Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокнообразующие полимеры растворы

Рис. 4.21. Влияние полидисперсности волокнообразующих полимеров на реологические свойства их растворов и расплавов Рис. 4.21. <a href="/info/1708989">Влияние полидисперсности</a> <a href="/info/77508">волокнообразующих полимеров</a> на <a href="/info/56156">реологические свойства</a> их растворов и расплавов

Таблица 4.4. Кажущаяся энергия активации вязкого течения АЕр при различных напряжениях сдвига т концентрированных растворов волокнообразующих полимеров Таблица 4.4. <a href="/info/1478633">Кажущаяся энергия активации вязкого течения</a> АЕр при <a href="/info/1914478">различных напряжениях</a> сдвига т <a href="/info/15000">концентрированных растворов</a> волокнообразующих полимеров
    Влияние полидисперсности полимеров (молекулярномассового распределения - ММР) на реологические свойства полимерных жидкостей существенно. Это обусловлено тем, что аномалия вязкостных свойств по сути своей - релаксационный эффект. Расширение ММР волокнообразующих полимеров обусловливает усиление аномалии вязкостных свойств. Как отмечалось ранее, аномалия вязкостных свойств растворов и расплавов полимеров определяется несколькими факторами  [c.201]

    Технологические методы получения термостойких гетероцепных волокон существенно отличаются от методов производства многотоннажных синтетических гетероцепных волокон (полиамидных и полиэфирных). Если волокна будут использоваться при 250°С и более высокой температуре, то, естественно, температура плавления исходных полимеров и получаемых из них волокон должна быть выше, чем температура их эксплуатации. Получить такие волокна формованием из расплава нельзя, так как температура плавления этих полимеров, как правило, превышает температуру их разложения. Поэтому термостойкие органические волокна можно формовать только из растворов полимеров. Термостойкие волокнообразующие полимеры растворяются в ограниченном числе органических апротонных растворителей, обладающих высокой растворяющей способностью по отношению к различным классам полимеров. [c.305]

    Волокнообразующие полимеры растворяются и плавятся тем легче, чем выше гибкость их молекулярных цепей. В то же время термостойкость и формоустойчивость химических волокон тем выше, чем больше жесткость макромолекул. Поэтому в зависимости от назначения химического волокна необходимо выбирать полимеры с различной гибкостью макромолекул. Полимеры с очень высокой гибкостью макромолекулярных цепей [например, полиди- [c.23]

    Многие волокнообразующие полимеры хорощо растворяются в смесях растворителей. Например, полиэтилентерефталат растворяется в смеси тетрахлорэтана и фенола, нитрат целлюлозы -в смеси этанола и диэтилового эфира, ацетат целлюлозы - в смеси ацетона и воды. [c.95]


    Например, для системы полиакрилонитрил - диметилформамид при 25 °С С = 2,43-а р = 0,22. Значения коэффициента В для растворов некоторых волокнообразующих полимеров приведены в табл. 2.4. [c.109]

    Определить индекс течения п по реограммам следующих растворов и расплавов волокнообразующих полимеров  [c.208]

    В процессе экструзии концентрированных растворов и расплавов волокнообразующих полимеров через капилляры (отверстия фильеры и пр.) наблюдаются не только расщирение диаметра истекающей струи, но и другие изменения ее формы. При увеличении скорости сдвига струя теряет цилиндрическую форму, а на ее поверхности появляются шероховатости. Это явление обусловлено началом неустойчивой экструзии полимера, находящегося в вязкотекучем состоянии. В зависимости от интенсивности проявления этого эффекта используют различные термины. [c.181]

    Вычислить величину кажущейся энергии активации вязкого течения АЕр следующих концентрированных растворов и расплавов волокнообразующих полимеров из результатов изучения температурной зависимости тю  [c.209]

    Определить величину действующего объема Кд при напряжении сдвига т = 500 Па для концентрированных растворов и расплавов волокнообразующих полимеров, условия течения которых приведены в задаче 31. [c.209]

