование уравнения дает следующее выражение для константы скорости реакции  [c.20]

    Активация и для мономолекулярных реакций является результатом соударений, т. е. является бимолекулярным процессом. Благодаря тому, что с усложнением строения молекулы время жизни активного комплекса за счет перераспределения энергии столкновения по внутренним степеням свободы молекулы возрастает, скорость реакции оказывается пропорциональной не числу столкновений, а доле активных молекул в реагирующей системе, которая в свою очередь прямо пропорциональна общему числу реагирующих молекул. Отсюда выполнение кинетического закона первого порядка. [c.164]


    Лангмюровская кинетика. Рассмотрим реакцию на однородной активной поверхности. Пусть адсорбция реагентов следует изотерме Лангмюра (см. раздел 1.2). Если адсорбированное вещество вступает в мономолекулярную реакцию (достаточно медленную, так что адсорбционное равновесие не нарушается), то скорость реакции, отнесенная к единице активной поверхности, согласно формулам (11.87) и (1.2), равна [c.81]

    Энергию активации вычисляют по результатам измерения влияния температуры на константу скорости реакции. Если экспериментальные данные представить в координатах lnfe = /(l/T), тангенс угла наклона полученной прямой линии окажется равным—Такой график показан на рис. 1-2 для мономолекулярной реакции разложения пировиноградной кислоты в водном растворе скорость этой реакции описывается уравнением [c.33]

    Отдельно следует рассмотреть важный случай адсорбции с диссоциацией. Когда один из осколков вступает в мономолекулярную реакцию, а адсорбцией остальных реагентов и продуктов реакции можно пренебречь, выражение для скорости реакции легко получить, используя формулу (1.9)  [c.83]

    Случай мономолекулярной реакции любого порядка рассматривается в работе [61. Путем несложного преобразования система дифференциальных уравнений, включающая уравнение скорости реакции и уравнение теплового баланса, приводится к виду  [c.426]

    Для скорости гетерогенной мономолекулярной реакции типа [c.404]

    На рис. 16 приводится продолжительность коксования крекинг-остатка и гудрона малосернистой грозненской нефтесмеси в зависимости от температуры, а в табл. 17 кинетические данные этих процессов. Расчет констант скорости реакций проводился по формуле для мономолекулярных реакций  [c.70]

    Кинетические исследования реакций пиролиза определенных органических веществ предоставили удобную модель. При постоянной температуре скорость реакции уменьшается с течением времени вследствие постепенного исчерпания исходного вещества. В простейшем случае мономолекулярной реакции скорость уменьшается экспоненциально в зависимости от времени, будучи в каждый момент пропорциональной количеству исходного вещества. В других случаях, когда пиролиз осуществляется, например, посредством бимолекулярной реакции, скорость реакции зависит от концентрации реагирующих веществ и уменьшается в зависимости от времени согласно более сложному закону. Таким образом, при постоянной температуре состояние системы в ходе реакций определяется в каждый момент концентрацией реагирующих веществ и скорость реакции является функцией этой концентрации. Очень часто это — степенная функция, показатель степени которой может быть целым или дробным, и называется порядком реакции. [c.83]

    Аддукт 3 в схеме (6.79) в ходе медленной стадии, определяюшей скорость реакции, мономолекулярно перегруппировывается в продукт присоединения по Гриньяру (4). Реакция в целом подчиняется кинетическому закону коьш. = Кравн 2, имея, следовательно, [c.374]

    Свободнорадикальное индуцированное разложение перекиси бензоила происходит гораздо быстрее в диалкиловых эфирах и в первичных и вторичных спиртах, чем в любом из растворителей, приведенных в табл. 1 [7—И]. Так, реакция разложения 0,2М раствора перекиси при 80 °С имеет полупериод жизни менее 5 мин в диэтиловом эфире, этаноле и изопропиловом спирте и менее 15 мин в диизопропиловом и ди-н-бутиловом эфирах и метаноле [И], В то же время полупериод составляет 4 ч и выше при проведении реакций в первых пяти растворителях (табл. 1). Разложение в эфирах тормозится кислородом, мономерами (метилметакрилатом и стиролом) и типичными ингибиторами свободнорадикальных реакций (хиноном, гидрохиноном, нитробензолом и т. д.), т. е. реакция является свободнорадикальным цепным процессом. В присутствии очень эффективных ингибиторов (стильбена, акрилонитрила, 3,4-дихлор-стирола, стирола, 1,4-дифенилбутадиена, иода, метилметакрилата и тринитробензола [16]) скорость разложения в диоксане понижается до постоянной величины, которая, по-видимому, относится к процессу мономолекулярного разложения [реакция (1)], не зависимого от индуцированного разложения [16]. Значение константы скорости реакции мономолекулярного разложения подобно найденному в неактивных растворителях [16] следовательно, взаимодействие перекиси с эфиром, которое может инициировать реакцию, не является быстрым процессом. Кинетика разложения не одинакова для различных эфиров. Вероятно, это связано с относительной важностью различных стадий обрыва цепи. Так, имеются данные, что порядок реакции по перекиси при 30 °С составляет 1,5 в диэтиловом эфире и диэтиловом эфире этиленгликоля и 2 в диоксане, в то же время при 80 °С в ди-н-бутиловом эфире порядок реакции близок к первому [И]. Изучение продуктов разложения при температуре около 40°С для первых трех эфиров проведено Кассом [10]. Он установил, что в диэтиловой эфире (в молях иа I моль разложившейся перекиси) образуются СОг (0,20—0,25), бензойная кислота (0,8) и 1-этоксиэтилбензоат (1) (0,84—0,95). Поэтому стадиями роста цепи являются следующие  [c.174]