    Вычислить вероятное значение ло следующих концентрированных растворов волокнообразующих полимеров, если известны величины Ло при концентрациях Q (I) и j (И)  [c.209]

    Хитин является пленко- и волокнообразующим полимером. Хитиновые оболочки кроме опорной функции выполняют также роль полупроницаемых мембран, регулирующих водообмен организмов насекомых с окружающей средой. Хитин нерастворим в воде, спиртах, кетонах, в других органических растворителях. Он способен медленно растворяться в безводной НСООН. [c.330]

    Волокна получают путем продавливания растворов или расплавов полимеров через тонкие отверстия (фильеры) в пластине с последующим затвердеванием. К волокнообразующим полимерам относятся полиамиды, полиакрилонитрилы и др. [c.363]

    Формование волокон и их структура. К волокнообразующим полимерам предъявляют след. осн. требования мол. м. в пределах 15000-150000 (верх, предел лимитируется вязкостью р-ров или расплавов, из к-рых м. б. получено волокно, иижний-необходимыми мех. св-вами волокна) сравнительно узкое ММР способность плавиться без разложения или растворяться в доступных, легко регенерируемых р-рителях. [c.414]

    Метод расслаивания не позволяет вести измерение адгезии связующего непосредственно к реальным текстильным волокнам. Поэтому субстратом здесь служили не волокна, а пленки, приготовленные из растворов соответствующих волокнообразующих полимеров. [c.306]

    Состояние красителя в растворе, заряд волокна и сдвиг подвижного адсорбционного равновесия в сторону усиления взаимодействия активных центров волокнообразующего полимера с молекулами красителя зависят от наличия в красильной ванне нейтрального электролита. Это сказывается и на скорости диффузии красителя в волокне (рис. 11). Своеобразный экстре- [c.65]

    Существуют две точки зрения на механизм крашения химических волокон дисперсными красителями. Согласно одной из них, краситель в процессе крашения растворяется в волокнообразующем полимере как в твердом растворителе согласно другой,—процесс крашения следует рассматривать как адсорбцию и диффузию красителя в порах волокна и закрепление его на специфических участках доступной внутренней поверхности полимера. По современным представлениям эти различия во [c.158]

    Большое влияние оказывает структура волокна и на его термостойкость. В отличиё от природных волокон, которые вследствие своей полярности разлагаются без плавления, синтетические волокна в большинстве случаев термопластичны. Некоторые из них достаточно устойчивы при нагревании выше температуры плавления, что позволяет проводить формование волокна прямо из расплава полимера (таковы, например, найлон-6, найлон-6,6, полиэтилентерефталат и полипропилен). Формование волокон из термически нестойких полимеров, особенно полиак-рилонитрила, ацетатов целлюлозы, поливинилового спирта и поливинилхлорида, производится более трудоемким способом полимер растворяют в подходящем растворителе и полученный раствор выдавливают через отверстия фильеры в поток горячего воздуха, вызывающего испарение растворителя, или в осадительную ванну. Безусловно, формование из расплава (там, где оно возможно) является наиболее предпочтительным методом получения волокна. Низкоплавкие волокна во многих случаях имеют очевидные недостатки. Например, одежда и обивка мебели, изготовленные из таких волокон, легко прожигаются перегретым утюгом, тлеющим табачным пеплом или горящей сигаретой. Желательно, чтобы волокно сохраняло свою форму при нагревании до 100 или даже 150 °С, так как от этого зависит максимально допустимая температура его текстильной обработки, а также максимальная температура стирки и химической чистки полученных из него изделий. Очень важным свойством волокна является окрашиваемость. Если природные волокна обладают высоким сродством к водорастворимым красителям и содержат большое число реакционноспособных функциональных групп, на которых сорбируется красящее вещество, то синтетические волокна более гидрофобны, и для них пришлось разработать новые красители и специальные методы крашения. В ряде случаев волокнообразующий полимер модифицируют путем введения в него звеньев второго мономера, которые не только нарушают регулярность структуры и тем самым повышают реакционную способность полимера, но и несут функциональные группы, способные сорбировать красители (гл. Ю). Поскольку почти все синтетические волокна бесцветны, их можно окрасить в любой желаемый цвет. Исключение составляют лишь некоторые термостойкие волокна специального назначения, полученные на основе полимеров с конденсированными ароматическими ядрами. Матирование синтетических волокон производится с помощью добавки неорганического пигмента, обычно двуокиси титана. Фотоинициированное окисление [c.285]


    Синтез волокнообразующих полимеров и сополимеров АН в растворе ДМСО (Г = 70° время 1,5—2 ч) [c.12]

    Разработаны условия получения концентрированных растворов волокнообразующих полимеров и сополимеров АН в ДМСО. [c.13]

    Указанные свойства и определяют области применения волокна тефлон. Учитывая ограниченную сырьевую базу и значительно более высокую стоимость политетрафторэтилена по сравнению с другими синтетическими волокнообразующими полимерами, можно сделать вывод, что использование этого волокна целесообразно в тех случаях, когда ткани из других синтетических волокон не могут быть применены (например, при температурах эксплуатации выше 200° С или в очень агрессивных средах, в частности в концентрированной азотной кислоте или концентрированном растворе перекиси водорода). [c.282]

    Котелок (см. рис. 30) можно применять в качестве сборника прядильного раствора и в качестве автоклава для проведения синтеза волокнообразующих полимеров, т. е. получения расплавов полиэфиров или полиамидов непосредственно из мономеров. Котелок изготовлен из кислотоупорной стали и рассчитан на рабочее давление 10 атм. Сборник 1 котелка имеет общий объем 300 см- рабочий объем 150—200 см . Котелок снабжен нагревательной рубашкой 2, наполненной высококипящей жидкостью, обогреваемой газовой горелкой 3. До 130°С применяют глицерин выше 130°С — высококипящие минеральные масла или силиконовую жидкость. Для обогрева выступа вместо газовой горелки можно применять электрическую спираль. В рубашку [c.39]

    Этим условиям отвечают полимеры линейной структуры с молекулярным весом не менее 8000—10 000, которые обладают регулярным строением цепей и высокой энергией когезии. Типичными волокнообразующими полимерами являются сильно полярные кристаллические материалы, например полиамиды, полиэфиры и другие. Процесс получения волокон состоит из трех стадий 1) приготовление прядильного раствора или расплава, 2) формование волокон, 3) механическая и термическая обработка волокон. [c.318]

    Во 2-м издании книги большее внимание уделено способам количественной оценки гибкости (жесткости) макромолекул, а также кинетическим аспектам афегатных и фазовых переходов в полимерных системах. Включен новый раздел, посвященный реологии растворов и расплавов полимеров. Коренной переработке подвергнуты также разделы, связанные с синтезом полимеров, описанием свойств и превращений природных волокнообразующих полимеров. Наряду с целлюлозой определенное внимание уделено хитину и хитозану, являющимся интересными волокнообразующими полимерами. Введен раздел, посвященный химии и физикохимии фибриллярных белков фиброину, кератину, коллагену. Примеры и задачи, приведенные во втором издании книги, взяты из исследовательской и технологической практики авторов книги. [c.9]

    Б чем заключается физическая сущность явления тиксотропии конценфированных растворов и расплавов волокнообразующих полимеров  [c.205]

    Мономер и полимер растворимы в растворителе. В результате полимеризации образуется раствор полимера. Этот вариант процесса называется "лаковой" полимеризацией и является го-мофазным. Так, например, получают волокнообразующие полимеры и сополимеры акрилонитрила. [c.235]

    Излагаются результаты изучения полимеризации и сополимеризации акрилонитрила в различных органических растворителях (диметилформамиде, этиленкарбонате, диметилсульфоксиде). Исследованы особенности процессов полимеризации акрилонитрила вдиметилсульфоксиде и влияние различных факторов (температура, концентрация мономеров, время и др.) на процесс получения волокнообразующих сополимеров акрилонитрила. Разработаны условия получения концентрированных растворов волокнообразующих полимеров и сополимеров акрилонитрила в диметилсульфоксиде получены образцы штапельных волокон из различных сополимеров акрилонитрила. Таблиц 4, Иллюстраций 4. Библиографий 8. [c.596]