    Скорость реакций мономолекулярного нуклеофильного замещения в значительной степени определяется свойствами применяемого растворителя. Чем полярнее растворитель и чем сильнее выражены его сольватирующие свойства, тем выше скорость реакции. К наиболее сильно сольватирующим протонным растворителям относятся серная кислота (H2SO4), муравьиная кислота (НСООН), [c.22]

    Наконец, может представлять интерес определение верхнего предела температуры поверхности па основании измеренной скорости разложения нитроцеллюлозы и нитроглицерина. Следуя Дэниелсу п др. [4], мы нашли, что число нитратных групп в одном кубическом сантиметре типичного двухкомпонентного ракетного топлива равно 1,07-10 . При скорости горения в 1 гм1с.ек поверхностная зона реакции будет иметь эффективную толщину порядка 10 (см. рис. 140). Скорость реакции мономолекулярного разложепия, необходимая для получения скорости горения в 1 см сек, будет равна [c.448]

    Изучение бимолекулярных реакций присоединения представляет особый интерес, поскольку можно ожидать, что они при достаточно низких концентрациях реагентов дают ту же зависимость скорости реакции от суммарной концентрации, как и в случае мономолекулярных реакций. Действительно, простейшие из таких процессов, например рекомбинация атомов при нормальных концентрациях газа, никогда не подчиняются простому кинетическому закону второго порядка, а проявляют зависимость скорости реакции от концентрации. При этом, согласно эксперименту, кинетика реакции подчиняется закону третьего порядка. Рассматривая зависимость реакции мономолекулярного распада от давления (см. табл. XI.2), можно прийти к заключению, что область зависимости скорости реакции от суммарной концентрации сдвигается все более и более к низким концентрациям по мере того, как растет число атомов в молекуле продукта реакции. Это находится в качественном согласии с экспериментом. Реакция присоединения молекул бутадиена не дает никакого отклонения от закона второго порядка вплоть до давления 10 ммрт. ст. (при 200°С), тогда как скорость рекомбинации радикалов СНз уже дает отклонения в сторону закона третьего порядка при [c.266]

    Механизм свободных радикалов предсказывает изменение порядка реакции от 1/3 при высоких давлениях до 1 /2 при низких давлениях, при этом следует принимать во внимание изменение реакции инициирования цепи от мономолекулярной до бимолекулярной при низких давлениях согласно теории активации молекул столкновением. Такое предсказанное изменение находится в качественном соответствии с наблюдаемым уменьшением значений констант первого порядка при уменьшении давления. По экспериментальным данным реакция при высоких давлениях имеет приближенно первый порядок, но следует иметь в виду, что отличить реакцию первого порядка от реакции половинного порядка по одному только изменению начального давления в ограниченном интервале и наблюдению смещения констант первого порядка довольно трудно. Кухлер и Тиле [25] предполон или, что даже при высоких давлениях инициирование цепи является бимолекулярной реакцией, для которой теоретически предсказывается первый порядок при указанном давлепии. Это, конечно, не может согласоваться с их процессом экстраполирования констант скорости до бесконечного давлеиия, так как этот процесс означает, что реакция мономолекулярна, по крайней мере, при высоких давлениях. [c.25]

    Кинетика реакции полимеризации стирола и а-метилстирола, катализируемой ЗпС1 , изучена Пеппером [120] он наблюдал увеличение скорости реакции и молекулярного веса полимера при увеличении диэлектрической постоянной растворителя. Детальное исследование хода реакции в дихлорэтилене показало первый порядок скорости относительно ЗпС1 и второй порядок относительно стирола. Такой результат указывает на то, что реакция инициируется комплексом стирола с катализатором, обрыв же цепи является мономолекулярной реакцией, а также, что присутствие влаги не необходимо для реакции. Возможно, однако, что нри проведении реакции в таких галоидированных растворителях растворитель является сокатализатором при инициировании, например [c.158]