    Так, проявление сегментальной подвижности макромолекул целлюлозы возможно лишь при условии присутствия хотя бы небольших количеств воды, являющейся пластификатором для этого полимера. В условиях интенсивного набухания, а также в концентрированных растворах макромолекулы природных волокнообразующих полимеров способны к самоупорядочению с образованием жидкокристаллических структур. [c.289]

    Главное требование к волокнообразующему полимеру заключается в том, что длина его вытянутой молекулы должна быть не менее 1000А (100 нм), т. е. его молекулярный вес должен быть не ниже 10 000. Эта величина, разумеется, может быть и выше например, молекулярный вес необработанной (не-деструктированной) хлопковой целлюлозы достигает 500000. В случае синтетических волокон молекулярный вес исходного полимера намеренно ограничивают, поскольку прядильный раствор или расплав должен иметь не слишком высокую вязкость. У большинства волокон, сформованных из расплава, молекулярный вес составляет 10 000—20 000. Волокна, получаемые формованием из раствора, могут иметь более высокий молекулярный вес. Для текстильных волокон характерна также определенная степень кристалличности и (или) ориентации молекул вдоль оси волокна. Эти свойства, присущие природным волокнам, придаются искусственным и синтетическим волокнам в процессе их формования, вытягивания и термической обработки. Точность соблюдения параметров этих процессов оказывает существенное влияние на физико-механические и отчасти на химические свойства готового волокна. В свою очередь, регулярная структура волокна возможна лишь при определенной степени регулярности строения макромолекул, достаточной для их плотной упаковки, которая необходима для возникновения сильных меж-цепных взаимодействий (за счет водородных связей, ассоциации диполей или сил вандерваальсова притяжения). Однако при слишком высокой степени крист алличности волокно не только становится очень прочным, но и делается слишком жестким и теряет способность растягиваться в процессе его получения и эксплуатации. Кроме того, такое волокно чрезвычайно трудно окрасить, поскольку реакционноспособные группы почти целиком находятся в неупорядоченных участках. Степень кристалличности наиболее прочных синтетических волокон, по-видимому, не превышает 50—60%. Исключение составляют полиакрилонитрильные волокна, которые обнаруживают мало признаков истинной кристалличности, но вместе с тем обладают высокой однородностью структуры по всему сечению волокна. В неупорядоченных участках силы межцепного взаимодействия [c.284]

    Другой пример связан с регистрацией макрорелаксационных процессов в полимерных нематических жидких кристаллах. Мы уже несколько раз упоминали о жесткоцепном волокнообразующем полимере поли-п-бензамиде (ПБА). В соответствии с теорией Флори (см. гл. I и VI) этот полимер при молекулярных массах порядка 10 и концентрациях порядка 10% образует нематическую фазу. Однако фаза эта неупорядс ченна в том смысле, чтО имеет как бы поликристаллическую структуру. Объем раствора распадается на малые домены, границы между которыми образованы дисинклинациями, играющими ту же роль, что дислокации в обычных кристаллах. [c.279]

    Наряду с пластмассами синтетические полимеры нашли применение для изготовления волокон. Из огромного многообразия полимерных веществ только немногие удовлетворяют условиям, предъявляемым к этой группе материалов. Главные из них линейная, нитевидная структура молекул полимеров, применяемых для изготовления волокна. Кроме того, волокнообразующие полимеры должны отличаться довольно высокой степенью полимеризации, обусловливающей эластичность волокон. Наконец, полимеры должны плавиться при достаточно высокой температуре без разложения или образовывать концентрированные прядильные растворы. Наиболее распространенные полиамидные волокна капрон (СССР), найлон (США), перлон (ГДР), силон (Чехословакия) полиэфирные волокна лавсан (СССР), терилен (Англия) полиакрилонитрильные волокна (нитрон (СССР) кашмилон (Япония) поливинилхлоридные волокна хлорин (СССР). [c.402]

    Из этих ориентировочных данных следует, что решающим показателем для оценки способности полимера к переработке в волокно является вязкость его растворов. Здесь уместно сделать замечание относительно встречающихся иногда понятий волокнообразующий полимер и способность полимера к волокнообразова-нию . Эти не очень строгие понятия являются, кроме того, комплексными. С одной стороны, подразумеваются определенные минимальные требования к физическим свойствам полученного из полимера волокна и особенно к механическим свойствам (минимальная прочность, эластичность и т. п.), а с другой стороны, — способность полимера к переработке в нити, т. е. к образованию жидкой нити и к фиксации ее в виде отвержденного материала. [c.246]

    Одним из важнейших практических аспектов структурной механики ориентированных полимеров является получение химических волокон. Однако, как это ни парадоксально, принятые в настоящее время методы формования, основанные на нрименении фильер и экструзии, ограничивают возможности получения разнообразных форм ориентационного порядка. Подобное ограничение обусловлено двумя причинами. Первая связана с состоянием отправной системы — раствора или расплава волокнообразующего полимера. Как правило, эта система в значительной степени лишена структуры и молекулы в ней находятся в более или менее перепутанном состоянии, образуя флуктуационную сетку. Наличие узлов и перехлестов в этой сетке [32, 33] неминуемо должно приводить, по чисто кинетическим причинам, к складыванию макромолекул на себя во время ориентации поэтому получение складчато-фибриллярной структуры в результирующем волокне практически неизбежно. [c.66]

    Гетерогенными волокнами называются волокна, состоящие из нескольких компонентов, один из которых, находящийся на поверхности, является более легкоплавким, чем другие, а поэтому способен выполнять функции термопластичного связующего при склеивании волокон в условиях горячего прессования. Легкоплавкий компонент может находиться на поверхности волокон в виде равномерной рубашки. Поперечное сечение такого волокна показано на рис. 1. Гетерогенные волокна можно получать различными способами нанесением растворов или расплавов легкоплавких полимеров на поверхность обычных волокон, прядением одновремеино из нескольких волокнообразующих полимеров и т. д. [c.287]

    Описаны волокнообразующие полимеры, получаемые реакцией диизоцианатов с целлюлозой и поливиниловым спиртом. Так, Тьебо [2193] исследовал возможность образования трехмерных нерастворимых полимеров взаимодействием диизоцианатов с целлюлозой. Исследовалась реакция гексаметилендиизоцианата и ж-толуилен-2,4-диизоцианата с целлюлозой и вискозным волокном, а также с ацетилцеллюлозой различной степени ацетилирования. Реакция контролировалась измерением инфракрасных спектров, определением содержания азота и исследованием механических свойств полученных продуктов. В случае присоединения диизоцианатов к гидроксильным группам производных целлюлозы образуются уретаны. В гетерогенной среде реакция происходит лишь в незначительной степени. При проведении реакции в растворе образование мостиков может происходить с каждой ОН-группой. [c.186]

    Общий метод получения синтетических волокон состоит в том, что волокнообразующие полимеры в виде расплавов или растворов в соответствующих растворителях продавливают через фильеры. После охлаждения или удаления растворителей путем их испарения тонкие струйки полимера затвердевают, образуя волокна в виде бесконечной нити. Иногда для удаления растворителя вытекающие из фильер струйки пропускают через осадительную ванну. Свежесформованное волокно не обладает достаточной механической прочностью и даже бывает хрупким. Для придания необходимых механических и физико-химических свойств нитям их многократно вытягивают. [c.26]

    Таким образом, единый цикл физико-химических явлений, обусловливающих доставку в волокно молекул красителя и фиксирование их активными группами волокнообразующего полимера, при крашении по непрерывным схемам нарушается. На стадии пропитывания волокнистого материала в основном происходит принудительное перемещение молекул или ионов красителей из пропиточной ванны в раствор, заполняющий межво-локонные пространства, и лишь в очень незначительной степени начинается заторможенная адсорбцией диффузия красителя в субмикроскопических порах волокна. При увеличении продолжительности пропитки или при инициировании на этой технологической стадии адсорбционно-диффузионных процессов степень проникновения красителя внутрь волокна может существенно возрасти. В основном же диффузионные процессы и фиксирование красителя в волокне протекают на стадии тепловой обработки после пропитки и отжима текстильного материала. [c.73]