    Иногда при больщом избытке одного из реагирующих веществ по сравнению с другими его концентрация остается практически постоянной в течение реакции. Тогда порядок реакции будет на единицу меньше, чем следовало бы ожидать по стехиометрическому уравнению. Примером может служить реакция инверсии тростникового сахара или гидратации мочевины. Эти реакции по существу бимолекулярны, но протекают, как реакции мономолекулярные, т. е. подчиняются уравнению реакции первого порядка, так как концентрацию воды, присутствующей в большом избытке, в них можно считать неизменной и поэтому ее можно объединить с константой скорости в одну постоянную величину. Так, скорость реакции инверсии тростникового сахара можно представить [c.326]

    Макроскопическая скорость реакции соизмеримо меньше макроскопической скорости релаксации. При этом микроскопические скорости реакции больше микроскопических скоростей релаксации уже для многих квантовых уровней (а не для некоторых, как было раньше), что означает нарушение равновесного энергетического распределения пе только вблизи порога, но и на нижних колебателып.тх уровнях. Может случиться так, что среди релаксационных процессов имеется процесс, обеспечивающий быстрьп обмен энергией и выравнивание распределения на нижних уровнях. В этом случае распределению по этим состояниям все же можно придать вид равновесной функции Больцмана, н6 не по обычной поступательной температуре Т, а по некоторой температуре Т. Она определяется предварительно из уравнений, учитывающих текущую концентрацию молекул и изменение их энергий в ходе процесса. Тогда уравнения сводятся к обычным Арренну-совым, по содержат не одну, а две температуры, характеризующие как фиктивное полное равновесие, так и фактическое равновесие по быстрой подсистеме. Для реакции мономолекулярного распада (диссоциации) таким быстрым процессом, устанавливающим равновесие, может явиться, например, резонансный обмен колебательными квантами. Зависимость макроскопического коэффициента скорости от значений Т, Т имеет вид [12] [c.98]

    Обусловленное изотопным эффектом различие констант скорости реакции изотопных молекул, очевидно, может сказаться на спорости суммарной реакции лишь в том случае, когда стадия, в которой образуется или разрывается связь с данным изотопом, является лимитирующей стадией реакции, т. е. стадией, скорость которой определяет суммарную скорость реакции. Так, для мономолекулярных реакций при высоких давлениях естественно предположить, что изотопный эффект должен быть особенно сильньш в случае распада активной молекулы, связанного с разрывом одних и образованием новых связей. [c.22]

    При Уг 60 см , Р°ШТ = 1/8,3298 см получим 9. Скорость бимолекулярной гомолитической реакции в растворе на порядок больше скорости реакции в газовой фазе. Опыт показывает, что соотношение для гомолитических реакций лежит в пределах 2—40. Для мономолекулярных гомолитических реакций к = [c.601]

    Скорость мономолекулярных гомолитических реакций не зависит от растворителя и равна скорости реакции в газовой фазе. В табл. 31 приведены опытные данные по кинетике распада N265 в различных растворителях (реакция первого порядка). Распад М Об — сложный, многостадийный процесс, но при достаточно высоких давлениях константа скорости процесса определяется константой скорости спонтанного разложения К аОд. Приведенные данные хорошо подтверждают вывод о независимости скоростей гомолитической мономолекулярной реакции от растворителя. Ниже приведены константы скоростей бимолекулярной реакции димеризации циклопентадиена в различных растворителях при 323 К. [c.601]


Смотреть страницы где упоминается термин Скорость реакции мономолекулярная: [c.194]    [c.174]    [c.80]    [c.208]    [c.222]    [c.267]    [c.210]    [c.158]    [c.156]    [c.364]    [c.288]    [c.119]    [c.576]    [c.36]    [c.37]   
Инженерная химия гетерогенного катализа (1965) -- [ c.102 , c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Дальнейшее развитие теорий скоростей мономолекулярных реакций

Константа скорости реакции мономолекулярной

Мономолекулярные реакции зависимость скорости от давления

О скорости мономолекулярных газовых реакций

При мономолекулярная

Реакции мономолекулярного отщепления. Соотношение скоростей мономолекулярного замещения и отщепления

Реакции мономолекулярные

Скорость изотермической мономолекулярной реакци

Упрощенное выражение скорости для мономолекулярной реакции



© 2024 chem21.info Реклама на сайте