    Необходимо учитывать трудность стоявшей перед издателем задачи — собрать в одной книге всю информацию, имеющуюся в данной области, поскольку границы области в ее современном состоянии определить нелегко. Кроме того, расширение круга обсуждаемых вопросов, естественно, всегда сопряжено с неравнозначностью материала различных глав. Так, например, гл. 5, посвященная жидкокристаллическому порядку в растворах полипеп-тидо1В, дает законченную не только качественную, но и количественную картину закономерностей, характерных для лиотропных (Кристаллов с палочкообраэными молекулами. Изложенный в ней материал может служить хорошо сформулированной программой физических исследований, которые следует провести с жидкокристаллическими растворами ароматических полиамидов и других волокнообразующих полимеров (см. гл. 4) для более полного понимания их структуры. [c.6]

    Более сложное строение имеет волокнообразующий полимер 80, который является продуктом поликонденсации нафталин-1,4,5,8-тетракарбоновой кислоты с 3,3, 4,4 -тетрааминобифени-лом. Сообщается, что волокно, полученное формованием из раствора этого полимера в концентрированной серной кислоте по мокрому способу с применением в качестве осадительной ванны разбавленной (70%-ной) серной кислоты, сохраняет 60% первоначальной прочности на разрыв после 1-минутного пребывания при температуре 600°С. [c.350]

    Прямые красители представляют собой натриевые соли сульфо- и карбоновых к-т дис-, трис-, и полиазосоединений. Их применяют гл. обр. для крашения целлюлозных волокон и натурального шелка, а иногда также для полиамидных волокон и шерсти. Краситель фиксируется на волокне в основном вследствие образования водородной связи между ним и волокнообразующим полимером. Прямые красители хорошо растворяются в воде, образуя в большинстве случаев р-ры, в к-рых наряду с анионами красящих веществ присутствуют и их агрегаты. Расход красителей зависит от того, какой интенсивности окраску необходимо получить, и составляет 1—4% от массы волокна. Для снижения заряда статич. электричества на волокне и, следовательно, увеличения выбираемости красителя из р-ра и интенсификации процесса в красильную ванну вводят Na l или NagSO в количестве до 20% (от массы окрашиваемого материала), а для повышения равномерности окраски — органич. растворители типа этанол-аминов из расчета 10 кг/м , или г/л. Оптимальная темп-ра красильной ванны при периодич. способе 70—90 С. [c.565]

    Большая часть термостойких волокнообразующих полимеров не растворяется в известных растворителях, вследствие чего волокна из них получают в две стадии. Вначале формуют волокна из промежуточных незациклизованных полимеров, способных образовывать высококонцентрированные р-ры, но не обладающих высокой термостабильностью. На второй стадии свежесформо ванное волокно подвергают химич. или термич. дегидроциклизации, в результате к-рой оно приобретает нерастворимость, неплавкость, термостабильность и др. свойства (см. также Полициклоконденсация). [c.315]

    Прпнцпнпальпо полимеризацию винилхлорида можно осуществить в растворе (лаковым методом) аналогично тому, как это имеет место при синтезе ряда других карбоцепных волокнообразующих полимеров (например, полиакрилонитрила). Полимеризация винилхлорида в растворителе, нанример в тетрагидрофуране, и использование образовавшегося концентрированного раствора непосредственно для формования волокна представляют определенный практический интерес. [c.210]


Смотреть страницы где упоминается термин Волокнообразующие полимеры растворы: [c.106]    [c.324]    [c.473]    [c.359]    [c.253]    [c.275]    [c.42]   
Физико-химические основы технологии химических волокон (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Волокнообразующие полимеры растворы плохих растворителя

Растворы полимеров



© 2024 chem21.info Реклама на сайте